Welcome to Francis Academic Press

Academic Journal of Computing & Information Science, 2025, 8(9); doi: 10.25236/AJCIS.2025.080904.

MulMed: Addressing Multiple Medical Tasks Utilizing LLMS

Author(s)

Nannan Cheng1,2, Fangli Li1

Corresponding Author:
​Nannan Cheng
Affiliation(s)

1Departemnt of Information Engineering, Jiangxi University of Technology, Nanchang, Jiangxi, 330098, China

2Faculty of Computer Science and Multimedia, Lincon University College, Selangor, KuaLa Lumpur, 47301, Malaysia

Abstract

The proliferation of large-scale language models, such as ChatGPT, has underscored the urgent requirement to develop Language Models in Medicine (LLMs) to mitigate the burden on healthcare resources. This work introduces MulMed, a model that prioritizes multitasking capabilities in medical domains. MulMed aims to summarize complex medical texts, address patient inquiries, engage in medical question-answering dialogues, demonstrate cross-lingual proficiency, and offer comprehensive medical knowledge coverage. Its key contributions include a two-step fine-tuned modeling framework that enables the model to perform multi-task functions like medical text summarization and Q&A in both English and Chinese, demonstrating excellent generalization abilities on benchmark test sets. The model also exhibits human empathy in doctor-patient consultations, and its fine-tuning process and data are openly available to promote future research in cross-lingual medical models. Additionally, a medical ethics framework is proposed to aid in evaluating the feasibility of medical model applications.

Keywords

Large Language Model; Multi-Task Model; Cross-Lingual Medical Model

Cite This Paper

Nannan Cheng, Fangli Li. MulMed: Addressing Multiple Medical Tasks Utilizing LLMS. Academic Journal of Computing & Information Science (2025), Vol. 8, Issue 9: 26-33. https://doi.org/10.25236/AJCIS.2025.080904.

References

[1] K. Singhal, S. Azizi, T. Tu, S. S. Mahdavi, J. Wei, H. W. Chung,N. Scales, A. Tanwani, H. Cole-Lewis, S. Pfohl, et al. (2023).Large language models encode clinical knowledge. Nature 620 (7972) 172–180.

[2] A. J. Thirunavukarasu, D. S. J. Ting, K. Elangovan, L. Gutierrez, T. F.Tan, D. S. W. Ting(2023). Large language models in medicine. Nature medicine 29 (8) (2023) 1930–1940.

[3] J. Park, Y. Fang, C. Ta, G. Zhang, B. Idnay, F. Chen, D. Feng, R. Shyu,E. R. Gordon, M. Spotnitz, et al. (2024).Criteria2query 3.0: Leveraging generative large language models for clinical trial eligibility query generation. Journal of Biomedical Informatics 154 :104649.

[4] M. Agrawal, S. Hegselmann, H. Lang, Y. Kim, D (2022). Sontag, Large language models are few-shot clinical information extractors, in: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,1998–2022.

[5] M. G. Madden, B. A. McNicholas, J. G. Laffey (2023) . Assessing the usefulness of a large language model to query and summarize unstructured medical notes in intensive care. Intensive Care Medicine1–3.

[6] J. Giorgi, A. Toma, R. Xie, S. Chen, K. R. An, G. X. Zheng,B. Wang (2023).Clinical note generation from doctor-patient conversations using large language models: Insights from mediqa-chat. arXiv preprintarXiv:2305.02220

[7] L. Y. Jiang, X. C. Liu, N. P. Nejatian, M. Nasir-Moin, D. Wang,A. Abidin, K. Eaton, H. A. Riina, I. Laufer, P. Punjabi, et al. (2023) . Health system-scale language models are all-purpose prediction engines. Nature. 619 (7969) 357–362. 

[8] Y. Li, Z. Li, K. Zhang, R. Dan, S. Jiang, Y. Zhang(2023). Chatdoctor: A medical chat model fine-tuned on a large language model meta-ai (llama)using medical domain knowledge, Cureus 15 (6).

[9] H. Wang, C. Liu, N. Xi, Z. Qiang, S. Zhao, B. Qin, T. Liu (2023). Huatuo: Tuning llama model with chinese medical knowledge .arXiv:2304.06975.17

[10] J. A. Omiye, H. Gui, S. J. Rezaei, J. Zou, R. Daneshjou(2024). Large language models in medicine: the potentials and pitfalls: a narrative review, Annals of Internal Medicine 177 (2) 210–220.

[11] J. Decety(2020), Empathy in medicine: what it is, and how much we really need it, The American journal of medicine 133 (5) 561–566.

[12] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,W. Chen(2021). Lora: Low-rank adaptation of large language models, in: International Conference on Learning Representations.

[13] E. Casell(1985), The theory of doctor-patient communication, Cambridge 1:204–205.

[14] C. M. Chou, K. Kellom, J. A. Shea (2014), Attitudes and habits of highly humanistic physicians, Academic medicine 89 (9) 1252–1258.

[15] J. Li, M. Galley, C. Brockett, J. Gao, B. Dolan (2016),A diversity-promoting objective function for neural conversation models, in: Proceedings of NAACL-HLT:110–119.