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Abstract: Drone image geolocation aims to estimate the geographic location of drone-captured images. 
Given a query image with an unknown location, the task involves retrieving the most similar reference 
image from a database and using its GPS information to estimate the location of the query image. This 
is fundamentally an image retrieval problem, where deep neural networks are employed to learn effective 
image descriptors. However, current research primarily focuses on closing the gap between drone and 
satellite views, often leading to performance drops under real-world conditions such as rain and fog. 
This issue primarily arises because the dataset used for training the model does not fully capture the 
complex environments encountered in real-world applications, leading to a domain gap between training 
and testing. To address this challenge, we propose a dual-branch multi-environment adaptation network 
(MuSe-Net) designed to dynamically adjust and adapt to environmental changes. The network consists 
of two branches: the multi-environment style extraction network, which captures weather-related style 
information, and the adaptive feature extraction network, which uses an adaptive modulation module to 
minimize the style differences caused by environmental conditions. Extensive experiments on the 
University-1652 benchmark show that MuSe-Net delivers strong performance in geolocation across 
various environmental conditions. 
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1. Introduction 

Drone image geolocation determines the location of the drone by retrieving images between drone 
view images and satellite view images. This technology is widely used in drone navigation, drone 
positioning, event detection, aerial photography and other fields [1,2]. In specific operations, the system 
searches for the most relevant images for a given drone image from a library of satellite images with 
geotags (GPS), thereby helping the drone determine its geographic location. Although drone images have 
good visibility, the offset across view domains makes this task challenging due to differences in 
perspective and environment. 

In existing UAV image geolocation, CNNs are mainly used to learn the geographic features of images. 
Dual-branch networks based on convolutional neural networks are widely used in related research [3], in 
which metric learning [4] and classification loss [5] are the two main choices for optimizing models. Of 
course, the image geolocation task can also be completed by adjusting the spatial layout of image 
semantics or aligning local information [6,7]. All of the above existing methods focus on alleviating the 
cross-view domain gap introduced by viewpoint changes. How should the model cope with the complex 
and changeable real-world weather environment? Usually a well-trained network often performs poorly 
when facing unfamiliar inputs, and drones are also likely to encounter bad weather environments that 
they did not encounter before takeoff after takeoff. Therefore, UAV image geolocation based on multi-
environment adaptive networks is a meaningful and practical study. In the study of domain generalization, 
one common approach is to train the model on a large, diverse dataset, allowing it to learn the location 
distribution across various environments. However, previous studies [8,9] have demonstrated that it is 
quite difficult to make a model generalize effectively to all possible domains. In our approach, we aim 
to enable the model to selectively adjust to domain shifts caused by environmental changes. Specifically, 
we first use the MobileNetV3 network branch to extract environment-related features from the image. 
These features are then input into the IBN-Net network, which contains an adaptive modulation module. 
This module dynamically adjusts according to the style changes introduced by different environmental 
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conditions, thereby effectively reducing the impact of these environmental changes. For the simulation 
of realistic weather environments, we selected a ready-made image-based style transfer library to 
preprocess the image. Nine synthetic environment images of a geographic location are obtained, namely 
fog, rain, snow, fog and rain, fog and snow, rain and snow, darkness, overexposure, and wind. Multi-
environment style extraction branch We use a supervised learning method to use a lightweight 
MobileNetV3 network to extract the weather style features of the image. The adaptive feature extraction 
branch processes the image through the IBN-Net network to obtain visual features [10]. The IBN-Net 
network integrates batch normalization (BN) and instance normalization (IN) into the residual block. BN 
is used to retain the differences between different categories [11], and IN is used to eliminate domain-
specific statistical features to make the features of the same category in different domains more consistent. 
However, IN uses the same processing method for different domain features when eliminating domain-
specific statistical features. In order to meet dynamic adaptability, we further introduced an adaptive 
feature modulation block (AFM) and integrated the AFM module into the IBN-Net network. The AFM 
module is inserted after the instance normalization module, which dynamically modulates the instance 
normalization by learning the scale and deviation from the outside, so that the IBN-Net network can 
adaptively extract the geographical features of the image. Extensive experiments on the widely used 
University-1652 benchmark show that the proposed MuSe-Net achieves competitive results in 
geolocation in multiple environments. 

2. Basic Theory 

2.1. MobileNetV3 Model Principle 

MobileNetV3, introduced by Google in 2019, is a lightweight attention-based model. It integrates 
several key elements: the depthwise separable convolutions from MobileNetV1, the inverted residuals 
with linear bottlenecks from MobileNetV2, and the squeeze-and-excitation mechanism from MnasNet 
[12]. It further optimizes the network structure. This design enables MobileNetV3 to provide efficient 
computing performance and excellent accuracy in resource-constrained environments, and is particularly 
suitable for deep learning applications in mobile devices and embedded systems. 

Depthwise separable convolution divides the convolution kernel into single-channel filters and 
applies convolution operations to each channel independently. This process preserves the depth of the 
input feature layer while producing an output feature layer with the same number of channels as the input 
feature map, as illustrated in Figure 1. For example, a 20 × 20 × 3 feature layer is input and convolved 
with a 7 × 7 × 1 × 3 convolution kernel to obtain a 14 × 14 × 3 feature layer. The depth of both the input 
and output is 3. 

 
Figure 1: Depthwise convolution process in depthwise separable. 

Squeeze-and-Excitation Networks is an architectural module. It mainly enhances the network's 
expressiveness by adaptively reweighting the channel features of each convolutional layer. As shown in 
Figure 2, U is a feature layer with dimensions C × H × W, and is also the input of the attention module. 
The implementation details of the attention module include two parts: Squeeze and Excitation. In the 
Squeeze part, all the eigenvalues of each channel of U are averaged, see formula (1), and a eigenvector 
with dimension 1 × 1 × C is obtained, which corresponds to the module Fsq (·) in the figure. 
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Where: zc refers to the eigenvalue of the cth channel in the feature vector; uc(i, j) represents the 
eigenvalue of the i-th row and j-th column of the feature layer; W and H are the width and height of the 
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feature layer respectively. 

In the Excitation part, a feature vector of dimension 1 × 1 × C is connected to two fully connected 
layers (Fc Layers), aiming to use the correlation between channels to train a weight vector that conforms 
to the channel enhancement and attenuation rules. The Sigmoid function then maps the value of each 
dimension to the range of (0, 1) and multiplies it with the original input feature layer U to implement the 
attention mechanism of each channel of the feature layer. 

 
Figure 2: Squeeze-and-Excitation Networks. 

2.2. IBN-Net Network 

IBN-Net (Instance-Batch Normalization Network) is an improved convolutional neural network 
architecture that aims to improve the generalization ability of deep learning models in visual tasks, 
especially in cross-domain (domain generalization) tasks. Its core idea is to use IN and BN 
simultaneously in the convolutional layer to achieve dual normalization of local texture and global 
features. This method enhances the adaptability of the network in different fields by introducing two 
types of normalization processing. 

IN is mainly used to eliminate the style information of the image and retain the content information. 
It normalizes each channel of each sample independently. Its formula (2) is as follows: 
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Where µinstance and σinstance are the mean and standard deviation of the channel of the sample 
respectively. 

BN normalizes a batch of samples during training to reduce the impact of internal covariate shift, 
making model training more stable and accelerating convergence. Its formula (3) is as follows: 
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Where µbatch and σbatch are the mean and standard deviation of the channel in the current batch of 
samples. 

3. MuSe-Net Model 

Figure 3 shows the Multi-Environment Adaptive Network (MuSe-Net). It consists of two branches, 
Estyle and Econtent, with the same input. Estyle aims to capture style information related to different 
weather conditions, while upsampling and concatenating the captured features, and then feeding the 
concatenated features into the Adaptive Feature Modulation Module (AFM) for convolution. Finally, 
Econtent uses the affine parameters obtained from the Adaptive Feature Modulation Module (AFM) 
block to dynamically adjust the instance normalization layer in Econtent. 
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Figure 3: The Multi-Environment Adaptive Network. 

3.1. Weather Environment Style Extraction Branch Based on MobileNetV3 

This branch comprises two components: (1) the encoder, which utilizes the ConvNormActivation 
module from MobileNetV3 along with 11 inverted residual blocks to form a weather feature extraction 
network. The ConvNormActivation module, consisting of convolutional layers, batch normalization (BN) 
layers, and Hardswish activation, increases the number of channels while reducing image size to preserve 
key features. The inverted residual blocks incorporate depthwise separable convolutions and squeeze-
and-excitation modules to reduce computational costs and enhance feature extraction. As shown in 
Figure 4, to capture weather-related features mainly found in shallow layers, extraction begins from the 
third, seventh, and eleventh layers, with upsampled features concatenated. (2) The style classifier uses 
BN layers, dropout layers, and fully connected layers (FC) to classify the weather environment of the 
image. 

 
Figure 4: Upsampling operation. 

3.2. Adaptive Feature Extraction Branch Embedded in AFM 

This branch consists of an identity classifier and a content encoder embedded with an adaptive feature 
modulation module.  The content encoder is built on the IBN-Net backbone, which has a structure 
similar to ResNet-50. Both IBN-Net and ResNet-50 consist of four stages, each containing a different 
number of bottleneck layers. In IBN-Net, the first stage contains 3 bottleneck layers. We integrate the 
adaptive feature modulation module into the second and third bottlenecks of stage 1 (see Figure 5). The 
identity classifier shares the same components as the style classifier. 
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Figure 5: Bottleneck layer of content encoding (embedded AFM). 

 
Figure 6: Adaptive feature modulation block. 

3.3. Adaptive Feature Modulation Block 

The adaptive feature modulation block (AFM) first passes through two convolutional layers, namely 
Conv_w1 and Conv_b1, for learning the scale and bias (see Figure 5). Then we input the global features 
of the image into the two convolutional layers to predict a set of adaptive 3×3 convolution kernels to 
dynamically adjust and optimize the scale and bias through the global information of the image (see 
Figure 6). Through this adjustment, the scale and bias after convolution will better reflect or adapt to the 
global weather conditions. Finally, feature modulation is performed through the scale and bias after 
convolution, as shown in formula (4). 

)())(1(·)()()()(·)(),( vvuINuINvuINvvuAFM µσµσ ++=++=    (4) 

Let u denote the input feature and v represent the corresponding style feature. µ(u) and σ(u) are the 
mean and variance of the input features. σ(v) and µ(v) are the learning scale and bias for adjusting the 
normalized feature u. IN(·) is the instance normalization operation. 

4. Experimental Analysis 

4.1. Data Processing 

We use the University-1652 dataset to train and evaluate the proposed method. University-1652 is a 
multi-scene, cross-view image retrieval dataset designed for studying image retrieval based on multi-
view and multi-scene data. Developed by the University of Science and Technology of China, it is widely 
used for tasks like cross-view image matching and retrieval, particularly between drone and ground views. 
The dataset includes images from drones, satellites, and mobile phones, covering 1,652 buildings across 
72 universities globally, with non-overlapping training and test sets. It supports applications like drone-
based geolocation and guidance. 

 
Figure 7: Example of a synthetic environment on university-1652. 

When performing drone view target positioning and drone guidance in multiple weather 
environments, we need drone view images to reproduce multiple weather environments in real life. Here 
we choose a ready-made image-based style transfer library to preprocess the images. After preprocessing, 
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nine synthetic weather environment images of a geographical location are obtained, namely fog, rain, 
snow, fog and rain, fog and snow, rain and snow, darkness, overexposure, and wind, as shown in Figure 
7. 

4.2. Evaluation Indicators and Environment Cnfiguration 

In the experiment, we use recall (Recall@K) and average precision (AP) to evaluate model 
performance. Recall@K measures the proportion of correctly matched images in the top K. The higher 
the value, the better the network performance. AP refers to the area under the precision-recall curve. 
These two indicators are used for performance evaluation in drone positioning and navigation tasks, 
respectively. 

During training, we use stochastic gradient descent (SGD) with a momentum of 0.9 and a weight 
decay of 0.0005 to optimize the model, with a batch size of 16. Each branch uses cross-entropy as the 
loss function, while style loss and identity loss are combined to train MuSe-Net. The initial learning rate 
is set to 0.0005 and decays by 0.1 and 0.01 at 120 and 180 epochs, respectively, over a total of 210 epochs. 
During testing, the Euclidean distance is used to measure similarity between the query image and the 
gallery candidates. 

We implemented our code based on Pytorch and used the NVIDIA GeForce RTX 3080 Ti graphics 
card for experiments. 

4.3. Experimental Results and Analysis 

We conducted two tasks on the university-1652 dataset: drone-view target localization 
(drone→satellite) and drone navigation (satellite→drone). At the same time, we re-implemented four 
methods as comparative experiments. The content encoders in the four compared methods are VGG16, 
DenseNet121, Swin-T and IBN-Net50-a. 

In our experiment, we maintained a consistent weather environment style for the satellite images in 
the University-1652 dataset, while converting drone images into 10 different weather conditions. As 
detailed in Table 1, among the four re-implemented methods for the drone → satellite task, IBN-Net 
shows a notable improvement over the others. However, our method outperforms IBN-Net across all 
weather conditions. Specifically, our approach enhances the R@1 accuracy from 62.30% to 64.83% 
(+2.54%) and the AP accuracy from 66.46% to 68.89% (+2.43%). 

Table 1: Comparison with other advanced methods.  

Method initial fog rain snow fog+ 
rain 

fog+ 
snow 

rain+ 
snow dark over-

exposure wind Ave 

 R@1   
AP  

R@1   
AP  

R@1   
AP  

R@1   
AP  

R@1   
AP  

R@1   
AP  

R@1   
AP  

R@1   
AP  

R@1   
AP  

R@1   
AP  

R@1   
AP  

     Drone →  Satellite     

VGG16 59.98 
64.69  

56.21 
61.11  

53.97 
58.90 

50.07 
55.08  

50.43 
55.63 

42.77 
48.01  

51.08 
56.10 

39.10 
44.30 

45.16 
50.47  

50.84 
56.05 

49.96 
55.03 

DenseNe-t121 69.48 
73.26 

64.25 
68.47 

63.47 
67.64 

59.29 
63.70 

59.68 
64.13 

50.41 
55.20 

60.21 
64.57  

48.57 
53.41  

54.04 
58.88  

60.74 
65.14 

59.01 
63.44 

Swin-T  69.27 
73.18 

66.46 
70.52 

65.44 
69.60 

61.79 
66.23  

63.96 
68.21 

56.44 
61.07 

62.68 
67.02 

50.27 
55.18 

55.46 
60.29 

63.81 
68.17  

61.56 
65.95 

IBN-Net 72.35 
75.85 

66.68 
70.64 

67.95 
71.73  

62.77 
66.85  

62.64 
66.84 

51.09 
55.79 

64.07 
68.13 

50.72 
55.53 

57.97 
62.52 

66.73 
70.68 

62.30 
66.46 

Ours 74.68 
78.02 

69.47 
73.24 

70.55 
74.14 

64.78 
68.93 

65.59 
69.64 

53.55 
58.24 

66.19 
70.21 

54.05 
58.60 

61.05 
65.51 

68.46 
72.37 

64.83 
68.89 

     Satellite →  Drone     

VGG16 75.89 
58.50  

75.18 
55.42  

71.61 
53.03 

68.19 
48.29 

71.18 
49.34  

65.48 
40.87  

69.47 
50.03 

64.34 
35.74  

64.91 
44.20  

68.90 
49.53 

69.52 
48.50 

DenseNe-t121 83.74 
70.34 

82.31 
66.32 

81.17 
65.23 

78.60 
60.33  

79.46 
61.66 

74.61 
51.14 

78.46 
61.68 

74.47 
47.88  

74.32 
55.26 

78.32 
61.63 

78.55 
60.15 

Swin-T 80.74 
68.94 

81.03 
67.46  

81.17 
66.39 

78.46 
61.33  

79.17 
64.65 

74.89 
56.57 

78.89 
63.49 

75.61 
48.43 

76.60 
56.57  

78.74 
64.45 

78.53 
61.83 

IBN-Net 86.31 
73.54 

84.59 
67.61 

84.74 
69.03  

80.88 
64.44  

83.31 
63.71  

77.89 
52.14  

83.02 
65.74  

78.46 
50.77 

79.46 
58.64  

84.02 
67.94  

82.27 
63.36 

Ours 86.88 
74.47 

84.74 
67.47 

85.02 
67.78 

84.45 
67.14 

84.02 
65.65 

81.17 
54.09 

84.88 
67.75 

80.74 
53.01 

81.60 
62.09 

84.17 
69.25 

83.77 
64.87 

The satellite → drone task, in contrast, is less complex than drone → satellite. Table 1 illustrates that 
the recall rate and average precision for satellite → drone are generally higher than for drone → satellite. 
Despite this, our method still maintains a superior performance across 10 different weather environments. 
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We achieved an increase in R@1 accuracy from 82.27% to 83.77% (+1.50%) and an improvement in AP 
from 63.36% to 64.87% (+1.51%). 

Through the above two experiments, we can draw two conclusions. First, compared with other 
methods, IBN-Net can obtain better results when facing multi-domain data. It can filter out domain shifts 
caused by different weather environment styles through instance normalization (IN). Secondly, the 
MuSe-Net network proposed by us based on IBN-Net can further improve performance by dynamically 
adjusting instance normalization through an adaptive modulation module (AFM). 

5. Conclusions 

In this paper, we address the challenges of UAV-view image localization and UAV guidance, focusing 
on the cross-view gap between different viewpoints and the domain gap caused by varying weather and 
illumination. While previous studies primarily tackled the cross-view gap, we propose MuSe-Net, an 
end-to-end learning network designed to address the domain gap across different environmental 
conditions. Additionally, we introduce an adaptive feature modulation module, which dynamically 
balances environmental domain shifts within the adaptive feature extraction network. To validate MuSe-
Net's performance, we conducted experiments using the University-1652 dataset and achieved 
competitive results. Looking forward, we plan to enhance geolocation performance in two areas: first, 
by improving the multi-environment extraction network to capture more expressive weather-related 
features, and second, by increasing the image geolocation speed to enhance its practical value. 
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