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Abstract: This article is to study a Schrödinger-Bopp-Podolsky system has steep potential well and 
concave-convex nonlinearities. This system is a coupled system that describes physical phenomena such 
as charge motion in physics, and its mathematical research involves the existence and asymptotic 
behavior of solutions to nonlinear partial differential equations. By combining the variational methods 
and the truncation technique to prove the existence and concentration behavior results of nontrivial 
solutions for this system. Specifically, first the defined truncation function is merged into the convolution 
term of the corresponding energy functional of the system and it is analyzed that the Gerami sequence of 
the energy functional is norm bounded. Next, this sequence is proved to be a norm bounded by the energy 
functional of the original system. Finally, it is proved that there are strong convergent subsequences in 
the obtained bounded sequence, and the main results are displayed using standard analysis methods. 
These results of the article have been extensively improved and expanded to previous works. 
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1. Introduction 

In the current paper, study a Schrödinger-Bopp-Podolsky system defined in unbounded domain 3R  
as follows: 
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where RR →3:,ϕu , ,421,0 <<<<> pqa )(),( xfxV and )(xg satisfying the following 
assumptions: 

(V1) ),()(0 3 RRCxV ∈≤ ; 

(V2) {V < V0}:= {x∈ 3R :V (x) < V0} is nonempty and finite lebesgue measure for some V0 0≥ ; 

(V3) Ω =intV −1(0) is nonempty open set and the boundary is smooth withΩ =V −1(0); 

(F1) Lf ∞∈ ),( 3 RR and 0|| ≠∞f ; 

(G1) Lg qp
p
−∈ ),( 3 +RR  and 0}0),(max{ ≡/xg . 

This system typically appears in the schrödinger field ξ=ξ (t, x) and its electromagnetic field. Bopp 
[1] and podolsky [2] independently studied the bopp podolsky electromagnetic theory, which can be seen 
as the second-order norm theory. From the perspective of electromagnetic fields, the Bopp Podolsky 
theory and Maxwell theory are indistinguishable experimentally and can be explained as effective 
theories for both long and short distances . The study of the existence and concentration of solutions in 
this system has strong physical and mathematical significance. One knows that the mathematical model 
of system (1) is expressed through a nonlinear partial differential system consisting of two equations, 
which is commonly used to describe certain physical phenomena in quantum mechanics, especially those 
with long-range interactions and quantum fluctuations. This system can be used to study certain specific 
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processes in quantum field theory, such as the interaction between electrons and electromagnetic fields. 
Its mathematical model equations contain basic concepts in quantum mechanics, such as wave functions 
and potential energy. By solving this system, the ground state solution, energy solution, etc. of the 
quantum system can be analyzed, and the physical mechanism of quantum phenomena can be understood. 
These studies not only enrich our understanding of quantum phenomena, but also provide theoretical 
basis and reference value for further research in related fields such as mathematics and physics. 

In the past few decades, the schrödinger bopp podolsky system has received widespread attention. 
When )(xVλ  is a normal number and the nonlinear term is |u|p−2u (2<p<6), d’avenia and siciliano they 
initially researched some results with and without solutions to system (1). At the same time, they also 
analyzed the asymptotic behavior results of nontrivial solutions. Subsequently, if nonlinear term is 
μ|u|p−1u+|u|4u, where μ > 0, 2< p<5, li et al. Considered the critical situation of the system (1), they got 
the solutions of system (1) by combining the pohozaev nehari manifold method with monotonicity 
analysis techniques. Later, chen et al. Investigated the existence results of ground state solutions for 
system (1) under some relaxed conditions for λv and f+g. In addition, they also minutely provided the 
maximum minimization feature of the ground state energy, jia and li also discussed the non autonomous 
system, they cleverly used the nehari manifold and split lemma to prove that system (1) has a solution. 
For more results on this problem, see [3-7] and so on.  

Motivated by the works mentioned above [5,7], the main objective of this article is to study the system 
(1). More precisely, follow the variational methods and use an interesting truncation the technique to 
prove the existence and concentration behavior of the nontrivial solutions of system (1) when q is small 
andλ is large enough, this is significantly different from the previous works. 

Now let’s state the main results. 

Theorem 1.1 Under the conditions that )3(V)1(V − , (F1) and (G1) are established. Then there 

exist 0,ˆ,ˆ >Πλq such that )ˆ,0( qq∈ , λλ ˆ> and Π<<
−

||0 g
qp

p , system (1) possess at least one 

nontrivial solution u. Moreover, there exist 0, >ηβ such that 

βλ ≤< ||||0 u  and )(, uJ qλη ≤ . 

Theorem 1.2 Under the conditions that )3(V)1(V − , (F1) and (G1) are established. Let uλ be a 
solution for system (1) given by Theorem 1.1. Going if necessary a subsequence, then for every 

)ˆ,0( qq∈ and Π<<
−

||0 g
qp

p , uu 0→λ in )( 31 RH as ∞→λ , where u0 is a nontrivial solution of 
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Remark 1.1 1) The nonlinear terms f and g no longer use the Ambrosetti Rabinowitz condition (A-R 

condition), but instead use a weakened condition to get some results about solutions for System (1); 

2) when V (x) is a steep potential and f+g is a nonlinear concave-convex with f (x) |u| q-2u+G (x)  
|u | p-2u, where 1<q<2<p<4, this paper discuss the existence and concentration of solutions in system (1), 
which has almost never been considered before and can supplement and generalize existing research 
results; 

3) V(x) is a steep potential and f+g is a more general continuous nonlinear term without differenti- 
ability, considering the existence and concentration of solutions in system (1) from this more general 
situation provides certain reference value for subsequent research on such problems. 

2. Preliminaries 

Before starting the proof of the Theorems, there mainly state that the main preparatory knowledge 
and some useful results for our problem. p|| ⋅ is the ordinary norm of )( 3RpL for all ∞≤≤ p1 , E* 
denotes the dual space of E, o(1) is any quantity which tends to zero when ∞→n . Moreover, if the 
subsequence of {un} is taken, it will be denoted again as {un}. )( 31 RH denotes a Sobolev space and 

|||| 1u H is a norm. Let 
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be endowed with 

( ) ||||d))((, 2
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3
uxuvxVvuvu =+∇∇= ∫R . 

For 0>λ , here also need the following two definitions 

( )21
3

d))((, ∫ +∇∇=
R

xuvxVvuvu λ
λ λ|||| u= . 

If 1≥λ , then λ|||||||| uu ≤ . Set ( )λλ ||||, ⋅= EE . Then it's easy to get the following lemma. 

Lemma 2.1 Under the conditions that )3(V)1(V − are established. Then the embedding λE is 

continuously embedded into )( 3RsL ])6,2[( ∈∀s and 1≥λ . Therefore, there is ds > 0 (not related to 
1≥λ ) derives 

,|||||||||| λududu sss ≤≤  for all Eu∈ .                     (2) 

After analysis, one can easily determine that system (1) the same as 
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It’s solutions of this equation are the critical points of the functional ),(1
, Rλλ ECJ q∈ given by 
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In order to prove the main results, now move to consider the truncated functional 
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whereϕ is defined as 
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One can easily verify that ),(, Rλ
β
λ EJ q ∈ . 

Remark 2.1 Proposed technological route: 

1) Define the usual Sobolev space inner product and norm, and use the Ekeland variational Principle 
to construct the energy functional corresponding to the nonlinear Schrödinger-Bopp-Podolsky system; 

2) Using critical point theory, verify that the solution of the system corresponds one-to-one With the 
critical points of the functional; 

3) Verify the defined functional satisfies the geometric structure of Mountain Pass; 

4) By constructing some useful inequalities to verify the existence of minimization sequences, the 
functional energy value can reach the defined minimum energy; 

5) Calculate the range of values for the lowest energy value and show the boundedness of the 
minimization sequence; 

6) Standard discussion methods and analytical principles were used to study the existence and 
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interesting states of solutions on the system. 

3. Proof of Theorems 1.1 and 1.2 

This section mainly prove Theorems 1.1 and 1.2. First of all, define a cut-off function 1C∈ϕ  
)),,0([ R∞ satisfying 
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Lemma 3.1 Under the conditions that )3(V)1(V − , (F1) and (G1) are established. Then for all 
,1≥λ  

(A1) there exist 0,, >Π ηρ such that for all Π<<
−

||0 g
qp

p and ρλ =|||| u , one has ηβ
λ ≥)(, uJ q ; 

(A2) there exist 01 >q and )(00 Ω∈ ∞Ce with ρ>∇ 20 || e such that 0)( 0, <eJ q
β
λ

 for all ),0( 1qq∈ . 

Proof Using (F1), (G1), (2) and Hölder inequality, one has 
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In order to prove (A2), define the function ),( Rλλ EJ ∈ by 
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Now defining energy value 
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mountain Pass Theorem [8], one deduces that for all 1≥λ and ),0( 1qq∈ , there is a Gerami sequence 

λEun ⊂}{ at the energy value β
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Thus, there exists M > 0 (not related to b,,λβ ) such that 

MteJc qtq ≤=
∈
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Lemma 3.3 Under the conditions that )3(V)1(V − , (F1) and (G1) are established. If λEun ⊂}{  is 

a Cerami sequence satisfying (3). Passing to a subsequence, there exist 0>β and 02 >q such that for 

any 1≥λ , )ˆ,0( qq∈  with },min{:ˆ 21 qqq = , there holds .|||| βλ ≤nu  
Proof We need to split the following cases. 
Case 1. If βλ 2|||| >nu , by Lemma 3.2, one has 
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which is a contradiction if 01: 22 >=
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Remark 3.1 If the sequence λEun ⊂}{ is given in Lemma 3.3, then }{ nu is also a bounded Gerami 

sequence of qJ ,λ satisfying .|||| βλ ≤nu By the definition of the truncation functionϕ , one can see that 
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Obviously, there exists 01 >λ , such that for each λλ ˆ≥  with }1,max{ˆ
1λλ = , then 0}{ →nv in 
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Prove the Theorem 1.1 Setβ be given by above. By Lemmas 3.1-3.3 and Remark 3.1, there exist 
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λEun ⊂}{ at the mountain pass level β
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βλ ≤
+∈

||||sup n
Nn

u , β
λλ qnq cuJ ,, )( →  and 0||)()(||)||||1( *, →′+

λ
λλ Enqn uJu . 

It follows from Lemma 3.4 that there exists 0ˆ >λ such that for each λλ ˆ≥ , }{ nu has a convergent 

subsequence in λE for all )ˆ,0( qq∈ . Then assume that uun → as ∞→n , and thus 

βλ ≤< ||||0 u , β
λλ qq cuJ ,, )( =  and 0)()( , =′ uJ qλ . 

Consequently, u is a nontrivial solution for system (1). 

Prove the Theorem 1.2 The proof draw support from Theorem 1.3 in [10], one can easily finish this 
theorem. 

4. Conclusions 

This article is based on the strong background significance of Schrödinger-Bopp-Podolsky systems 
in physics, using Ekeland’s variational principle and critical point theory, as well as studying the 
existence and concentration phenomena of solutions for such systems under more optimized conditions. 
It has strong application and academic value. More precisely, when 0→q and ∞→λ , by using the 
variational methods and truncation technique, this paper accurately harvest the existence and 
concentration of a nontrivial solutions to system (1) involving steep potential well and concave-convex 
nonlinear terms. The provided results not only improve and expand the research published in [5], but also 
provide a good idea for studying the existence and behavior of solutions to this type of problems. 
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