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Abstract: This article is to study a Schrodinger-Bopp-Podolsky system has steep potential well and
concave-convex nonlinearities. This system is a coupled system that describes physical phenomena such
as charge motion in physics, and its mathematical research involves the existence and asymptotic
behavior of solutions to nonlinear partial differential equations. By combining the variational methods
and the truncation technique to prove the existence and concentration behavior results of nontrivial
solutions for this system. Specifically, first the defined truncation function is merged into the convolution
term of the corresponding energy functional of the system and it is analyzed that the Gerami sequence of
the energy functional is norm bounded. Next, this sequence is proved to be a norm bounded by the energy
functional of the original system. Finally, it is proved that there are strong convergent subsequences in
the obtained bounded sequence, and the main results are displayed using standard analysis methods.
These results of the article have been extensively improved and expanded to previous works.
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1. Introduction

In the current paper, study a Schrodinger-Bopp-Podolsky system defined in unbounded domain R’
as follows:

—Au+7»V(x)u+q2q)u = f(x)|u |”_2 u+g(x)|u |"_2 u, o
~Ap+a’No=4nu’,

where u, p:R* > R,a>0,1<g<2< p<4, V(x),f(x)and g(x) satisfying the following
assumptions:

V1) 0<V(x)e C(R’,R);

(V2) {V < Vo= {xe R’ :V (x) < Vo} is nonempty and finite lebesgue measure for some Vo> 0 ;
(V3) Q=intV "(0) is nonempty open set and the boundary is smooth with Q =y 1(0);

(F) feL” (R R) and| f], #0;

(G) ge[Lri (R’ R") and max{g(x), 0}#0.

This system typically appears in the schrodinger field £=¢ (¢, x) and its electromagnetic field. Bopp
[1] and podolsky [2] independently studied the bopp podolsky electromagnetic theory, which can be seen
as the second-order norm theory. From the perspective of electromagnetic fields, the Bopp Podolsky
theory and Maxwell theory are indistinguishable experimentally and can be explained as effective
theories for both long and short distances . The study of the existence and concentration of solutions in
this system has strong physical and mathematical significance. One knows that the mathematical model
of system (1) is expressed through a nonlinear partial differential system consisting of two equations,
which is commonly used to describe certain physical phenomena in quantum mechanics, especially those
with long-range interactions and quantum fluctuations. This system can be used to study certain specific
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processes in quantum field theory, such as the interaction between electrons and electromagnetic fields.
Its mathematical model equations contain basic concepts in quantum mechanics, such as wave functions
and potential energy. By solving this system, the ground state solution, energy solution, etc. of the
quantum system can be analyzed, and the physical mechanism of quantum phenomena can be understood.
These studies not only enrich our understanding of quantum phenomena, but also provide theoretical
basis and reference value for further research in related fields such as mathematics and physics.

In the past few decades, the schrodinger bopp podolsky system has received widespread attention.
When AV (x) isanormal number and the nonlinear term is [u’ 2u (2<p<6), d’avenia and siciliano they

initially researched some results with and without solutions to system (1). At the same time, they also
analyzed the asymptotic behavior results of nontrivial solutions. Subsequently, if nonlinear term is
P ut|ulu, where 1 > 0, 2< p<35, li et al. Considered the critical situation of the system (1), they got
the solutions of system (1) by combining the pohozaev nehari manifold method with monotonicity
analysis techniques. Later, chen et al. Investigated the existence results of ground state solutions for
system (1) under some relaxed conditions for Av and f+g. In addition, they also minutely provided the
maximum minimization feature of the ground state energy, jia and li also discussed the non autonomous
system, they cleverly used the nehari manifold and split lemma to prove that system (1) has a solution.
For more results on this problem, see [3-7] and so on.

Motivated by the works mentioned above [5,7], the main objective of this article is to study the system
(1). More precisely, follow the variational methods and use an interesting truncation the technique to
prove the existence and concentration behavior of the nontrivial solutions of system (1) when ¢ is small

and A is large enough, this is significantly different from the previous works.

Now let’s state the main results.

Theorem 1.1 Under the conditions that (V1)—(V3), (F1) and (G1) are established. Then there
exist é,/?i,l_[ >0 such that g €(0,4), A > A and 0<|g|, <II, system (1) possess at least one

nontrivial solution . Moreover, there exist 4,7 > 0 such that

O<|lull,<p and n<J,,w).

Theorem 1.2 Under the conditions that (V1)—(V3), (F1) and (G1) are established. Lety,be a
solution for system (1) given by Theorem 1.1. Going if necessary a subsequence, then for every
ge(0,g)and 0<|g|, <IT,u; —>uoin H'(R*)as A — o, wherey, is a nontrivial solution of

2 -2 -2
~Au+q ou=fxX)|ul""u+gx)|ul""u, xeQ,
u=0, x e Q.
Remark 1.1 1) The nonlinear terms f'and g no longer use the Ambrosetti Rabinowitz condition (A-R
condition), but instead use a weakened condition to get some results about solutions for System (1);

2) when V (x) is a steep potential and f+g is a nonlinear concave-convex with f (x) |u| 72u+G (x)
|u | 72u, where 1<g<2<p<4, this paper discuss the existence and concentration of solutions in system (1),
which has almost never been considered before and can supplement and generalize existing research
results;

3) M(x) is a steep potential and f+g is a more general continuous nonlinear term without differenti-
ability, considering the existence and concentration of solutions in system (1) from this more general
situation provides certain reference value for subsequent research on such problems.

2. Preliminaries

Before starting the proof of the Theorems, there mainly state that the main preparatory knowledge
and some useful results for our problem. ||, is the ordinary norm of L” (R*)for alll < p < oo, £

denotes the dual space of E, o(1) is any quantity which tends to zero whenn — co. Moreover, if the
subsequence of {u,} is taken, it will be denoted again as {u,}. H'(R*)denotes a Sobolev space and

||u]|, is a norm. Let
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E={ueH'R): Lz V (x)u’dx < oo}

be endowed with

Juv) = ( jR3 (VuVy +V (x)uv)dx )% = ull.

For A > 0, here also need the following two definitions

1/<u,v>/1 = (-[RS (Vqu+/1V(x)uv)dx)% =|u]l,.

IfA>1, then ||ul||<||u ||/1 SetE, = (E,H . ||/1) Then it's easy to get the following lemma.

Lemma 2.1 Under the conditions that (V1)—(V3)are established. Then the embedding £ is
continuously embedded into L* (R*) (Vs €[2,6])and A > 1. Therefore, there is ds > 0 (not related to
A >1) derives

lu| <d ||ul|<d, ||ul|,, forall uek. )

After analysis, one can easily determine that system (1) the same as

X

l—-¢u _ _
—Au+ AV (x)u+q° |e wu’ u=f)|ul"u+gx)|u|"’u, xeR’,

x|

It’s solutions of this equation are the critical points of the functional J ; , € C' (E,,R) given by

1 : 1 1
Jrg@) = Julf; + ¢uu2dx—;fR3f(X)\u\p dx—ngsg(X)\ulq d.

4

In order to prove the main results, now move to consider the truncated functional

1 2 (Nl 1 1
72, = lul +%¢{" ﬂ'z"]jm o= [ F )" e[ ) u .

where @ is defined as

Sl )_ [ iflulie . 571
B ) o, ifflulfe28?, +).

One can easily verify that J f , €(E,.R).

Remark 2.1 Proposed technological route:

1) Define the usual Sobolev space inner product and norm, and use the Ekeland variational Principle
to construct the energy functional corresponding to the nonlinear Schrédinger-Bopp-Podolsky system;

2) Using critical point theory, verify that the solution of the system corresponds one-to-one With the
critical points of the functional;

3) Verify the defined functional satisfies the geometric structure of Mountain Pass;

4) By constructing some useful inequalities to verify the existence of minimization sequences, the
functional energy value can reach the defined minimum energy;

5) Calculate the range of values for the lowest energy value and show the boundedness of the
minimization sequence;

6) Standard discussion methods and analytical principles were used to study the existence and
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interesting states of solutions on the system.

3. Proof of Theorems 1.1 and 1.2

This section mainly prove Theorems 1.1 and 1.2. First of all, define a cut-off function ¢ € C !
([0, ©), R) satisfying
p()=1, ifo<r<l,
0<p()<], if1<t<?2,
o(t)=0, ift>2,
max o' (1)|I£2, ¢'(1)<0, if t>0.
>

Lemma 3.1 Under the conditions that (V1) —(V3), (F1) and (G1l) are established. Then for all
A1,
(A1) there existI, p, 7 > 0 such that forall 0<| g |, <ITand ||u||,= p, one has JZ,w)=n;

(A2) there existg, > 0ande, € Cy (Q) with| Ve, |,> p such that JY (e)<0 forallge(0,q,).

Proof Using (F1), (G1), (2) and Holder inequality, one has

1 1 1
a2 3 lul [ s@ul de— [ gColul dx

1 5 dp q
2 Nully == f Lllully ——=lg | lull
2 p q

1 - dp - d‘]
=l | Sl =1 f Lllull; =gl |-
2 p q

. d? . . .
One can easily deduce that /(¢) .= 112"1 ——2| £|,, t""*has a unique maximum point at
2 0

R S N
" 2p-9d] | 11,

2-

H(ty)=-P~2 [ p2=4) JH>0
2p-\ 2(p—q)d] | f|.

Thus, choose 7, = p=|lul|,>0 such that H(p)>0.By simple calculation, there exists [T >0

and its maximum is

-

such that 0 <| g |, <II,

q

g q dp pq
Sz P\ H(p)——=|g . 2TH(/J) =1>0.

In order to prove (A2), define the functionJ;, € (£, R) by
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Sy =~ ulf -] ) ulf -1 g uf dv
A - 2 A p R3 q R3g .
Thus, take a positive functione € C;; (€2) reach to
J, (1 L Vel dv—" » el ¢ dx l
() == | Vel —;Lﬂ@WI —;Lﬂmw| — =0 a5 [ >,

Therefore, there existe, e C; (Q) with|e, |,> p,one has J,(e,) <—1. Then, for all g €(0,q,),
there is g, > 0 such that

ﬁwoJ@JF—@%Qk%ﬁw

2
q 2
< _1+TIR3 ¢eo eodx

<_ q J J‘R% eO(x)eO(y)dxd

| x—yl|
2
q
—1+7C|€O|22
<0,

Now defining energy value

=inf max J/ (y(t))

yell t€[0,1]

with I'={y e C([O,l],El) :7(0)=(0),y(1) = eo} . Then by lemma 3.1 and the variant of the
mountain Pass Theorem [8], one deduces that for all 4 > 1 andg € (0, ¢, ) , there is a Gerami sequence

{un} cE , at the energy value cf: ;>0 and the following relationships are found
JL,w) >l 2 >0 and (+|u, )11(J7,) @)l —0. ©)

Lemma 3.2 Under the conditions that(V1)—(V3), (F1) and (G1) are established. Then for all 4 > 1
and g € (0,q,), there is M > 0 such that cf,q <M.

Proof Lete, € C; (€2) . From Lemma 2.1 and Holder inequality, one gets

12 q214 12 ||e ||2
T yleg) = [ |Ve [ dvrd =g ﬂﬁﬂLgﬁﬁ

L e, ac-Ef gt le, 1 ax
p q

I’ 2 qzl4 2 (j "
sggw%|w+jrgagﬂx——jfun%vw+—mnw>J%V&P

~274

I > gl L G g
<[ Ve de+ a%%—;Lﬂmmww+7gmm&%ymy
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Thus, there exists M > 0 (not related to ﬂ ,A,b) such that
B _ B
= max <M.
cl,q te[Oa,l] J/l,q (teO)

Lemma 3.3 Under the conditions that (V1) —(V3), (F1) and (G1) are established. If {u } c E, is
a Cerami sequence satisfying (3). Passing to a subsequence, there exist £/ > 0 and q, > 0 such that for

any A>1,q€(0,q) with §:=min{gq,,q,},thereholds ||u, ||,< .

Proof We need to split the following cases.
Case 1. If |[u, ||,> \/Eﬂ , by Lemma 3.2, one has

Moz, +12 00, @) (2, Y w,).n,)
p
(1 o1y, e (4 _a) [l )
_[2 pjnuﬂnl (p 4}{ . J o, Ui
¢ (lu,l :
— n i dx o q
2pﬁ2(/’( 5 jllu [ (q pjj g(x)|u, | dx

11 1 1
2[———]”“" [ —[———jdf, (gl , llu,ll
2 p qg p a

For n large enough, which is contradiction when £ > 0 is sufficiently large.

Case2. B<|lu,|,<~2p.

[1—1]11 2 ——||<qu><u
p

2

A AR A
< £ 15l j e
¢ [l a1 q
wzw( Ve jll I} [ dx+[q pijgg(x)lunl dx

2 2
s 9 _4 s 11
ﬁJa,q(”n)+[?—TjC|“n 2 J{E—;jdz [gl, [lu,

5 rP—q

<JJ (u,)+4Cq* Bt +Cp.
It follows from J f ) > cf: ,and Lemma 3.2 that
CB*—B<2M +4Cq’B*+CpB°,

. L 1 ~ N .
which is a contradiction if g, := F >0,q €(0, ) for f large enough and § := min{g,, ¢, }.

Remark 3.1 If the sequence {1, }  E is given in Lemma 3.3, then {11, } is also a bounded Gerami

sequence of J g satisfying|| #, ||, < /3. By the definition of the truncation function ¢, one can see that
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Jog@,) >, and (+lu, 1)11(,,) @) ]|, — 0. @)

Lemma 3.4 Under the conditions that (V1) —(V3), (F1) and (G1) are established. If {u,} C E,

is a Cerami sequence satisfying (4). Going if necessary a subsequence, there is 4, > 0, such that for each
A2 Awith A =max{4, 1}, then u, —>u({u, }<{u,})inE, forall g€ (0,q).

Proof From Lemma 3.3, take another subsequence if necessary, one has|| u, I PR [3. Then assume
that there exists u € £ such that u, —>u weakly in £, ,u, > uinL, (R’) (Vs €[2,6)) and

u, > uae onR’ Ifuis a critical point ofJ, ,, then <J;ﬂq (u),v> =0, thus

(V5 @) Hul} +q° [ o u7de=]  fG) ul de=[  g(x)|u]’ dx=0.

Define v, = u, —u . Hence one can get that v, — 0 weakly in £, and|| v, ||,<2/. From(2),(V2)

) , _ 1 o l-o
and Holder inequality, there isc € (0, 1) such that— = 3 + 5 and
P

p(1-o)

po
[ e, 17 axsi r1, ([, P ) @, 10)
po

1 )2 0
S(T%J dr7 | f L, 15 +o(D). )

P
By (G1), |v, |"—> O weaklyin L?(R”) and the Brézis-Lieb Lemma [9], one has

[ S, 1P o=, fG) u, |7 de=[ , f(0)|ul dx+o(),
o=, g()|v, " dx =  g(x)|u, [ dc=[ () |ul’ dr+o(l).
Thus, using (5) and (6) leads to
o(l)=(J},, (u,)u, )= (), (w),u)
=1v, I} +4 [ L@, vide— [, £ ) v, 7 dx=[ , g(x)|v, | dx+o(1)

2|v, I =[S, I” dx= [ g() v, [ de+o()

po
1 2 o _
||, |13 1{?} dr [, 2R |+o(l).
0

Obviously, there exists 4, > 0, such that for each 2> 1 with A =max {4, 1}, then{v,} = Oin
E,.

Prove the Theorem 1.1 Set  be given by above. By Lemmas 3.1-3.3 and Remark 3.1, there exist
constants ¢, IT> 0 such that for allg € (0, §) and 0<| g |, <IT1,J;  has a Cerami sequence

{u,} c E, at the mountain pass level cf: ,forall A >1, up to a subsequence if necessary, {u, } satisfies
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sup [|u, ,<B. J, ), and (+u, |)I(,,) )]

.—0.
neN* E

It follows from Lemma 3.4 that there exists A > 0 such that for each 2 > 1 , {u”} has a convergent

subsequence in £, for all ¢ € (0, ¢) . Then assume that #, —> # as 1 —> 00, and thus

0<|[ul,<B. J, (w)=c}, and (J, ) (u)=0.

Consequently, u is a nontrivial solution for system (1).

Prove the Theorem 1.2 The proof draw support from Theorem 1.3 in [10], one can easily finish this
theorem.

4. Conclusions

This article is based on the strong background significance of Schrodinger-Bopp-Podolsky systems
in physics, using Ekeland’s variational principle and critical point theory, as well as studying the
existence and concentration phenomena of solutions for such systems under more optimized conditions.
It has strong application and academic value. More precisely, wheng — 0 and A — o0, by using the

variational methods and truncation technique, this paper accurately harvest the existence and
concentration of a nontrivial solutions to system (1) involving steep potential well and concave-convex
nonlinear terms. The provided results not only improve and expand the research published in [5], but also
provide a good idea for studying the existence and behavior of solutions to this type of problems.
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