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Abstract: The analysis and prediction of stock prices have always been the focus of our stock market 

data analysis. The impact of stock crashes on stock prices as well as people's purchasing psychology is 

huge. This paper explores the changes in the log returns of the stock *ST Beautiful (000010. SZ) before 

and after the stock market crash for the two major stock market crashes in 2008 and 2015, and the results 

show that the whole stock is divided into four time periods with conditional heteroskedasticity, which 

can be fitted with GARCH(1,1). The impact of the crash on the conditional heteroskedasticity of the 

whole stock is not significant. However, the mean information component of the log-returns before and 

after the crash will change relatively significantly. 
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1. Introduction 

Exploring and tracking the changes in stock prices is the goal of analyzing the stock market. Our 

stock market has gone through many ups and downs. Severe ups and downs can lead to stock market 

crashes, including the 530 stock market crashes that occurred from 2007 to 2008 and the stock market 

crash that occurred after June 18, 2015, which had a significant impact on the stock market. So is it 

possible to analyze the changes before and after a stock crash from the perspective of quantitative trading 

based on the data available for stocks? In this paper, based on the mean-variance model in the embryonic 

stage of the development of financial capital asset pricing theory, the closing prices of stocks are divided 

into four segments according to the time points of the two stock crashes: before the 2007 crash, the 2007 

crash and after, before the 2015 crash, and the 2015 crash and after. In this paper, we will analyze the 

closing price of the stock *ST Beautiful (000010. SZ) over the years and finally come up with the 

movement of the price of this stock before and after the crash. 

2. Literature Review 

2.1. ARMA model 

The full name of the ARMA model is the autoregressive moving regression model [1], ARMA model 

is for smooth non-white noise series to extract meaningful information, in the current view is the most 

widely used smooth series model in the smooth series. It has autocorrelation coefficients and partial 

autocorrelation coefficients without truncated tails. The model ARMA(p,q) can be fitted to it after 

determining the order of the model, and a well-fitted model can be predicted for the entire data in the 

specific form of: 

𝑋𝑡 = ∑ 𝑎𝑖 ∗ 𝑋𝑡−𝑖
𝑝

𝑖=1
+∑ 𝑏𝑗 ∗ 𝜀𝑡−𝑗

𝑞

𝑗=0
+ 𝑐0, 𝑏0 = 1 (1) 

where 𝜀𝑡 is the error of the model at time t, 𝑋𝑡 is the specific value at time t, and 𝑐0 is a constant. 

2.2. GARCH model 

The GARCH model was proposed by Bollerslev in 1986, which not only contains the ARCH model 

but also adds the conditional variance 𝛿𝑡
2 of 𝜀𝑡 with lagged values in each period, making the model 
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have long memory for the conditional variance [2]. In which it is modeled for a smooth white noise series, 

mainly to extract the fluctuation information in the data. the specific form of GRACH(p,q) is: 

𝑋𝑡 = 𝜀𝑡𝛿𝑡, 𝛿𝑡
2 = 𝐶0 +∑ 𝑏𝑖𝑋𝑡−𝑖

2
𝑝

𝑖=1
+∑ 𝑎𝑗𝛿𝑡−𝑗

2
𝑞

𝑗=1
(2) 

where 𝜀𝑡 is subject to the standard normal distribution,𝐶0 ≥ 0, 𝑏𝑖 ≥ 0, 𝑎𝑗 ≥ 0 are constants and for 

all t, 𝜀𝑡 and {𝑋𝑡−𝑘, 𝑘 ≥ 1} are independent. 

3. Model Building 

3.1. Pre-analysis of data 

A preliminary analysis of *ST Beauty (000010. SZ) from 19951027 to 20200724 trading day closing 

price. 

 

Figure 1: Time series chart of the closing price of 000010 

 

Figure 2: Time series chart of the closing price of 000010.SZ after differencing 

The closing price of 000010.SZ has a maximum value of 23.873, a minimum value of 2.09, and a 

mean value of 8.419. The volatility of the data is still relatively high, as can be seen in Figure 1. After 

differencing the data, it is found that the data fluctuates around the value of 0, indicating that it is still 

more in line with the mean pricing theory and that the price of a stock will fluctuate up and down around 

its value in the long run. Although the test of smoothness and white noise of the original data shows that 

the data are smooth and not white noise, we use logarithmic returns for the next stage of the analysis 

because of the need to segregate the data for analysis afterward. (log 𝑟𝑡 − log 𝑟𝑡−1 = 𝑉𝑡 ) 

3.2. Phase Analysis 

 

Figure 3: Box line diagram of the four stages 
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The data are divided into four periods, 20021111 to 20071008, 20080402 to 20100421, 20120316 to 

20141225, and 20150519 to 20200724, and they correspond to the 2008 pre-crash log return, the 2008 

post-crash log return, the 2015 pre-crash log returns, and log returns after the 2015 crash. 

In the log-returns of the four stages, the mean values are basically the same, but there are some 

differences in the range of fluctuations of the data and the most values are also very different. The 

prediction of the next analysis of the data can be done with a specific analysis of the fluctuations of the 

data. 

3.2.1. Phase I: 20021111 to 20071008 

 

Figure 4: Logarithmic returns for the first stage 

In the time series plot of log returns (Figure 4), the data fluctuate around the value of 0. The 

fluctuations are relatively smooth and not very large in magnitude. At the significant level of 5%, it is 

known that the data are satisfying smoothness and the data are not white noise series, thus, the ARIMA 

model can be established for the data. 

It can be determined that the order of the model is ARIMA (1,0,1), and according to eACF, it can be 

established: ARIMA (0,0,1). Models ARIMA (1,0,1) and ARIMA (0,0,1) are established and compared. 

According to the AIC criterion of smaller AIC values, it is known that the model ARIMA (0,0,1) is more 

appropriate. 

Then the specific model fitted to this data is: 

𝑣𝑡 = 0.1107𝜀𝑡−1 + 4 ∗ 10−3 + 𝜀𝑡 (3) 

The residuals of the model ARIMA (0,0,1) fluctuate from -3 to 3 with no correlation, and the p-values 

are greater than the significance level of 0.05. The residuals are more normal, but there are some 

deviations from the normal values at the first end. In the white noise test of the residuals of the model, 

the original hypothesis is accepted as the p-value is greater than the significance level of 5% and the data 

are white noise. In the ARCH effect test, at the significance level of 5%, the residuals of the model are 

by the ARCH effect since the P-values of the data are less than 5%. 

The next step is to do an ARCH effect fixed order on the residuals of the model only, followed 

immediately by ARMA-GARCH modeling. The orders of the GARCH models selected after the AIC 

and BIC criteria are GARCH(1,1). 

By analyzing the R results, the function of the model takes the specific form of: 

{
𝑣𝑡 = 𝛿𝑡𝜀𝑡 + 8.4 ∗ 10−2𝜀𝑡−1

𝛿𝑡
2 = 1.133 ∗ 10−5 + 4.136 ∗ 10−2𝑣𝑡−1 + 0.9487𝛿𝑡−1

2 (4) 

For the residual analysis of the model, the residuals of the model𝛿𝑡 fluctuate between 0.02 and 0.035 

and the residuals 𝜀𝑡 fluctuate uniformly around the value of 0. The p-value in the normality test of the 

model (Jarque-Bera and Shapiro-Wilk) is less than the significance level of 0.05, so the residuals of the 

model do not obey the normal distribution, and its Q-Q plot shows that some of the data deviate from 

normality at both ends, especially at the front end. In the white noise test for the residuals, the p-values 

(Ljung-Box) are all much greater than the significant level of 0.05, indicating that it is white noise. It can 

also be seen specifically that the residuals of the model are white noise, and the ACF plot of the residuals 

also shows that the series is not correlated. In the white noise test of the squared residuals, which is also 

white noise, and in the ACF plot of the squared residuals, it is also seen that it is also largely within the 

significance level, i.e. it is largely uncorrelated. In the ARCH effect test of the residuals (LM Arch Test), 

the p-value is greater than 0.05, and the model residuals have no ARCH effect anymore. The model is 
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quite good except for the normality, which is not very good, so the model fits better. 

3.2.2. Phase II: 20080402 to 20100421 

 

Figure 5: Time-series diagram of the logarithmic rate of return in the second stage 

In the time series plot of log returns, the data fluctuate around the value of 0. The fluctuations are 

relatively smooth and not very large in magnitude. At the significant level of 5%, it is known that the 

data are satisfying the smoothness and the data are not white noise series, thus, the ARIMA model can 

be established for the data. 

According to the ACF and PACF diagrams, the order of the model can be determined as ARIMA 

(1,0,3), and according to eACF, it can be established as ARIMA (0,0,3) or ARIMA (1,0,1), model 

building and comparison. 

According to the AIC criterion that the smaller the AIC value is, the model ARIMA (1,0,1) is 

appropriate. 

The corresponding model function takes the form: 

𝑣𝑡 = 0.7103𝑣𝑡−1 − 0.5414𝜀𝑡−1 − 0.0001 + 𝜀𝑡 (5) 

The residuals of the model ARIMA (1,0,1) fluctuate from -2 to 2, with no correlation and p-values 

greater than the significance level of 0.05. The residuals are more normal, but there are some deviations 

from the normal values at both ends. In the white noise test of the residuals of the model, the original 

hypothesis is accepted as the p-value is greater than the significance level of 5% and the data are white 

noise. In the ARCH effect test, at the significance level of 5%, the residuals of the model are by the 

ARCH effect since the P-values of the data are less than 5%. 

The next step is to do an ARCH effect fixed order on the residuals of the model only, followed 

immediately by ARMA-GARCH modeling. The orders of the GARCH models selected after the AIC 

and BIC criteria are GARCH(1,1). 

{
𝑣𝑡 = 𝛿𝑡𝜀𝑡 + 0.9338𝑣𝑡−1 − 0.8874𝜀𝑡−1

𝛿𝑡
2 = 1.294 ∗ 10−4 + 0.1561𝑣𝑡−1 + 0.7242𝛿𝑡−1

2 (6) 

For the residual analysis of the model, the residuals of the model 𝛿𝑡 fluctuate between 0.025 and 

0.004 and the residuals𝜀𝑡 fluctuate uniformly around the value of 0. The p-value in the normality test of 

the model (Jarque-Bera and Shapiro-Wilk) is less than the significance level of 0.05, so the residuals of 

the model do not obey the normal distribution, and its Q-Q plot shows that some of the data deviate from 

normality at both ends, especially at the front end. In the white noise test for the residuals, the p-values 

(Ljung-Box) are all greater than the significant level of 0.05, indicating that it is white noise. It can also 

be seen specifically that the residuals of the model are white noise, but the ACF plot of the residuals also 

shows that the series correlates with about 3rd order. The white noise test of the squared residuals, which 

is also white noise, is seen in the ACF plot of the squared residuals, which shows that it is also partially 

correlated. In the ARCH effect test of the residuals (LM Arch Test), the p-value is greater than 0.05, and 

the model residuals have no ARCH effect anymore. The model fits well, except for the normality and 

partial correlation, which are not very good. 

3.2.3. Phase III: 20120316 to 20141225 

The data set (Figure 6) is very volatile over a certain period, with the difference between the minimum 

and maximum values being close to 1.3. For the rest of the time, the log-returns are stable around the 

value of 0 and the price fluctuations are not significant. 

When the smoothness test was performed on this group of data, it was found that the data were smooth 

at the significance level of 5%; the data were white noise because the P-value was greater than the 

significance level of 0.05 when the data were subjected to the white noise test. the P-value of the ARCH 

effect test reached 1 and the data were not ARCH effect. These indicate that the stock price fluctuations 
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during the period belong to the consolidation state and there is not much profit margin if the stock is held 

for a long time during this period. 

 

Figure 6: Time-series diagram of the logarithmic rate of return in the third stage 

3.2.4. Phase IV: 20150519 to 20200724 

 

Figure 7: Time-series diagram of the logarithmic rate of return of the fourth stage 

In the time series plot of log returns (Figure 7), the data fluctuate around the value of zero, with some 

periods being more volatile and others being less volatile within the period and may contain 

heteroskedasticity. At the significant level of 5%, it is known that the data are satisfying smoothness and 

that the data are not white noise series, thus, an ARIMA model can be built for the data. 

The order of the model can be determined from the ACF and PACF plots as ARIMA (10,0,10), while 

according to eACF, it is possible to build: ARIMA (0,0,4), ARIMA (1,0,2), ARIMA(2,0,1), ARIMA 

(3,0,3), ARIMA (4,0,5), ARIMA (4,0,5) ARIMA (5,0,5), ARIMA (6,0,5), ARIMA (7,0,7) modeling and 

comparison. The model ARIMA (6,0,5) is more appropriate according to the AIC criterion that the 

smaller the AIC value is, the better. 

The corresponding model function takes the form 

𝑣𝑡 = −0.5346𝑣𝑡−1 − 0.0474𝑣𝑡−2 + 1.554𝑣𝑡−3 + 0.6963𝑣𝑡−4 + 0.8112𝑣𝑡−5 − 0.1715𝑣𝑡−6 +
0.0698𝜀𝑡−1 + 0.1439𝜀𝑡−2 − 0.1636𝜀𝑡−3 − 0.703𝜀𝑡−4 − 0.9719𝜀𝑡−5 − 9 ∗ 10−4 + 𝜀𝑡   (7) 

The residuals of the model ARIMA (6,0,5) fluctuate from -4 to 4 with no correlation, and the p-values 

are all greater than the significance level of 0.05. The residuals are approximately normal, but there are 

many deviations from the normal values at both ends. In the white noise test of the residuals of the model, 

the original hypothesis is accepted as the p-value is greater than the significance level of 5% and the data 

are white noise. In the ARCH effect test, at a significance level of 5%, the residuals of the model are by 

ARCH effect since the p-values of the data are all much less than 5%. 

The next step is to do an ARCH effect fixed order on the residuals of the model only, followed 

immediately by ARMA-GARCH modeling. The orders of the GARCH models selected after the AIC 

and BIC criteria are GARCH(1,1). 

𝑣𝑡 = 𝛿𝑡𝜀𝑡 − 0.8894𝑣𝑡−1 − 0.4223𝑣𝑡−2 − 0.1911𝑣𝑡−3 + 0.4083𝑣𝑡−4 + 0.7512𝑣𝑡−5 − 

0.03275𝑣𝑡−6 + 0.8711𝜀𝑡−1 + 0.3863𝜀𝑡−2 − 0.1319𝜀𝑡−3 − 0.4618𝜀𝑡−4 − 0.8014𝜀𝑡−5    (8) 

𝛿𝑡
2 = 1.838 ∗ 10−5 + 0.1556𝑣𝑡−1

2 + 0.8662𝛿2𝑡−1 (9) 

For the residual analysis of the model, the residuals of the model𝛿𝑡 fluctuate between 0.02 and 0.08, 

and the residuals of 𝜀𝑡 fluctuate almost uniformly around the value of 0. The p-value in the normality 
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test of the model (Jarque-Bera and Shapiro-Wilk) is less than the significance level of 0.05, so the 

residuals of the model do not obey the normal distribution, and its Q-Q plot shows that some of the data 

deviate from normality at both ends. In the white noise test for the residuals, the p-values (Ljung-Box) 

are all greater than the significant level of 0.05, indicating that it is white noise, but the ACF plot of the 

residuals also shows that the series correlates with about 3rd order. The white noise test of the squared 

residuals, which is also white noise, in the ACF plot of the squared residuals, shows that it is also partially 

correlated. The ARCH effect test of the residuals (LM Arch Test) has a p-value greater than 0.05, and the 

model residuals have no ARCH effect anymore. The model fits well except for normality and partial 

correlation which is not very good, so the model fits well in general. 

4. Conclusion 

Table 1: Specific models for each stage 

Stage Models 

20021111 to 20071008 ARMA(0,1)+GARCH(1,1) 

20080402 to 20100421 ARMA(1,1)+GARCH(1,1) 

20120316 to 20141225 White noise sequence 

20150519 to 20200724 ARMA(6,5)+GARCH(1,1) 

The log-returns of this stock have been smooth overall, still fluctuating around the value. Before the 

2015 crash, the log-returns were shown to be white noise series, which failed to reflect the conditional 

heteroskedasticity, probably due to the small size of the data, 484 data in this section. The other three 

stages of the fitted model can be seen in the mean information part of each stage when there is a difference, 

that is, the value of the stock is different at each stage, and we should take into account the change in the 

value of the stock itself when predicting the price of the stock. The GARCH part of the model is 

GARCH1(1,1), (Figure 8) which shows that the log-returns of this stock had approximately the same 

heteroskedasticity of volatility before and after the 2008 crash; and was still affected in the 2015 crash. 

Overall, the stock itself has heteroskedasticity, it has a stable heteroskedasticity to the stock market 

changes, and the fluctuations are less affected by the crash than the mean, which means that the value of 

the stock itself may be more affected by the crash. After several models were built, it was found that the 

model fit was quite good, but the only shortcoming was that the residuals of the model were not quite in 

line with the normal distribution, indicating that the model could not fully extract the information 

contained in the data, which will be a place for future improvement. 

 

Figure 8: Time series of stock log returns for each stage 
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