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Abstract: As an important part of the power system, the accuracy of the current calculation of the 
distribution network is of great significance for the operation stability analysis and optimization design 
of the power system. Traditional current calculation methods include Newton-Raphson method, PQ 
decomposition method, etc. Due to the difficulty in obtaining line parameters and complex source-load 
characteristics of distribution networks, it is difficult to meet the demand for accurate current calculation 
by applying the traditional current calculation methods directly. Aiming at the problems that the 
traditional trend calculation methods are not applicable to the radial structure, open-loop operation, 
and the large number of nodes and branches of distribution networks, this article proposes a decision 
tree algorithm based distribution network trend calculation method to realize the accurate trend analysis 
of distribution networks from a data-driven perspective. First, a dataset of distribution network trend 
data is obtained; then, based on the collected data, a decision tree model is trained to realize accurate 
distribution network trend analysis without the need of distribution network line parameters; finally, the 
trained model is applied to the IEEE33 node distribution network system, and the validity and accuracy 
of the model are verified by predicting the trend of this system.  
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1. Introduction 

Distribution network trending calculations are used to determine node voltages and branch power 
flows, which are usually solved by iterative methods due to nonlinear relationships. In the case of 
complex structures, large load variations, and many distributed power supply accesses, the calculation 
may not converge, which is affected by the initial values, parameter settings, and network topology [1]. 
The intermittency and complex topology of distributed power sources increase the computational 
difficulty and uncertainty. The commonly used Newton-Raphson method converges quickly but is 
sensitive to the initial value and has high computational cost. Various improved algorithms have been 
proposed to address these issues. 

With the rapid development of smart grid and other related technologies, the methods of power 
system distribution network trend calculation have made great progress [2]. A linear optimal current 
model based on the data-driven linear current model is proposed in the data-driven optimal current model 
for distribution networks under partially observable conditions. The idea of conduction matrix 
transformation in WARD equivalence theory is borrowed for system topology equivalence. The 
unobservable nodes are considered as external nodes and the post-equivalent network topology is 
obtained without relying on any line parameters [3]. In the iterative implicit linearization based mesh 
distribution network current calculation and its optimal current model, the iterative implicit linearization 
current model and its optimal current model are constructed. The model considers the nonlinear trend 
manifold M(Manifold) as an implicit algebraic relationship between the node voltages and the node 
injected power, followed by a local approximation using tangent plane pairs and iteratively updating the 
linearization points to improve the approximation accuracy of the linear model [4]. A data-driven novel 
power system trend analysis method is designed in the data-driven novel power system trend analysis 
method, which considers the node load and new energy output fluctuation of the novel power system as 
feature inputs, makes full use of the existing massive data, and applies data-driven techniques for big 
data mining [5]. Literature [6] proposed a linearized tidal current calculation method for distribution 
networks considering load voltage static characteristics and PV nodes, which has a concise expression 
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and can directly find the voltage distribution [6]. Literature [7] improved the BPNN model by combining 
three characteristic variables of the power system for training, optimized the network using GA and 
ADAM algorithms, effectively improved the efficiency and accuracy of the tidal current calculation, and 
solved the problem of large-scale data processing [7]. 

To address the above problems, this paper first introduces the traditional trend calculation methods 
and analyzes the limitations of the traditional trend calculation methods; subsequently, a decision tree-
based distribution network trend calculation model is proposed, which learns the nonlinear mapping 
relationship between the load information of each node of the distribution network and the voltage of 
each node as well as the total network loss by training the data-driven model, and then realizes the 
accurate sensing of distribution network voltage and network loss without relying on the line parameters 
of the distribution network. 

2. Traditional distribution network/power system trend calculation 

The traditional power system trend calculation is a basic electrical calculation to study the steady 
state operation of the power system, and its task is to determine the operation state of the whole system 
according to the given operation conditions and network structure, such as the voltage (magnitude and 
phase angle) on each bus, the power distribution in the network, and the power loss, etc. The traditional 
power system trend calculation is a basic electrical calculation to study the steady state operation of the 
power system. The traditional power system current calculation is usually solved by an iterative method, 
and the commonly used iterative methods include the Newton-Raphson method and the P-Q 
decomposition method. 

2.1 Newton-Raphson method 

In complex distribution network trend calculation, for a power network with n  independent nodes,
ijY is the node conductance matrix element . In Cartesian coordinates, the node voltage is: 

i i iU e jf= +

                                 (1) 

The node guide elements are: 

ij ij ijY G jB+ +                                 (2) 

The node voltage and node conductance equations are brought into the power equations for active 
and reactive power, which are further fine-tuned to obtain the corresponding expressions for the nonlinear 
equations of the power network: 
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Based on the computational idea of the Newton-Raphson method, the modified equation based on the 
Newton-Raphson method can be obtained by stepwise linearization of Eq. (3) using first-order Taylor: 
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where the Jacobi matrix coefficient matrix elements are respectively: 
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According to the power network structure and network parameters, the node conductance matrix is 

formed, given the initial value of each node voltage 
(0)

ie ,
(0)

if , the initial value of each node voltage 
is substituted into Eq. (3), and the offsets of each node power and node voltage in Eq. (4) are found out 
and looped and iterated continuously, and each iteration updates each node's voltage value and power 
value until convergence or predefined error accuracy is reached [8]. 

2.2 P-Q decomposition method 

The P-Q decomposition method is simplified on the basis of the Newton-Raphson method, and the 
power equation is decomposed into the active power equation and the reactive power equation to be 
solved separately, which significantly improves the computational speed. The P-Q decomposition 
method takes advantage of the characteristics of the AC high-voltage grid in which the line reactance is 
much larger than the resistance, and the transmission of active power is mainly affected by the node 
voltage phase, and the transmission of reactive power is mainly affected by the node voltage amplitude, 
the law of the node voltage amplitude, and the method is simplified by the modified Newton-Raphson 
method. The correction equation of Newton-Raphson method is simplified. The corrected equation of 
the Newton-Raphson method is rewritten to the polar coordinate case, and the corresponding equation is: 

/
P H N
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=     ∆  ∆                                   (7) 

Since the value of reactance in a power network is usually much larger than the value of resistance, 
the nodal active power depends on the magnitude of the nodal voltage magnitude and the reactive power 
depends on the phase angle variation of the nodal voltage. Equation (7) can be further simplified as: 

/
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δ∆ = ⋅∆
∆ = ⋅∆                                 (8) 

From Eq. (8), the simplified equation is a linear equation of order ( 1)n − , replacing the linear 

equation of order 2( 1)n −  in Eq. (7), which reduces the workload of iterative calculations by 

separating the active power P  and the reactive power Q  [8]. 

2.3 Shortcomings of the traditional method of solving tidal current calculation equations 

The convergence performance of the Newton-Raphson algorithm relies heavily on the choice of 
initial iteration points. If the initial iteration point is not properly selected, it may lead to slow 
convergence or even non-convergence of the algorithm. In practice, choosing the appropriate initial 
iteration point may require additional computation and analysis, increasing the complexity and 
computational cost of the algorithm. During the iteration process, the Newton-Raphson algorithm needs 
to constantly recalculate the Jacobi matrix (for power system tidal current calculations) due to the fact 
that the Jacobi matrix changes during the iteration process. The computation of the Jacobi matrix involves 
a large number of derivation operations and the matrix itself may be asymmetric, which further increases 
the computational effort. The large amount of computational work not only increases the time complexity 
of the algorithm, but may also affect the real-time performance of the algorithm. This may result in the 
algorithm not being able to meet the practical requirements in situations where fast response is required, 
such as power systems. 

The convergence and computational accuracy of the P-Q decomposition method, which has been 
simplified on the basis of the Newton-Raphson method, are greatly affected by the system parameters. 
When the system parameters do not satisfy the assumptions of the P-Q decomposition method (e.g., the 
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phase angle difference between the voltages at the two ends of the line is large, and the conductance 
element corresponding to the reactive power of the node does not differ much from the self-conductance 
of the node, etc.), the convergence speed and computational accuracy of the algorithm may be affected. 
In addition, the P-Q decomposition method adopts a linear convergence property, which is relatively 
slow compared with the square convergence speed of the Newton-Raphson algorithm. Especially at the 
beginning of the iteration, the convergence speed may be even slower. In this paper, a decision tree 
algorithm based distribution network trend calculation method is proposed to effectively solve the above 
problems. 

3. Decision Tree Algorithm Based Tidal Flow Calculation for Distribution Networks 

Decision tree modeling is a powerful machine learning algorithm widely used in tasks such as 
classification, regression, and feature selection. It is based on a tree structure, and it constructs a model 
that predicts the value of a target variable by recursively selecting the optimal features for dataset 
segmentation. 

A decision tree model consists of nodes and edges, where nodes are categorized into internal nodes 
and leaf nodes. Internal nodes represent a test or decision point for a feature attribute, while leaf nodes 
represent the final decision result (for classification problems) or predicted value (for regression 
problems). Edges, on the other hand, connect nodes and represent the partitioning of the dataset into 
different subsets based on different values of the feature attributes. 

The central step in building a decision tree model is to determine the optimal split attributes. As the 
segmentation continues, the samples contained in the branch nodes of the decision tree should belong to 
the same category as far as possible, which means that each time an attribute is selected for segmentation, 
the ‘purity’ of the subsequent nodes should be maximized. In order to measure the purity of the set of 
samples, the index ‘information entropy’ is usually used, the lower the value of information entropy, the 
higher the purity of the set of samples. Information entropy is defined as: 
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                             (9) 

where D  is the set of samples at a node in the process of constructing a task decision model, kp  
is the proportion of the kth class of samples in that set of samples, and y  is the number of classes of 
samples [9]. 

Assuming that there is a discrete attribute a  (e.g., task level) in the influence parameter of the task 
decision model, and that a has V  possible values (e.g., general, urgent, and very urgent), node 
partitioning of the sample set using this attribute will result in V  branching nodes. Assigning weights 
to the branch nodes, the more the number of samples the more the influence of the nodes. The information 
gain obtained by dividing the sample set D  using attribute a  is: 
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The greater the information gain corresponding to attribute a , the higher the ‘purity 
improvement’obtained by using this attribute to classify the sample set. 

The decision tree is generated in order to reduce the complexity of the decision tree, the information 

splitting term ( , )X sψ  is used to guide the generation of the decision tree, which is calculated as: 
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where X  is the dataset that serves as the training sample and an attribute in X  is denoted by s . 

According to equation (11), ( , )X sψ  is the entropy of X  with respect to attribute s . The 
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smaller its value indicates that the distribution uniformity of X  on s is worse, so the distribution is 
adjusted by this value as a way to ensure the generation effect of the decision tree. 

Based on Eq. (11), the information gain ratio is calculated to obtain the classification decision tree 
generation result, which is given by the formula: 

( , )( , )
( , )
X sX s
X s

ξη
ψ

=
                               (12) 

According to equation (12), the highest gain ratio attribute is obtained and defined as the splitting 
attribute, after determining this attribute, the optimal splitting point is determined to generate the 
branches of the decision tree, and the above steps are performed cyclically, i.e., the decision tree 
generation is completed [10]. 
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Figure 1: Model training flowchart 

Load data, voltage data and network loss data of the distribution network under different operating 
conditions are collected. Then, a decision tree algorithm is used to train these data to identify and learn 
the intrinsic connection between node loads and voltage and network losses. During the training process, 
the decision tree model constructs a series of decision rules by dividing the data set recursively, and these 
rules can effectively capture the impact of load changes on voltage and network losses. Figure 1 is the 
flow chart of model training. 

4. Calculus analysis 

The arithmetic examples in this paper use the IEEE33 system.The network structure of the IEEE33 
node distribution system is shown in the Fig.2 in a radial shape with 33 nodes and 32 branches connecting 
them. Where the head node is viewed as the balancing node. The reference power in the simulation is 
taken as 10MVA, the reference voltage is taken as 12.66kV and the convergence accuracy is set to 1×10-

6. 
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Figure 2: IEEE33 Node Distribution System Network Architecture 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 7, Issue 12: 9-15, DOI: 10.25236/AJCIS.2024.071202 

Published by Francis Academic Press, UK 
-14- 

To illustrate the approximation accuracy, the Root Mean Squared Error (RMSE) is introduced here, 
which is calculated as follows: 
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where n  is the number of samples, iy  is the true value of the ith sample, and ˆiy  is the predicted 
value of the ith sample. 

In addition, Mean Absolute Error (MAE) was introduced, which is calculated as follows: 
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The RMSE and MAE of the predicted values of model node voltages and network losses are shown 
in Table 1: 

Table 1: RMSE and MAE of model node voltage and network loss predictions 

 RMSE MAE 
Nodal Voltage 0.0013 0.0308 

Net Loss 0.0059 0.0647 
Figure 3 shows a comparison of predicted and actual node voltage: 

 
Figure 3: Comparison of predicted and actual node voltage 

Figure 4 shows a comparison of predicted and actual network losses: 

 
Figure 4: Comparison of predicted and actual network losses 
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5. Conclusions 

According to the decision tree algorithm-based distribution network trend calculation method 
proposed in this paper, the effectiveness and accuracy of the method are verified through the trend 
prediction experiments on the IEEE33-node distribution network system. Compared with the traditional 
tidal current calculation method, the proposed method is able to realize the accurate tidal current analysis 
under the complex source-load characteristics of distribution networks without the need to accurately 
obtain the distribution network line parameters. Experimental results show that the data-driven decision 
tree-based model can maintain high computational accuracy despite the large number of processing nodes 
and branches. Therefore, the method proposed in this paper provides an effective alternative for tidal 
current calculation in distribution networks. 
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