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Abstract: This paper transforms the triviality search problem in group presentations into an 

optimization problem by defining decision variables, objective functions, and constraints, and conducts 

an in-depth analysis of the scale and complexity of the proposed model, highlighting its computational 

challenges. A genetic algorithm-based solution framework is designed to efficiently search for Andrews-

Curtis transformation sequences, and its effectiveness for specific group presentations is validated, 

successfully solving the Andrews-Curtis transformation sequence search problem. This study not only 

provides a novel methodology for addressing the triviality search problem but also demonstrates the 

practical application of optimization techniques in group theory, offering new insights for future 

research in this field. 
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1. Introduction 

In the field of group theory, the theory of group presentations occupies a central position, and the 

problem of group isomorphism is an important and widely studied topic within this domain. 

The origin of the group isomorphism problem can be traced back to 1903, when Tietze[1] first pointed 

out that groups defined by different sets of generators and relators may exhibit isomorphic relationships. 

Specifically, determining whether two given group presentations are isomorphic and exploring the 

transformation paths between isomorphic group presentations constitute the core content of the group 

isomorphism problem. 

In 1965, Andrews and Curtis[2] proposed the famous Andrews-Curtis Conjecture, which provides an 

important theoretical foundation for the transformation between balanced presentations of trivial groups. 

The Andrews-Curtis Conjecture states that any balanced presentation of a trivial group can be 

transformed into a standard presentation through a series of transformations. Although this conjecture 

has been extensively studied over the past few decades, its validity has not yet been fully proven, making 

it one of the important unsolved problems in group theory. 

In recent years, numerous scholars have devoted efforts to verifying this conjecture through methods 

such as computer simulations, exploring its possibilities. In this process, algorithms such as genetic 

algorithms[3-5], breadth-first search algorithms[6], blind search algorithms[7], and distance metric ensemble 

learning[8, 9] have been successively applied to search for Andrews-Curtis transformation sequences of 

balanced presentations of trivial groups. However, the primary goal of these methods has been to find 

transformation sequences for specific group presentations, lacking a systematic optimization framework. 

Given the aforementioned research background, this paper, for the first time, defines the triviality 

search problem in group presentations as an optimization problem. It systematically elaborates on how 

to apply the ideas and methods of optimization problems to transform a given group presentation into the 

standard presentation of a trivial group through Andrews-Curtis transformations. Based on the 

optimization model, this paper designs a genetic algorithm-based Andrews-Curtis transformation 

sequence search algorithm for solving the triviality search problem in group presentations. 

The main contributions of this paper are as follows: 

(1) An optimization model for the triviality search problem in group presentations is proposed. 

(2) A genetic algorithm-based framework for searching Andrews-Curtis transformation sequences is 
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constructed. 

2. Preliminaries 

In this section, we review some concepts related to group presentations and Andrews-Curtis 

transformations. 

Definition 1.1[10] 

Let 𝑋 be a set, and 𝑅 be a set of relators on 𝑋. If there exists a group 𝐺 defined by generators 

𝑥 ∈ 𝑋 and relators 𝑟 = 𝑒(where 𝑟 ∈ 𝑅), such that 𝐺 ≅ 𝐹/𝑁, where 𝐹 is the free group on 𝑋 and 𝑁 

is the normal closure of 𝑅 in 𝐹, then ⟨𝑋 | 𝑅⟩ is called a presentation of the group 𝐺. 

Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑚}. 

If 𝑛 = 𝑚, then 

⟨𝑥1, 𝑥2, … , 𝑥𝑛 | 𝑟1, 𝑟2, … , 𝑟𝑛⟩                         (1) 

is called a balanced presentation. 

If 𝑋 = 𝑅, then 

⟨𝑥1, 𝑥2, … , 𝑥𝑛 | 𝑥1, 𝑥2, … , 𝑥𝑛⟩                       (2) 

is called the standard presentation of the trivial group. 

Definition 1.2[2] 

Let the group presentations 

𝐺𝑛 = ⟨𝑥1, 𝑥2, … , 𝑥𝑛| 𝑟1, 𝑟2, … , 𝑟𝑛⟩                    (3) 

and 

𝐻 = ⟨𝑥1, 𝑥2, … , 𝑥𝑛|𝑟1
′, 𝑟2

′, … , 𝑟𝑛
′⟩                      (4) 

be given. If there exists a sequence of elementary transformations, including: 

(1) (AC1) Replacing 𝑟𝑖 with 𝑟𝑖
−1, i.e., 𝑟𝑖 = 𝑟𝑖

−1; 

(2) (AC2) Replacing 𝑟𝑖 with 𝑟𝑖𝑟𝑗, i.e., 𝑟𝑖 = 𝑟𝑖𝑟𝑗, where 𝑖 ≠ 𝑗; 

(3) (AC3) Replacing 𝑟𝑖  with 𝑥𝑗𝑟𝑖𝑥𝑗
−1 or 𝑥𝑗

−1𝑟𝑖𝑥𝑗 , i.e., 𝑟𝑖 = 𝑥𝑗𝑟𝑖𝑥𝑗
−1  or 𝑟𝑖 = 𝑥𝑗

−1𝑟𝑖𝑥𝑗, such that 𝐺  is 

transformed into 𝐻, then 𝐺  and 𝐻 are said to be Andrews-Curtis equivalent, and these elementary 

transformations are called Andrews-Curtis transformations. 

Conjecture 1.3[2] 

If the group presentation 

𝐺𝑛 = ⟨𝑥1, 𝑥2, … , 𝑥𝑛 | 𝑟1, 𝑟2, … , 𝑟𝑛⟩                        (5) 

is a balanced presentation of the trivial group, then 𝐺𝑛 is Andrews-Curtis equivalent to the standard 

presentation of the trivial group, 

⟨𝑥1, 𝑥2, … , 𝑥𝑛 | 𝑥1, 𝑥2, … , 𝑥𝑛⟩.                          (6) 

3. The Triviality Search Problem in Group Presentations 

The core of the triviality search problem in group presentations lies in finding a sequence of Andrews-

Curtis transformations that gradually transforms a given group presentation into the standard presentation 

of the trivial group. This process essentially involves searching for an appropriate path in a complex 

transformation space, where the group presentation is successfully simplified to the standard presentation 

of the trivial group while satisfying Andrews-Curtis equivalence. Therefore, the triviality search problem 

in group presentations can be transformed into a typical path optimization problem. 

In the general triviality search path optimization problem, we consider the most basic form of a 

balanced group presentation: 
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𝐺 = 〈𝑥1, 𝑥2, … , 𝑥𝑛 | 𝑟1, 𝑟2, … , 𝑟𝑛〉                       (7) 

3.1. Decision Variables 

The decision variables are the transformation operations in the Andrews-Curtis transformation 

sequence, including the type of transformation (AC1, AC2, AC3), the relators involved in the 

transformation, and the order of the transformations. 

Let 𝑖  denote the Andrews-Curtis transformation acting on the 𝑖 -th relator 𝑟𝑖 (𝑖 = 1,2, … , 𝑛). The 

specific Andrews-Curtis transformations are as follows: 

(1) AC1 Transformation: 𝑇𝐴𝐶1(𝑖, 𝑗) denotes replacing the relator 𝑟𝑖 with 𝑟𝑖𝑟𝑗(𝑖 ≠ 𝑗). 

(2) AC2 Transformation: 𝑇𝐴𝐶2(𝑖) denotes replacing the relator 𝑟𝑖with 𝑟𝑖
−1. 

(3) AC3 Transformation: 𝑇𝐴𝐶3(𝑖, 𝑙, 𝑘)  denotes replacing the relator 𝑟𝑖  with 𝑥𝑙𝑟𝑖𝑥𝑙
−1 or 𝑥𝑙

−1𝑟𝑖𝑥𝑙, 
where 𝑘 = 0 indicates replacing 𝑟𝑖 with 𝑥𝑙𝑟𝑖𝑥𝑙

−1, and 𝑘 = 1 indicates replacing 𝑟𝑖 with 𝑥𝑙
−1𝑟𝑖𝑥𝑙. 

Considering the order in the transformation sequence, let 𝑇 = 𝑇𝑚 ∘ ⋯∘ 𝑇2 ∘ 𝑇1 denote the Andrews-

Curtis transformation sequence. The decision variable 𝑇(𝐺) is defined as: 

𝑇(𝐺) = 𝑇𝑚(⋯ (𝑇2(𝑇1(𝐺)))⋯ )                           (8) 

where 𝑚 represents the length of the transformation sequence. 

3.2. Objective Function 

The design of the objective function is one of the core aspects of this paper. The goal of the search 

problem is to find an Andrews-Curtis transformation sequence 𝑇  that transforms the given group 

presentation 𝐺 into the standard presentation of the trivial group. Therefore, we define the objective 

function 𝐹(𝑇(𝐺))  as the sum of the occurrences of generators 𝑥𝑖  and their inverses 𝑥𝑖
−1 in the 

relators 𝑟1, 𝑟2, … , 𝑟𝑛, i.e.: 

𝐹(𝑇(𝐺)) = ∑ |𝑟𝑖|
𝑛
𝑖=1                                (9) 

where |𝑟𝑖| denotes the number of occurrences of generators and their inverses in the relator 𝑟𝑖. 

The minimum value of the objective function is 𝑛. When 𝐹(𝑇(𝐺)) = 𝑛, it can be proven that the 

group presentation 𝐺 has been successfully trivialized. 

3.3. Constraints 

The constraints include the conditions of the Andrews-Curtis Conjecture, namely the types of 

Andrews-Curtis transformations and the balancedness constraints of the group presentation. Additionally, 

when searching for transformation sequences, it is necessary to ensure that their lengths are within a 

certain range to prevent unlimited searching. The specific constraints are as follows: 

(1) Transformation Type Constraint: Each transformation 𝑇𝑜 must be one of the following forms: 

𝑇𝑜 ∈ {𝑇𝐴𝐶1(𝑖, 𝑗), 𝑇𝐴𝐶2(𝑖), 𝑇𝐴𝐶3(𝑖, 𝑙, 𝑘)}                    (10) 

where 𝑖, 𝑗, 𝑙 = 1,2, … , 𝑛, 𝑘 = 0,1, and 𝑖 ≠ 𝑗. 

(2) Balancedness Constraint: To ensure that the group presentation 𝑇(𝐺) remains balanced after 

applying the Andrews-Curtis transformation sequence 𝑇 , the transformed relators must satisfy the 

following conditions: the relators are pairwise distinct, and none of the 𝑛 relators equals the identity 

element 𝑒. Let    

𝑇(𝐺) = 〈𝑥1, 𝑥2, … , 𝑥𝑛 | 𝑟1′, 𝑟2′, … , 𝑟𝑛′〉                   (11) 

Then, 

𝑟𝑖
′ ≠ 𝑟𝑗

′, 𝑟𝑖
′ ≠ 𝑒                            (12) 

(3) Transformation Sequence Length Constraint: The length 𝑚  of the Andrews-Curtis 

transformation sequence must be constrained by a threshold to avoid unlimited growth. Therefore, 𝑚 is 

constrained as follows: 
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0 ≤ 𝑚 ≤ 𝑀                              (13) 

where 𝑀 ∈ 𝑁+. 

The triviality search path optimization problem in group presentations can be formulated as: 

min𝐹(𝑇(𝐺))                               (14) 

subject to 

{
 
 

 
 
𝑇(𝐺) = 𝑇𝑚(⋯ (𝑇2(𝑇1(𝐺)))⋯ )

𝑇𝑜 ∈ {𝑇𝐴𝐶1(𝑖, 𝑗), 𝑇𝐴𝐶2(𝑖), 𝑇𝐴𝐶3(𝑖, 𝑙, 𝑘)},

0 ≤ 𝑚 ≤ 𝑀,𝑀 ∈ 𝑁+,
𝑟𝑖
′ ≠ 𝑟𝑗

′,

 𝑟𝑖
′ ≠ 𝑒

               (15) 

3.4. Analysis of the Scale and Complexity of the Optimization Problem 

3.4.1. Analysis of Problem Scale 

The scale of the triviality search path optimization problem in group presentations is primarily 

influenced by two factors: the number of generators and relators, and the length of the Andrews-Curtis 

transformation sequence. 

Let the number of generators and relators be 𝑛. For any relator 𝑟𝑖, three types of Andrews-Curtis 

transformations can be applied, and each transformation can be combined with other elements. Table 1 

shows the number of possible Andrews-Curtis transformations for different values of 𝑛. 

As the number of generators and relators nn in the group presentation 𝐺 increases, the number of 

possible Andrews-Curtis transformations that can be applied to 𝐺 grows at a quadratic rate. From the 

perspective of the number of generators and relators alone, the scale of the optimization problem 

is 𝑂(3𝑛2). 

As the length 𝑚 of the Andrews-Curtis transformation sequence increases, the number of possible 

transformation sequences grows exponentially. For a single Andrews-Curtis transformation, there 

are 3𝑛2 possible transformations. For a transformation sequence of length 𝑚, there are (3𝑛2)𝑚 possible 

sequences. 

(1) When 𝑛 = 2 and 𝑚 = 5, the number of possible transformation sequences is (3 × 52)5 ≈ 2.37 ×
109. 

(2) When 𝑛 = 2  and 𝑚 = 10 , the number of possible transformation sequences is (3 × 52)10 ≈
5.63 × 1018. 

As 𝑛 and 𝑚 increase, the scale of the problem expands rapidly, far exceeding the computational 

capabilities of modern computers. 

3.4.2. Analysis of Problem Complexity 

Although for a given group presentation 𝐺 and transformation sequence 𝑇, it is possible to verify in 

polynomial time whether 𝑇 can successfully transform 𝐺 into a balanced presentation of the trivial group, 

both the objective function 𝐹(𝑇(𝐺)) and the Andrews-Curtis transformation sequence 𝑇 are discrete. If 

one attempts to exhaustively enumerate all possible Andrews-Curtis transformation sequences 𝑇, the 

required algorithm runtime would be as high as 𝑂((3𝑛2)𝑚). 

The triviality search path optimization problem in group presentations is, in fact, an NP-hard 

problem, making it extremely difficult to solve. When the problem scale is large, direct exhaustive search 

methods become infeasible. In dealing with such problems, it is usually necessary to resort to heuristic 

algorithms to find approximate optimal solutions within an acceptable time frame. 

4. Solution Methods and Steps 

4.1. Group Transformation Problem Under a Given Transformation Sequence 

Due to the inherent characteristics of computer programs, which are well-suited for string operations, 
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we define string operation rules to replace the power operations in polynomials. Since most triviality 

search problems in group presentations involve groups with two generators, this subsection defines the 

arrangement and operation rules for strings using group presentations with two generators. 

4.1.1. String Arrangement Rules 

Let the group presentation be 

𝐺 = 〈𝑥, 𝑦 | 𝑟1, 𝑟2〉                               (16) 

where 𝑥 and 𝑦 are generators, and 𝑟1, 𝑟2 are reduced words in 𝑥 and 𝑦, representing the relators of 𝐺. 

The specific rules are as follows: 

(1) Lowercase letters represent generators, and uppercase letters represent the inverses of generators. 

For example, 𝑋 represents 𝑥−1, and 𝑌 represents𝑦−1. 

(2) Consecutive letters represent powers of generators. For example, 𝑥𝑥 represents 𝑥2, and 𝑌𝑌𝑌 

represents 𝑦−3. 

Table 1 shows the comparison between the mathematical definitions of relators and the string 

arrangement rules. 

Table 1 Comparison Between Mathematical Definitions and Program Rules. 

Comparison Between Mathematical Definitions and Program Rules 

𝑥 𝑥−1 𝑦 𝑦−1 𝑥2 𝑦2 𝑥−2 𝑦−2 

𝑥 𝑋 𝑦 𝑌 𝑥𝑥 𝑦𝑦 𝑋𝑋 𝑌𝑌 

4.1.2. String Operation Rules 

In Andrews-Curtis transformations, to ensure that the transformed strings remain reduced, the rules 

for reduced word operations must be followed. Both the pre- and post-transformation strings must satisfy 

the reduced word requirement, meaning that a generator and its inverse cannot be adjacent. Therefore, 

after each transformation, the string must be checked and substrings such as 𝑥𝑋, 𝑋𝑥, 𝑦𝑌, and 𝑌𝑦 must 

be eliminated. This operation must be repeated until the string no longer contains such substrings, 

ensuring that the final result remains a reduced word. 

4.2. Genetic Algorithm-Based Solution Framework for Trivial Group Presentations 

In this paper, we employ the genetic algorithm to solve the optimization problem of triviality search 

in group presentations. The genetic algorithm can effectively explore the potential solution space of 

Andrews-Curtis transformation sequences through random search and evolutionary strategies, 

overcoming the limitations of traditional methods in terms of search efficiency and computational 

complexity. 

4.2.1. Genetic Encoding 

The encoding method directly affects the crossover and mutation operations in the genetic algorithm, 

thereby influencing the algorithm's performance and efficiency. The decision variable is the Andrews-

Curtis transformation sequence 𝑇(𝐺) , where the length 𝑚  of the transformation sequence ranges 

from 0 to 𝑀, and mm is variable. However, crossover operations between transformation sequences of 

different lengths are not practical in real-world scenarios, as the optimization goal is to find a suitable 

transformation sequence rather than minimizing the sequence length. Therefore, we fix the length of 

individual encoding to 𝑀. 

This paper adopts a character-based encoding method, where each character 𝑇𝑖 ∈
{𝑇𝐴𝐶1(𝑖, 𝑗), 𝑇𝐴𝐶2(𝑖), 𝑇𝐴𝐶3(𝑖, 𝑙, 𝑘)} represents a specific transformation operation. Character encoding is 

suitable for decision sequences with ordered relationships and can flexibly represent various types of 

transformation operations. 

4.2.2. Population Size 

The population size directly affects the efficiency and convergence speed of the genetic algorithm. A 

small population size may prevent individuals from fully exploring the diversity of the solution space, 

while a large population size helps improve the algorithm's global search capability at the cost of 

increased computational resources. 
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4.2.3. Fitness Function 

The fitness function is a key metric in the genetic algorithm for evaluating the quality of individuals, 

guiding the algorithm's search direction and evolutionary process. It is used to measure the effectiveness 

of a given Andrews-Curtis transformation sequence in transforming the group presentation. The fitness 

function is defined as the sum of the occurrences of generators and their inverses in the relators: 

𝐹(𝐺) = ∑ |𝑟𝑖|
𝑛
𝑖=1                                (17) 

where 𝐺 = 〈𝑥1, 𝑥2, … , 𝑥𝑛 | 𝑟1, 𝑟2, … , 𝑟𝑛〉, and |𝑟𝑖
′| represents the number of occurrences of generators 

and their inverses in the relator 𝑟𝑖
′. A higher fitness value indicates that the group presentation 𝐺 is closer 

to the standard presentation of the trivial group. When the fitness function 𝐹(𝐺) = 𝑛 , the group 

presentation 𝐺 is the standard presentation of the trivial group. 

While this fitness function is reasonable, it does not guarantee that the group presentation is balanced. 

For example, consider the group presentation𝐺𝑒: 

𝐺𝑒 = 〈𝑥, 𝑦 | 𝑥𝑦, 𝑒〉                           (18) 

The fitness function value for 𝐺𝑒is 𝐹(𝐺𝑒) = 2. Based on the definition of the fitness function, 𝐺𝑒
 appears to be the standard presentation of the trivial group. However, 𝐺𝑒 is neither balanced nor a trivial 

group. This issue is addressed by the termination conditions. 

4.2.4. Population Evolution Strategy 

The population evolution strategy is the core of the genetic algorithm, simulating the gene exchange 

process in natural selection. Through selection, crossover, and mutation operations, the population 

evolves toward higher fitness. 

(1) Selection Operation: A fitness-based ranking selection method is used. The fitness values of 

each individual in the population are calculated, and the individuals are ranked accordingly. A proportion 

of parent individuals is selected from those with higher fitness values. 

(2) Crossover Operation: A multi-point crossover strategy is adopted. Two individuals are randomly 

selected from the parent population as crossover candidates. Several crossover points are randomly 

chosen in their sequences, and the gene segments are exchanged to produce two new offspring individuals. 

(3) Mutation Operation: For each newly generated offspring individual, there is a certain probability 

of selecting one or more positions in the sequence and randomly replacing the transformations at those 

positions with new transformations. 

4.2.5. Termination Conditions 

(1) Maximum Iteration Generations: The algorithm stops automatically when it reaches the 

maximum number of generations. 

(2) Fitness Threshold: If the fitness of an individual in the population reaches this threshold, it 

indicates that the group presentation has been successfully transformed into the standard presentation of 

the trivial group. 

(3) Balancedness Condition: If any relator equals ee or two relators are equal, the group presentation 

is considered not to be the standard presentation. 

5. Experiments and Solution Results 

5.1. Experimental Setup 

This section uses a class of group presentations constructed by Miller and Schupp as an example to 

demonstrate the parameters of the genetic algorithm and the process of Andrews-Curtis transformations. 

The group presentation is defined as: 

𝐺𝑀𝑆 = 〈𝑎, 𝑏|𝑎
−1𝑏𝑛𝑎 = 𝑏𝑛+1, 𝑎 = 𝑤〉                  (19) 

where the exponent sum of 𝑎 in 𝑤 is 0. 

Let 𝑛 = 2 and 𝑎 = 𝑎−2𝑏3𝑎2. The group presentation 𝐺 is equivalent to: 

𝐺𝑀𝑆
′ = 〈𝑎, 𝑏|𝑎−1𝑏2𝑎 = 𝑏3, 𝑎 = 𝑎−2𝑏3𝑎2〉                         
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= 〈𝑎, 𝑏|𝑎−1𝑏2𝑎𝑏−3 = 𝑒, 𝑎−3𝑏3𝑎2 = 𝑒〉                   (20) 

Under the string arrangement rules, 𝐺′ is equivalent to 𝐻: 

𝐻𝑀𝑆 = 〈𝑥, 𝑦|𝑋𝑦𝑦𝑥𝑌𝑌𝑌, 𝑋𝑋𝑋𝑦𝑦𝑦𝑥𝑥〉                     (21) 

5.2. Comparative Analysis of Genetic Algorithm Parameters 

The genetic algorithm was implemented on the Windows 11 operating system using the Python 

programming language. To verify the effectiveness of the algorithm, four sets of experiments were 

designed, focusing on key parameters such as population size (P), gene length (L), number of crossover 

points (N), and mutation rate (M). In each set of experiments, only one parameter was adjusted while the 

others remained fixed. The parameter values were gradually increased to systematically evaluate the 

impact of each key parameter on the algorithm's performance. During the genetic algorithm experiments, 

the running time of the code blocks was precisely measured using Python's time module. 

To comprehensively evaluate the performance of the genetic algorithm, the maximum number of 

iterations was set to 5000. For each parameter configuration, the algorithm was independently run 10 

times. The success rate was calculated as the percentage of runs where the fitness function value reached 

2 out of the 10 runs. The maximum, minimum, and average running times were also recorded. These data 

served as the core evaluation metrics for analyzing the impact of parameters on the algorithm's 

performance. 

(1) Population Size (P): When the population size is small, the success rate of the genetic algorithm 

in searching for transformation sequences is low. 

(2) Gene Length (L): When the gene length is 8, the success rate of the genetic algorithm is 0%, 

indicating that the length of the transformation sequence may need to be greater than 8. However, 

excessively long transformation sequences lead to a significant increase in algorithm complexity and 

search space, thereby increasing the difficulty of the search and the running time. The experimental 

results show that when the gene length is 10 or 12, the algorithm achieves a good balance between success 

rate and running efficiency. 

(3) Number of Crossover Points (N): The number of crossover points has a relatively small impact 

on the search efficiency of the genetic algorithm, indicating that this parameter contributes less to the 

algorithm's performance within a reasonable range. 

(4) Mutation Rate (M): A lower mutation rate generally leads to higher running efficiency but may 

cause the algorithm to fall into local optima. On the other hand, a higher mutation rate may increase 

search diversity but also significantly increases running time. 

Table 2 presents the parameter settings of the genetic algorithm. 

Table 2 Genetic Algorithm Parameter Ranges. 

Population Size Gene Length Number of Crossover Points Mutation Rate Maximum Iterations 

250-1000 8-14 3-6 0.1-0.9 5000 

5.3. Result Analysis 

Table 3 present a set of solutions obtained by the genetic algorithm and the process of Andrews-Curtis 

transformations when the transformation sequence length (L) is 10, respectively. 

Table 3 Andrews-Curtis Transformation Process (L=10). 

Transformation Operation Transformed Relators 

Initial Group Presentation 〈𝑥, 𝑦|𝑋𝑦𝑦𝑥𝑌𝑌𝑌, 𝑋𝑋𝑋𝑦𝑦𝑦𝑥𝑥〉 
1.𝑟1 → 𝑋𝑟1𝑥 〈𝑥, 𝑦|𝑋𝑦𝑦𝑥𝑌𝑌𝑌, 𝑋𝑋𝑦𝑦𝑦𝑥〉 
2.𝑟1 → 𝑋𝑟1𝑥 〈𝑥, 𝑦|𝑋𝑦𝑦𝑥𝑌𝑌𝑌, 𝑋𝑦𝑦𝑦〉 
3.𝑟0 → 𝑋𝑟0𝑥 〈𝑥, 𝑦|𝑋𝑋𝑦𝑦𝑥𝑌𝑌𝑌𝑥, 𝑋𝑦𝑦𝑦〉 
4.𝑟0 → 𝑟0𝑟1 〈𝑥, 𝑦|𝑋𝑋𝑦𝑦𝑥, 𝑋𝑦𝑦𝑦〉 
5.𝑟0 → 𝑥𝑟0𝑋 〈𝑥, 𝑦|𝑋𝑦𝑦, 𝑋𝑦𝑦𝑦〉 
6.𝑟1 → 𝑟1

−1 〈𝑥, 𝑦|𝑋𝑦𝑦, 𝑌𝑌𝑌𝑥〉 
7.𝑟1 → 𝑟1𝑟0 〈𝑥, 𝑦|𝑋𝑦𝑦, 𝑌〉 
8.𝑟0 → 𝑟0𝑟1 〈𝑥, 𝑦|Xy, 𝑌〉 
9.𝑟0 → 𝑟0𝑟1 〈𝑥, 𝑦|X, 𝑌〉 
10.𝑟0 → 𝑋𝑟0𝑥 〈𝑥, 𝑦|X, 𝑌〉 
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Through the genetic algorithm's search, the group presentation 𝐻 reduces the number of generators 

and their inverses in the relators to a minimum, proving that 𝐺𝑀𝑆
′  can be transformed into the standard 

form of the trivial group via Andrews-Curtis transformations. This result demonstrates the effectiveness 

of the genetic algorithm-based triviality search algorithm in finding Andrews-Curtis transformation 

sequences. 

6. Conclusion 

This paper constructs an optimization model for the triviality search problem in group presentations. 

By defining decision variables, objective functions, and constraints, the complex problem of triviality in 

group presentations is transformed into an optimization problem. The paper also analyzes the scale and 

complexity of the problem, confirming its NP-hard nature, and proposes a genetic algorithm-based 

solution framework. Through experiments, the paper examines the impact of different parameter settings 

on the search efficiency of the genetic algorithm and verifies the effectiveness of the optimization model 

for the triviality search problem in group presentations. Future research can further explore the 

algorithmic solution steps to solve the optimization model of the triviality search problem in group 

presentations with higher efficiency. 
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