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ABSTRACT. Equiangular tight frames arise in various applications in communications and coding. ETFs have 
close connections with such combinatorial objects as strongly regular graphs, difference sets and Steiner 
systems. This paper demonstrates with examples one way of constructing a special kind of matrices called 
conference matrices while showing the limitation of this method, and also demonstrates with examples the 
correspondence between conference matrices and d-by-2d ETFs. 
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1. Introduction 

The objects this paper focuses on are conference matrices and equiangular tight frames. The former is a type 
of matrices consisting of only -1, 0, and 1, and the latter can be seen as sets of equiangular vectors through 
origins, with the angle between any two distinct vectors maximized [1]. 

The term frame refers to a generalization of basis vectors of an inner product space. A frame may not be 
linearly independent, thus in signal processing, it helps represent a signal redundantly, unlike the case where 
basis vectors are used so that only one way of representation is allowed. An ETF is also named an optimal 
Grassmannian frames [2], or a 2-uniform frame [3]. 

Definition 1. Suppose S = [ f1 f2 … fN ] is a d-by-N matrix, then S is called an equiangular tight frame if 

(1) Every column of S has unit norm: || fi || = 1 for i = 1, …, N 

(2) The inner products between any two different columns, when taken absolute value, are some constant: 
|<fi, fj>| = 𝛼𝛼 for some 𝛼𝛼 for i, j = 1, …, N and i ≠ j 

(3) SS* = (N/d) I where S* is the conjugate transpose of S. 

Though ETFs may become valuable in areas such as communication and sparse approximation [2] [1] [4], 
the existence of ETFs proves to be sporadic. For most (d, N) pairs an ETF does not exist. Research in the past 
has been concentrated on such fields, e.g., finding necessary conditions on (d, N) pairs so that an ETF may exist 
[5] [1], and to construct new ETFs numerically [6]. 

Among tries to construct ETFs, one way is referring to conference matrices in order to get (d, 2d) ETFs. 
However, the prerequisite is that the corresponding conference matrices are known. Researchers are still 
developing methods for finding new conference matrices [7]. 

A method by Paley is stated in [8]. This paper demonstrates this method of construction. 

Moreover, this paper finds the limitation of this method that for fields with more than one zero squares such 
construction may fail. This paper also demonstrates with examples the transformation of 2d-order conference 
matrices and d-by-2d ETFs. 

In addition, we may have found an error of an equation in [9]. 
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2. Basics of Etfs and Conference Matrices 

Theorem 2. If S = [ f1 f2 … fN ] is a d-by-N matrix with unit norm columns, then S is an ETF if and only if 

|<fi, fj>| = √𝑁𝑁−𝑑𝑑
�𝑑𝑑(𝑁𝑁−1)

 for i, j = 1, …, N and i ≠ j 

In fact, if S, with unit norm columns is not an ETF then |<fi, fj>| ≥ √𝑁𝑁−𝑑𝑑
�𝑑𝑑(𝑁𝑁−1)

 . This result gives a concrete 

value for 𝛼𝛼 in Definition 1. See [5] for the proof. This result also gives a concrete value for the cosine of “angle 
between any two vectors” in the introduction part. 

Definition 3. An n-by-n matrix C is called a conference matrix of order n if 

(1) The diagonal elements of C are zeros, and the off-diagonal elements are +1 or -1. 

(2) CCT = (n-1) I. 

Note that n must be even. By definition, for two different rows Ci,: and Cj,:, their inner product is zero: 0  = 
Ci,1 Cj,1 + … + Ci,n Cj,n. The right-hand side have two zero terms because some diagonal elements Ci,a and Cj,b 
(a, b∈ {1, … ,𝑛𝑛}) are zeros. Since terms other than the two zeros are either +1 or -1, (n-2) must be even so that 
the summation of the remaining (n-2) terms is 0. 

If 𝑛𝑛 ≡ 2 (𝑚𝑚𝑚𝑚𝑚𝑚 4), then C is said to be symmetric. If 𝑛𝑛 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 4), then C is skew-symmetric. Terms 
symmetric and skew-symmetric are actually referring to the submatrix after removing the 1st row and column of 
C [8]. In fact, symmetric and skew-symmetric matrices have close connections with real and complex d-by-2d 
ETFs, respectively. 

3. Constructing Conference Matrices Using Paley’s Method 

The idea by Paley is stated in [8]. Here we demonstrate the method with examples. Note that 5 = 12 + 22 and 
5 is also a prime power, hence we can try to construct a conference matrix C with order 6. 

First set C1,: and C:,1 to be 1, except for their intersection which is 0. Trim off C1,: and C:,1 and consider the 
remaining 5-by-5 matrix M. Consider 5-element field {0, 1, 2, 3, 4} with addition and multiplication (mod 5). 

Now comes Paley’s construction: Consider column M:,1. If (a-1) is a non-zero square in the field, i.e., if (a-1) 
= 1 or 4 in this case, then set Ma,1 = +1. If (a-1) is not zero nor a square, set Ma,1 = -1. Set M1,1 = 0. 

The 2nd columns M:,2 is built by shifting down by one unit every element of M:,1, M:,3 by shifting down by 
one unit every element of M:,2, and so on. Then we get: 

0 +1 −1 −1 +1
+1 0 +1 −1 −1
−1 +1 0 +1 −1
−1 −1 +1 0 +1
+1 −1 −1 +1 0

 

Augment M by the removed row and column C1,: and C:,1. It is easy to check by direct calculation that we get 
a conference matrix: 

0 +1 +1 +1 +1 +1
+1 0 +1 −1 −1 +1
+1 +1 0 +1 −1 −1
+1 −1 +1 0 +1 −1
+1 −1 −1 +1 0 +1
+1 +1 −1 −1 +1 0

 

For another example, with the filed {0, 1, 2, 3, 4, 5, 6} and addition and multiplication (mod 7), we can get 
the 7-by-7 M. Notice now {1, 2, 4} are non-zero squares and so the 2nd, 3rd and 5th elements of the first column is 
+1: 
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0 −1 −1 +1 −1 +1 +1
+1 0 −1 −1 +1 −1 +1
+1 +1 0 −1 −1 +1 −1
−1 +1 +1 0 −1 −1 +1
+1 −1 +1 +1 0 −1 −1
−1 +1 −1 +1 +1 0 −1
−1 −1 +1 −1 +1 +1 0

 

It can be verified that the corresponding 8-by-8 C satisfies CCT = 7I. 

The third example is the 17-element field based on {0, 1, …, 16}. The squares of this field is {1, 2, 4, 8, 9, 13, 
15, 16}. Therefore, M2,1, M3,1, M5,1, M9,1, M10,1, M14,1, M16,1, M17,1 are assigned with 1. After augmentation with 
the all-one row and all-one column back, we get an 18-by-18 conference matrix. 

4. Limitations of the Above Method 

Though Paley has shown the existence of n-by-n symmetric conference matrices for all n = pa +1 where p is a 
prime number and a is a natural number [2], just the above method is not enough to construct all such conference 
matrices, as this method is not applicable for all finite fields whose orders are such pa. This appears when more 
than one element’s square is zero. For example, the square of 3 and 6 of the field {0, 1, …, 8} are both zero, and 
the above method fails in constructing a corresponding 10-by-10 conference matrix. 

If we follow the aforementioned construction, the 1st column of matrix M should be [0 1 -1 -1 1 -1 -1 1 -1]T. 
However, under such construction the 10-by-10 matrix A does not satisfy AAT = 9I. 

For constructing a 10-by-10 conference matrix, see [10]. 

5. Transformation between Conference Matrices and d-by-2d Etfs 

Definition 4. A matrix R is called a Hermitian matrix if R = R* 

The following Lemma is proved in [2], which is important for getting ETFs from conference matrices. 

Lemma 5. Let d, N ∈  ℕ with N ≥ d. Assume R is a Hermitian N × N matrix with entries Ri,i = 1 and 

|Ri,j| = √𝑁𝑁−𝑑𝑑
�𝑑𝑑(𝑁𝑁−1)

 if R is real 

|Ri,j| = i √𝑁𝑁−𝑑𝑑
�𝑑𝑑(𝑁𝑁−1)

 if R is complex 

for i, j = 1, …, N, i ≠ 𝑗𝑗. 

If the eigenvalues λ1, …, λN of R are such that 

λ1 = … = λd = N / d and λd+1 = … = λN = 0 

then there exists an ETF. 

More specifically, it is pointed out in [2] that the ETF can be extracted with singular value decomposition: 
suppose R = SVD is a singular value decomposition of R, and suppose the non-zero eigenvalues are the first d 
elements on the diagonal of V, then fk = √𝑁𝑁

√𝑑𝑑
 {𝑉𝑉𝑘𝑘,𝑙𝑙}𝑙𝑙=1𝑑𝑑

P

 for k = 1, …, N form an ETF. 

Recall that theorem 2 tells for an ETF S = [ f1 f2 … f2d] where fi ∈ ℝP

d, i = 1, 2, …, 2d, 

𝛼𝛼 =  
1

�(2𝑑𝑑 − 1)
 

By Lemma 5, to get a d-by-2d ETF, use a symmetric conference matrix C of order 2d, and compute the 
Hermitian matrix R = 1

�(2𝑑𝑑−1)
 C + I, while to get a complex ETF, use a skew-symmetric C and compute R = 

i 1
�(2𝑑𝑑−1)

C + I [9]. We then calculate the spectral decomposition and check if the eigenvalues are 0 and 2 with 
multiplicity d for both. An ETF can then be extracted if this is the case. 

Conversely, given a d-by-2d ETF a conference matrix can be built. 
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Definition 6. The Gram matrix G for a set of vectors S = [ f1 f2 … fN ] is given by 

G = ST S, if S is real 

G = S* S, if S is complex 

In other words, a Gram matrix is a Hermitian matrix of inner products. 

According to [2], If S is real then the Gram matrix G for a d-by-2d equiangular tight frame satisfies | Gi,j | = 
𝛼𝛼 and Gi,I = 1 for i, j = 1, 2, …, N. Then C = 1

𝛼𝛼
(G – I) is a symmetric conference matrix. The case where S is 

complex is similar. Note that in [5], such formula is defined for every ETF instead of only the 2-by-2d ones, 
which is named signature matrices of ETFs. 

For example, consider the 3-by-6 real ETF: 

1
�1 + 𝜑𝜑2

0 0 1 1 𝜑𝜑 −𝜑𝜑
1 1 𝜑𝜑 −𝜑𝜑 0 0
𝜑𝜑 −𝜑𝜑 0 0 1 1

 

where 𝜑𝜑 =  1+ √5
2

 with 𝛼𝛼 = 1
√5

. Then 1
𝛼𝛼
(G – I) gives a conference matrix 

0 −1 1 −1 1 1
−1 0 1 −1 −1 −1
1 1 0 −1 1 −1
−1 −1 −1 0 1 −1
1 −1 1 1 0 −1
1 −1 −1 −1 −1 0

 

Note that in [9] the former formula is given as R = �(2𝑑𝑑 − 1) C + I instead of 1
�(2𝑑𝑑−1)

 C + I, which is 

likely to be a typo, since if we are to reversely get the Gram matrix G from C. The equation should be G = 𝛼𝛼C + 
I = 1

√2𝑑𝑑−1
 C + I. Moreover, if we use the above matrix to undergo singular value decomposition of the matrix 

given by √5 C + I, it turns out that the eigenvalues are six and four, rather than zero and two, which are 
required by Lemma 5. 

Also note that by van Lint and Seidel, if a symmetric conference matrix of order n exists, then (n-1) is the 
sum of two squares, and therefore there is no such matrix of order 22 or 34 ([8]). This is in line with the fact that 
no 11-by-22 and 17-by-34 real ETFs exist (See [11] for lists of dimensions of known non-trivial ETFs). Actually, 
d-by-2d ETFs correspond to a type of strongly regular graphs called conference graphs [11]. 

6. Conclusion 

Equiangular tight frames have potential applications in different areas. One of the methods used to get 
d-by-2d ETFs is through conference matrices. We demonstrate one kind of construction for conference matrices 
with examples, and also find the limitation of such construction. Further, we demonstrate the process of 
transformation between conference matrices and equiangular tight frames, while finding an error of an 
expression in [9]. This paper may give a first insight to those who are to study d-by-2d ETFs. 

It remains for us to study whether Paley’s construction mentioned in [8] fails for every field with more than 
one zero-square. If it does not, under what cases will it work and give the desired conference matrix. 
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