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Abstract: Addressing the issues of limited single-modality feature representation, inadequate multimodal 
feature fusion, and the difficulty of modeling conversation scenarios in multimodal conversational 
emotion recognition tasks, a Hierarchical Transformer-based multimodal conversational emotion 
recognition model has been proposed. The model employs self-attention bidirectional gated recurrent 
units to delve into the contextual dependencies of single-modality features such as text, video, and audio, 
thereby enhancing the representational power of features. Through hierarchical gated multi-head 
attention, it learns complementary information among modalities and adaptively learns the weights of 
each modality, reducing the noise interference of redundant information on multimodal features. The 
hierarchical Transformer is used to model conversation scenarios, utilizing a masking mechanism to 
simulate dependencies within contextual language, within speakers, and between speakers, gaining a 
deeper understanding of the emotional states of speakers in conversations. On the IEMOCAP and MELD 
benchmark datasets, the model achieved accuracy and F1 scores of 71.10% and 70.97% on IEMOCAP, 
and 67.16% and 66.11% on MELD, respectively, outperforming similar methods in terms of accuracy. 

Keywords: Emotion Recognition in Conversation (ERC), Multimodality, Transformer, Gated Fusion, 
Multi-Head Attention  

1. Introduction 

Emotions a Emotions are an integral part of human life and play a central role in daily communication, 
decision-making processes, and social interaction. In interpersonal interactions, emotions are expressed 
through various forms such as language, facial expressions, voice, and gestures. With the development 
of artificial intelligence technology, conversational emotion recognition (ERC) is gradually exerting 
great application value in the fields of opinion mining in social media [1] and empathic dialogue systems 
[2], especially in the field of human-computer dialogue interaction [3], which is getting more and more 
attention from researchers. 

The research of ERC aims to model the relationship between the contextual context and the speaker 
in a conversation, so that the machine can understand and recognize the emotions expressed by humans 
during the communication process, thus providing a more intelligent, natural, and emotional interaction 
experience for hu-man-machine dialogues [4]. The dependencies that need to be modeled by ERC include 
self-dependence and environment dependence. Self-dependence means that the emotion of the current 
discourse is influenced by the emotion of the same speaker in the previous discourse. Since the speaker's 
affective states are continuous to some extent, their previous affective states need to be taken into account 
when analyzing the effect of the current discourse. Context dependency means that the emotion of the 
current discourse is influenced by other speakers or other factors in the conversational environment, such 
as the emotion of another speaker, the topic, and the overall conversational atmosphere. 

Currently, ERC has received a lot of attention from researchers. Poria [5] et al. used Bi-LSTM to 
obtain contextual information on conversational sequences to enhance the understanding of context and 
emotion. Jiao et al [6] used two gated recurrent units (GRUs) to model the contextual relationships 
between words and discourse respectively. Hazarika et al [7-8] out CMN and ICON use GRUs to capture 
the current speaker's affective state and memory networks for storing and updating the previous dialogue 
history, which improves the emotion recognition by modeling the self-dependence and environment-
dependence of a conversation, thus improving the emotion recognition accuracy. Majumder et al [9] 
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proposed the DialogueRNN model uses three different GRUs to update the speaker, context, and 
sentiment states in the conversation respectively. Ghosal et al [10] proposed DialogueGCN model uses 
graph structure to consider speaker and dialogue sequence information for modeling. Li et al [11] 
proposed that the HiTrans Model consists of two layers of Transformer for obtaining global contextual 
information and modeling speaker-sensitive dependencies using an auxiliary task. Li et al [12] proposed 
TRMSM using textual modalities for sentiment recognition in three layers of Transformer modeling 
conversational context, intra-speaker, and inter-speaker. Hu J et al [13] proposed MMGCN model uses a 
graph convolutional network structure to model the speaker. Hu D et al [14] proposed MM-DFN to design 
a dynamic fusion module to fuse multimodal contextual information, reduce redundancy, and enhance 
inter-modal complementarity. Hu G et al [15] proposed the UniMSE model to model the speaker by 
fusing the modalities at the syntactic and semantic levels and using inter-modal contrast learning to 
differentiate sample representations through intra- and inter-modal interactions, inter-modal learning 
weight assignment, and enhancement of multimodal feature representations. Zhang et al [16] proposed 
the HAAN-ERC model to capture the intra- and inter-modal influences of the speaker and modality in 
each unimodal conversation using a hierarchical Transformer, and to fuse multimodal features through 
an adaptive attention mechanism. Du Jinming et al [17] proposed that the CK-ERC model uses a 
knowledge graph and a dynamic threshold-based course learning strategy to help the model accurately 
model spoken information. Feng Hongqi et al [18] effectively fused multimodal information by 
combining multilevel attention and multistream graph neural networks to capture global and local 
features of conversations. Liu Xinyu et al [19] used graph convolutional neural networks to construct 
graph structures for global conversations, speakers' own in-fluences, and inter-speaker influences to solve 
the problem of speaker personality modeling. Xudong Shen et al [20] proposed an MTDAG model using 
a temporal information-aware directed acyclic graph to capture multimodal rich feature information by 
optimizing discourse weights and fusing context and speaker information. In this paper, we propose a 
hierarchical Transformer to model the conversation scenario, using a masking mechanism to model the 
conversation contextual context, intra-speaker and inter-speaker. 

Multimodal emotion recognition not only focuses on the emotional information of a single modality 
but also needs to process and fuse a large amount of information from different modalities. To reduce the 
noise interference caused by multimodal feature fusion, the complementary information between 
multimodalities is fully utilized. Early research on multimodal fusion mainly consists of integrating the 
features of different modalities at the input level constructing different models for each modality, and 
then integrating their outputs by methods such as majority voting or weighted averaging. These two 
methods are simple but cannot effectively capture in-tra- and inter-modal interactions. Model-level fusion 
became popular afterward. Zadeh et al [21] proposed the TFN model which uses tensor fusion networks 
to simulate the relationships between individual modalities, using high-dimensional tensors to represent 
multimodal features. MFN [22] learns cross-modal interactions through attentional mechanisms and 
stores information in controlled memories over time through multi-view gates. Liu et al [23] proposed 
the LMF model to reduce computational effort by performing a low rank through weights matrix 
decomposition to reduce computation. Tsai et al [24] modeled cross-modal remote dependencies using a 
cross-modal converter. Sahay et al [25] synthesized the advantages of both by using LMF to obtain 
multimodal features and fusing multimodal and unimodal interactions through a cross-modal attention 
mechanism. Rahman et al [26] designed a multimodal adaptive gate (MAG) that captures intra- and inter-
modal interactions between conversational discourse while learning inter-modal weights. In this paper, 
we propose a hierarchical cross-modal multi-head attentional fusion method, which uses a hierarchical 
fusion approach to reduce the noise of the fused features and make full use of the complementary 
information of each modality.   

In summary, multimodal conversational emotion recognition faces the challenge of how to fully fuse 
the feature information of different modalities, i.e., not only fully learning the complementary 
information between modalities but also removing the redundant information; and modeling the 
conversational scene to obtain rich emotional cues from the speaker. To address the above problems, this 
paper proposes a multimodal ERC model based on a hierarchical Transformer (HTMM-ERC). Firstly, 
the contextual relationships in the sequence of unimodal features are captured by SA-BiGRU, to better 
understand the complexity of emotional expressions, determine the importance of each modal data, and 
further reduce redundant information. Second, the intra- and inter-modal interrelationships of different 
discourse features are captured through a multi-head attention mechanism in the Transformer layer, and 
the inter-modal weights are adaptively learned using a gated network. Contextual interactions, internal 
dependencies, and interdependencies between speakers are modeled using a layered Transformer. Finally, 
the sentiment is categorized. The model in this paper is experimentally validated on two publicly 
available datasets, IEMOCAP [27] and MELD [28], demonstrating the effectiveness of this paper's 
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approach to the multimodal ERC task. 

2. Related Work 

We only accept papers written in English and without orthographic errors. 

Please do not add any headers, footers and page numbers in the article, as we will do that uniformly.  

All the text must use the font, Times New Roman. On Macintosh, please choose font, Times. Except 
in special circumstances, such as program code. 

2.1. Task Definition 

Denote the session dataset as 1 2{ , , , }PC c c c=  , P denotes the number of sessions in the dataset. Each 
session 1 2{ , , , }NU u u u=  , where N denotes the number of words in the session. Denote the speakers as 

1 2{ , , }MS s s s=  , where M denotes the number of speakers. Each discourse iU  has three modal features: 
textual (t), audio (a) and visual (v), denoted as 

1 2{ , , , }N
t t t tU u u u=  , 

1 2{ , , , }N
a a a aU u u u=  ,

1 2{ , , , }N
v v v vU u u u=  , 

respectively. Each discourse corresponds to one speaker, and each speaker can correspond to multiple 
dis-courses. Each discourse has a corresponding sentiment label, denoted as 1 2{ , , , }NY y y y=  , and the 
goal of the ERC task is to predict the sentiment label iy′  of each discourse iu . 

2.2. Model overview 

The HTMM-ERC model proposed in this paper has four main parts: (1) Modal encoder module, 
which firstly obtains the unimodal feature vectors from the raw data through preprocessing, and then 
uses the SA-BiGRU module to capture the contextual relationships in the feature sequences and 
determine the importance of each modal data, to understand the complexity of the emotional expression 
better and further reduce the redundant information. (2) A layered cross-modal gated fusion module that 
captures the intra- and inter-modal interrelationships of different discourses through a multi-head 
attention mechanism in the Transformer layer, and then adaptively learns the inter-modal weights through 
the gated network. (3) Hierarchical Transformer conversation modeling module, which models global 
dependencies, speaker's dependencies, and inter-speaker dependencies through a hierarchical 
Transformer for a comprehensive and in-depth understanding of the conversational context. (4) 
Prediction and Classification, using classifiers for 6 categories of sentiment classification. The general 
framework diagram of the HTMM-ERC model is shown in Figure 1. 

 
Figure 1: Framework diagram of the HTMM-ERC model. 
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2.3. Model overview 

There are interdependencies between each discourse of a session, SA-BiGRU (Self-Attention-Based 
Bidirectional Gated Recurrent Unit) is a module that combines a Bidirectional Gated Recurrent Unit 
(BiGRU) and a self-attention mechanism. This module achieves an effective capture of contextual 
relationships in feature sequences by implementing them in BiGRU. The self-attention mechanism is 
introduced at the output layer to further reduce the redundant information, which helps to better 
understand the complexity of sentiment expression and improve the accuracy and reliability of sentiment 
analysis. The SA-BiGRU network structure is shown in Figure 2. 

 
Figure 2: Network structure diagram of SA-BiGRU. 

BiGRU is a simplified version of BiLSTM, which has a simple structure containing only reset and 
update gates, reducing network complexity while improving computational efficiency. It can capture the 
long-term dependencies in the sequence and better the temporal characteristics of the data. The network 
structure expression of BiGRU is as follows: 

( )t 1,t th GRU x h −=
 

                              (1) 

( )t 1,t th GRU x h −=
 

                              (2) 

t t tt t th hh W h W h b= + + 

 

                             (3) 

where: 
W , ,

t t t th hW h h 

 

，
 denotes the forward and backward hidden layer states and weights at moment 

t, respectively, and tb  denotes the bias of the hidden layer state at moment t. 

The self-attention mechanism captures the key information between positions in a unimodal sequence 
of features. To improve the ability to mine the deeper features of the data, for the input feature vectors, 
their corresponding generation vectors Q, K, and V, are calculated as follows: 

( ), , max
T

k

QKAttention Q K V soft V
d

 
= ⋅  

                  (4) 

Where: kd  denotes the dimension of the key vector. 
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2.4. Cross-modal feature fusion module based on hierarchical Transformer 

Unimodal features cannot adequately express complex emotional information, different modalities 
can provide complementary information, text can provide semantic information, while images and 
speech can provide emotional, intonational or visual information. According to Rahman et al [26], this 
paper designs a hierarchical cross-modal interaction and gating fusion module that includes both 
unimodal and multimodal modalities, which enables full interaction of multimodal information and 
reduces the noise and redundant information of unimodal features. 

 
Figure 3: Structure Diagram of Cross-modal Fusion Module. 

As shown in Figure. 3 is the schematic structure of the cross-modal fusion module, which uses the 
Transformer encoder [29] for unimodal and cross-modal interactions, which contains three input query 
vectors Q, key vectors K, and value vectors V, denoted ( ), ,TransformerEncode Q K V  , simplified ( , , )TE Q K V  , 
and for unimodal can be expressed as : 

( , , )m m m m mZ TE U U U→ =                                (5) 

where: mU  is the ( , , )m t a v∈  modal discourse feature representation. The cross-modal 
representation of m to n different modalities is: 

( , , )m n m n nZ TE U U U→ =                               (6) 

The six sets of modal interaction feature of text-to-audio and video, audio-to-text and video, and 
video-to-text and audio are obtained by cross-modal attention as follows: 

( , , )t a t a aZ TE U U U→ =                               (7) 

( , , )t v t v aZ TE U U U→ =                               (8) 

( , , )a t a t tZ TE U U U→ =                               (9) 

( , , )a v a v vZ TE U U U→ =                               (10) 

( , , )v t v t tZ TE U U U→ =                               (11) 

( , , )v a v a aZ TE U U U→ =                               (12) 

In order to obtain a complete representation of the unimodal state, the three unimodal and six cross-
modal interaction feature matrices are spliced and represented as: 

[ ]T t t t a t vZ Z Z Z→ → →= ⊕ ⊕                          (13) 
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[ ]A a a a t a vZ Z Z Z→ → →= ⊕ ⊕                           (14) 

[ ]V v v v t v aZ Z Z Z→ → →= ⊕ ⊕                           (15) 

Where: [ ]⊕ denotes the splicing operation. 

The gating mechanism is a commonly used method to control the flow of information between 
different parts of a network. In this paper, we use the SoftMax function to implement a dynamic gating 
mechanism to adapt weight learning in multimodal emotion recognition tasks. The specific steps are to 
map the output vectors of each modality into scalar values through the fully connected layer and input 
the SoftMax function to get the weight distribution, which is used to weigh the output vectors and form 
the weighted sum as the final result. Gated fusion can dynamically learn the weights between each 
modality to handle multimodal data better. The final multimodal features of the discourse are calculated 
as follows: 

i i i ir W Z b= ∗ +                                 (16) 

max( )i ig Soft r=                               (17) 
'

{ , , }
i i i

i t a v
Z g Z

∈

= ⊗∑
                             (18) 

Where: iW  and bi  are the weight matrix and bias term respectively. i denotes as different 
modalities. 

2.5. Cross-modal feature fusion module based on hierarchical Transformer 

The core of the ERC task is to model the contextual context and the relationship between speakers in 
a session, and with the success of Transformer [30] in multiple domains, the attention mechanism in 
Transformer cleverly solves the problem of modelling context in a session. According to Zhang et al [16], 
this paper argues that the fused multimodal features have more comprehensive and rich emotional 
information, so the multimodal features should be modelled as a session scenario. According to the pair 
of research ideas of Li et al [12], this paper proposes a session modelling module based on a layered 
Transformer, which cleverly uses the Transformer mask mechanism to construct three different masks to 
simulate global dependencies, speaker's dependencies and inter-speaker dependencies. That is, there are 
three Transformer encoding layers: the first layer uses global masks to model the session context and 
capture the global dependencies of the session. The second layer models the speaker itself using a speaker 
self-mask, which is used to capture intra-speaker dependencies. The third layer models the inter-speaker 
using different inter-speaker masks for capturing and analyzing interactions, sentiment transfer and 
dependencies between different speakers. The three coding layers produce three features modelled using 
different conversational scenarios. In this paper, we use the same gating mechanism as multimodal 
feature fusion to adaptively and dynamically learn the weights of each feature, and ultimately obtain a 
multimodal feature vector containing rich conversational information. The specific calculation method 
is shown in Eq. (16) to Eq. (18). 

The following are the main components of the Transformer coding layer: 

1) Positional encoding: it can encode the relative positional relationship of input features so that the 
model can clarify the contextual relationship and thus better understand the semantics. The calculation 
formula is as follows: 

( ,2 ) 2 /

( ,2 1) 2 /

sin( ),
10000

cos( ),
10000

pos i i d

pos i i d

posPE

posPE +

=

=
                            (19) 

2) Multi-head attention: it consists of multiple self-attention modules, which can process the target 
discourse in parallel to learn a more comprehensive feature representation, and project the discourse 
vectors to query, key and value representations respectively, and the self-attention with masking is 
calculated as follows: 
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( ) *( , , , ) max( )
T

k

QK MA Q K V M Soft V
d

= ⋅
                      (20) 

Where: ,K ,Vk k kN d N d N dQ × × ×∈ ∈ ∈   denotes query, key and value respectively, kd denotes the 

dimension of key vector, [ ]∗  denotes element multiplication, [ ]⋅  denotes dot product, N NM ×∈  
denotes mask matrix. 

3) Normalisation layer, feed-forward fully connected layer: the normalisation layer is used to 
normalise the output of each sub-layer, which helps to accelerate training and improve the generalization 
ability of the model. The feed-forward fully connected layer introduces nonlinearity so that the model 
can better fit complex input-output relationships. The computation is performed as: 

( )A LN U X= +                              (21) 

1 2Re ( )F lu AW W=                            (22) 

' ( )F LN A F= +                              (23) 

Where LN is the layer normalisation, Relu is the activation function, 1W and 2W are the weight 
matrices of the feed-forward fully connected layer, U denotes the input features, and X denotes the output 
of the multi-head attention module. 

The three mask-creation methods used in this paper are as follows: 

1) Global Mask: This mask sets all own elements to True, which means that each target discourse has 
access to (i.e., can see) all contextual discourse in a multi-head attention computation. This mask allows 
the model to take into account the entire context of the dialogue when processing each target discourse, 
leading to a better understanding of the meaning of the target discourse. 

2) Speaker's own mask: this mask sets the value to True if the speaker of the discourse has the same 
speaker label as the target discourse, and False if the speaker of the discourse does not have the same 
speaker label as the target discourse. This mask handles the coherence of the expression of the same 
speaker in different discourses and ensures that the model focuses only on what is relevant to that speaker 
when processing the target discourse. 

3) Inter-speaker mask: this mask sets the value of the position where the speaker of the discourse has 
the same speaker label as the speaker of the target discourse to False and sets the other positions to True. 
This mask encourages the model to focus on other speakers related to the target speaker, and the inter-
speaker mask helps the model to understand the interactions and emotion transfer among different 
speakers. 

2.6. Module for categorising emotions 

In order to get the probability of the sentiment category, in this paper, the (gated fusion layer processed 
feature vector) is input into a classifier with fully connected (FC) layer and SoftMax layer for prediction: 

' Re ( )i H i HP lu W H b= +                              (24) 

ax( ' )i P i PP SoftM W P b= +                              (25) 

kŷ arg max ( [ ])i Y iP k∈=                              (26) 

At training time, this paper uses cross-entropy loss to measure the quality of sentiment prediction: 

, ,
1 1

1 log( )
N C

i j i j
i j

y y
N

∧

= =

= − ∑∑
                             (27) 

Where: N is the number of dialogues, C is the number of words in dialogue i, ,i jy  is the true 

sentiment label of word j in dialogue i, and ,ˆi jy denotes the probability distribution of the predicted 
sentiment label of word j in dialogue i. The Adam optimiser should be employed for the purpose of 
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training the network model. 

3. Datasets and data pre-processing 

3.1. Datasets 

We hope you find the information in this template in this paper, we validate and evaluate the 
performance of the proposed method on two publicly available datasets: the IEMOCAP dataset [27] and 
the MELD dataset [28], both of which are multimodal conversational emotion recognition datasets con-
taining three modalities. The statistical results of the two datasets are shown in Table 1. 

IEMOCAP dataset: consists of 10 binary dialogues performed by actors according to a script, 
containing 153 dialogues and 7433 words. IEMOCAP is divided into 5 sessions, where the first 4 sessions 
are used for training and the last one is used for testing. Each sentence in the dialogue was tagged with 
one of the six category emotion la-bels, namely happy, sad, neutral, angry, excited and frustrated. 

MELD dataset: this is a multi-speaker multimodal pair conversation dataset collected from the 
Friends TV series, which contains 1433 dialogues and 13708 utterances. Each sentence is labelled with 
one of seven emotions: Neutral, Surprise, Fear, Sadness, Joy, Disgust and Anger. 

Table 1: Statistical Information of IEMOCAP and MELD. 

Dataset Conversations Utterances Classes Train Val Test Train Val Test 
IEMOCAP 120 31 5810 1623 6 

MELD 1039 114 280 9989 1109 2610 7 

3.2. Data pre-processing 

3.2.1. Text feature extraction 

Text modal features are extracted using the large-scale pre-trained model RoBERT-Large [31] based 
on Transformer. RoBERT model is based on the improvement of the BERT model, which uses more data, 
and the larger batch makes it possible to mine the text data for syntactic and sentence-level features, thus 
achieving a more powerful characterisation capability, and finally obtains 1024-dimensional sentence-
level features. 

3.2.2. Speech Feature Extraction 

Speech modal features are configured by Hazarika [4] et al. Frame level speech features are extracted 
using OpenSmile based on IS13 profiles and then sentence level features are obtained through the fully 
connected layer. The dimensionality of the speech features on the IEMOCAP dataset is 1582 and the 
dimensionality of the speech features on the MELD dataset is 300. 

3.2.3. Image Feature Extraction 

Image modal features are pre-trained on facial expression recognition corpus using DenseNet [32] 
and then extracted on the ERC dataset DenseNet is a CNN network that achieves feature reuse and 
optimised information flow through densely connected layers with a small number of parameters, 
superior performance and compactness, the final dimensionality of the facial expression features of the 
output image is 342. 

4. Results 

4.1. Study parameter settings 

In this experiment, AdamW is chosen as the optimiser in this paper to achieve more stable 
convergence during the training process. For the IEMOCAP dataset, the batch size (batch size) is set to 
16 and the initial learning rate is set to 1E-3. For the MELD dataset, this paper sets the batch size to 32 
and adjusts the initial learning rate to 1E-4. The whole training process is iterated 50 times, and at the 
same time, the Dropout is set to 0.5 to prevent overfitting. In addition, 8 heads were used by default to 
implement the multi-head attention mechanism. All experiments were performed on an NVIDIA GeForce 
RTX 3090 GPU equipped with 24 GB of video memory. In this paper, Accuracy (Accuracy, Acc) and F1 
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value (F1-score) are used as evaluation indexes. 

4.2. Study results 

A graph of the loss trend during training on IEMOCAP and MELD is shown in Fig. 4. There is a 
trend of a gradual decrease in the model loss values with the increase in the number of training rounds. 
At the beginning of the training period, the loss values are high, but as the training progresses, the loss 
values gradually decrease, indicating that the model is converging gradually. As shown in Table 2, the 
HTMM-ERC model achieves an average accuracy and average weighted F1 score of 71.10% and 70.97% 
on the IEMOCAP dataset, and an average accuracy and average weighted F1 score of 67.16% and 66.11% 
on the MELD dataset. 

 
(a)                            (b) 

Figure 4: The loss curve during training on IEMOCAP and MELD: (a) Training loss for the IEMOCAP 
dataset sheets; (b) Training loss for the MELD dataset sheets. 

4.3. Contrastive Models 

1) DialogueRNN [9]: a Recurrent Neural Network (RNN) based method for modelling context and 
speaker information. The method uses independent gated recurrent units (GRUs) to model the speaker 
state and contextual information etc. respectively. 

2) DialogueGCN [10]: Graph Convolutional Networks (GCNs) are applied to the task of emotion 
recognition by extracting discourse-level features using Bidirectional Long Short-Term Memory 
Networks (Bi-LSTMs) and constructing graph data based on these features. The method portrays the 
conversational context of emotion recognition by modelling the self-dependence of the interlocutor and 
the dependencies between speakers. 

3) MMGCN [13]: this method constructs a conversational graph based on all three modalities and 
designs a multimodal fusion graph convolutional network to model contextual dependencies across 
multiple modalities. 

4) DialogueTRM [33]: a hierarchical Transformer model is used to deal with different context 
preferences in each modality, and a multi-granularity interactive fusion strategy is designed to learn the 
contributions of discourse across modalities. 

5) MM-DFN [14]: a graph-based dynamic fusion module is designed to fuse multimodal contextual 
features to reduce redundancy and enhance inter-modal complementarity. 

6) UniMSE [15]: fuses acoustic and visual modal features with multilevel textual features using the 
T5 model for inter-modal comparison learning to obtain a more discriminative multimodal representation. 

7) HAAN-ERC [16]: employs a hierarchical Transformer to capture speaker and modal internal 
interactions in individual unimodal dialogue contexts and fuses them through an adaptive attention 
mechanism. 

8) MTDAG [20]: a directed acyclic graph model for temporal information perception proposed in 
this study by optimising discourse weights, fusing context and speaker information as well as capturing 
multimodal information effectively. 
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4.4. Comparison Study Results 

The HTMM-ERC model proposed in this paper addresses the challenges of the difficulty of fusing 
multimodal data for multimodal session emotion recognition and the complexity of modelling session 
scenarios, and in order to further validate the excellence of the model, Table 2 demonstrates the results 
of the comparative experiments between the HTMM-ERC model proposed in this study and the other 
baseline models on both the IEMOCAP and MELD datasets. As can be seen from the table, the HTMM-
ERC model outperforms the other models on both datasets. 

On the IEMOCAP dataset, the HTMM-ERC model achieves an average accuracy (ACC) of 71.10%, 
which is improved by 3.37%, 2.78%, and 4.49% compared to the DialogueRNN, DialogueGCN, and 
MMGCN models, respectively. Meanwhile, the average weighted F1 score (w-F1) of the HTMM-ERC 
model also reaches 70.97%, which is improved by 3.20%, 2.59% and 4.76% compared to the above 
models, respectively. 

On the MELD dataset, the HTMM-ERC model has an average accuracy (ACC) of 67.16%, which is 
an improvement of 1.24%, 1.14%, and 5.82% compared to the DialogueRNN, DialogueGCN, and 
MMGCN models, respectively. In addition, the average weighted F1 score (w-F1) of the HTMM-ERC 
model is 66.11%, which is improved by 1.04%, 1.10%, and 7.67% compared to the above models, 
respectively. 

Table 2: Comparison of Experimental Results on IEMOCAP and MELD Datasets. 

Models IEMOCAP(Avg) IEMD(Avg) 
ACC w-F1 ACC w-F1 

DialogueRNN[9] 67.73 67.77 65.92 65.07 
DialogueGCN[10] 68.32 68.38 66.02 65.01 

MMGCN [13] 66.61 66.25 61.34 58.41 
DialogueTRM[33] 68.52 68.20 65.10 63.80 

MM-DFN[14] 68.21 68.18 62.49 59.46 
UniMSE[15] 70.56 70.66 65.09 65.51 

HAAN-ERC[16] 69.48 69.47 66.31 65.50 
MTDAG[20] 70.98 70.75 65.36 64.51 

HTMM-ERC (ours) 71.10 70.97 67.16 66.11 
In summary, the HTMM-ERC model proposed in this study outperforms other baseline models for 

emotion recognition on both IEMOCAP and MELD datasets, and this model significantly reduces 
redundant information by obtaining the contextual relationships of unimodal feature vectors, effectively 
focusing on key features in emotion recognition. It makes use of the Transformer layer's multi-head 
attention mechanism and gating network to adaptively learn modal weights, comprehensively capture 
intra- and inter-modal relationships, and deepen conversational contextual understanding by modelling 
conversational global as well as speaker interdependencies through the hierarchical Transformer encoder, 
and proving its effectiveness in processing temporal, contextual and multimodal information. 

4.5. Ablation Study 

In order to investigate the effect of different modules and different modalities in the HTMM model, 
ablation experiments were conducted on both datasets, considering the following settings: 

1) w/o ConM: remove the global mask in the session modelling module used. 

2) w/o SpIntra: removing the speaker's own mask in the session modelling module used. 

3) w/o SpInter: removes the inter-speaker mask in the session modelling module used. 

4) w/o ConEn: removes the entire session modelling module. 

5) w/o CRFU: remove the layered cross-modal fusion module. 

Table 3 shows the results of the ablation experiments for the HTMM-ERC model on two datasets. 
The experimental results reveal that, in the context of the session modelling module, the model's 
performance undergoes a decline when the global mask, the speaker's mask, and the inter-speaker mask 
are removed individually. More notably, the most significant performance drop occurs when the entire 
session modelling module is removed, highlighting the indispensable and effective nature of all its 
components within the HTMM-ERC model. Furthermore, the HTMM-ERC model's components are 
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indispensable and effective. When the hierarchical cross-modal fusion module is excluded, and 
multimodal features are fused directly through concatenation, the model's performance decreases 
substantially, particularly on the MELD dataset. This underscores the crucial role played by the cross-
modal fusion module in enhancing model performance. Additionally, using speech modality and image 
modality in isolation results in a significant decline in the model's accuracy and weighted F1 value, with 
the effect of image modality being particularly pronounced. In contrast, the performance degradation is 
relatively minor when text modality is used alone, suggesting that text modality exhibits greater stability 
in emotion recognition. Overall, the combination of the cross-modal fusion module and multimodality 
plays a pivotal role in the HTMM-ERC model's performance in emotion recognition tasks. 

Table 3: Ablation Experimental Results of HTMM-ERC on Two Datasets. 

 IEMOCAP(Avg) MELD(Avg) 
ACC w-F1 ACC w-F1 

HTMM-ERC 71.10 70.97 67.16 66.11 
w/o ConM 70.64 69.88 66.86 65.43 
w/o SpIntra 69.71 70.20 66.70 65.53 
w/o SpInter 70.15 69.84 67.09 65.95 
w/o ConEn 69.15 69.02 66.42 65.25 
w/o CRFU 69.30 69.43 65.97 65.42 

A&T 70.42 70.11 66.85 65.90 
A&V 60.78 60.98 45.69 42.18 
T&V 69.05 69.13 66.77 65.52 

T 68.69 68.54 66.52 65.83 
A 59.67 59.48 50.45 50.06 
V 40.52 41.06 37.72 33.58 

5. Conclusions 

The HTMM-ERC model proposed in this paper effectively captures complex emotional information 
in multimodal data while mitigating the interference of redundant information, through the synergistic 
action of three core modules: modal encoder, hierarchical cross-modal attention fusion, and session scene 
modeling. Validated through comparative and ablation experiments, the model demonstrates significant 
superiority in terms of performance and robustness. However, there is still room for improvement in this 
study, such as limitations in the dataset and high model complexity. In the future, we will explore new 
datasets, optimize the model structure to reduce computational costs, and integrate other advanced 
methods, such as knowledge graphs and reinforcement learning, to further improve the accuracy and 
robustness of emotion recognition. 
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