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Abstract: Supply chain disruptions, exacerbated by global uncertainties, demand agile planning tools. 

This paper presents a machine learning (ML)-enhanced demand sensing model integrated into SAP 

Integrated Business Planning (IBP) to improve supply chain resilience in automotive manufacturing. We 

propose a hybrid ML architecture combining Long Short-Term Memory (LSTM) networks for temporal 

pattern recognition and XGBoost for feature importance analysis. Deployed in a tier-1 automotive 

supplier, the model reduced stockouts by 30% while maintaining 98% service levels. The study highlights 

technical implementation steps, quantifies performance gains, and provides actionable insights for 

scaling ML-driven planning in SAP IBP. 
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1. Introduction 

Global automotive supply chains face volatility due to geopolitical risks, component shortages, and 

fluctuating demand. Traditional statistical forecasting in ERP systems often fails to adapt to real-time 

disruptions. SAP IBP, augmented with machine learning, offers a transformative solution by enabling 

dynamic demand sensing and inventory optimization[1]. This paper addresses two gaps: 

(1)Technical implementation of ML models within SAP IBP’s framework. 

(2)Empirical validation of ML-driven planning in reducing stockouts. 

2. Methodology 

2.1 ML Model Architecture 

 

Figure 1 ML Model Architecture 

We developed a hybrid LSTM-XGBoost model (Fig. 1) to enhance SAP IBP’s demand sensing: 

LSTM Layer: Processes time-series data (historical sales, production lead times) with a 30-day 

window[2]. 
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Hyperparameters: 64 hidden units, dropout rate = 0.2, Adam optimizer. 

XGBoost Layer: Analyzes static features (e.g., supplier risk scores, geopolitical events) using 

gradient-boosted trees. 

Key features: Supplier lead time variability (SHAP value = 0.38), regional logistics delays (SHAP 

value = 0.29). 

Data Pipeline: 

Input: 5 years of sales and production data (10M+ records) from SAP ECC, enriched with external 

API data (weather, port congestion). 

Preprocessing: Anomaly detection via Isolation Forest, normalized using Min-Max scaling. 

Integration with SAP IBP: 

Deployed via SAP Cloud Platform using Python SDK for real-time inference. 

Outputs fed into IBP’s Inventory Optimization module for dynamic safety stock recalculation. 

The hybrid LSTM-XGBoost model combines temporal pattern recognition (via LSTM) and feature 

importance analysis (via XGBoost) to enhance demand sensing. 

2.1.1 LSTM Layer Formulation 

The LSTM network processes time-series data (Xt = {x1, x2, … , xT}) with the following gates and 

cell states at time step t: 

(1)Forget Gate (𝑓𝑡): 

𝑓𝑡 = σ(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

Determines which historical information to discard (e.g., outdated supplier lead times). 

(2)Input Gate (𝑖𝑡) and Candidate Cell State (𝐶𝑡̃): 

𝑖𝑡 = σ(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝐶𝑡̃ = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) 

Identifies new information to store (e.g., sudden demand spikes). 

(3)Cell State Update (𝐶𝑡): 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶𝑡̃ 

Updates the cell state with filtered information. 

(4)Output Gate (𝑜𝑡) and Hidden State (ℎ𝑡): 

𝑜𝑡 = σ(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡) 

Generates the hidden state for demand prediction. 

Parameters: 

 𝑊𝑓, 𝑊𝑖 , 𝑊𝑐 , 𝑊𝑜: Weight matrices. 

 𝒃𝒇, 𝒃𝒊, 𝒃𝑪, 𝒃𝒐: Bias vectors. 

 𝜎: Sigmoid activation,  𝑡𝑎𝑛ℎ: Hyperbolic tangent. 

2.1.2 XGBoost Layer Formulation 

The XGBoost model analyzes static features 𝒁 = 𝑧1, 𝑧2, … , 𝑧𝑚 (e.g., supplier risk scores) to predict 

demand residuals[3]. The objective function minimizes: 

ℒ(ϕ) = ∑ l(𝑦𝑖 , 𝑦𝑖̂)

𝑛

𝑖=1

+ ∑ Ω(𝑓𝑘)

𝐾

𝑘=1

 

where: 
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  l: Loss function (e.g., MSE, log loss). 

 𝑦𝑡̂ = ∑ 𝑓𝑘(zi)
K
k=1 : Ensemble prediction from K regression trees. 

 Ω(𝑓𝑘) = γ𝑇 +
1

2
λ|𝑤|2: Regularization term penalizing tree complexity. 

o T: Number of leaves in the tree.  

o w: Leaf weights (prediction value). 

o γ, λ: Hyperparameters controlling regularization strength (default: γ=0, λ=1). 

Tree Construction: 

Each tree 𝑓𝑘 splits nodes to maximize the gain: 

Gain =
1

2
[

(∑ 𝑔𝑖𝑖∈𝐼𝐿
)

2

∑ ℎ𝑖𝑖∈𝐼𝐿
+ λ

+
(∑ 𝑔𝑖𝑖∈𝐼𝑅

)
2

∑ ℎ𝑖𝑖∈𝐼𝑅
+ λ

−
(∑ 𝑔𝑖𝑖∈𝐼 )2

∑ ℎ𝑖𝑖∈𝐼 + λ
] − γ. 

where: 

 

Feature Importance: 

SHAP (SHapley Additive exPlanations) values quantify the contribution of each feature 𝑧𝑗: 

ϕ𝑗 = ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹∖{𝑗}

[𝑓(𝑆 ∪ {𝑗}) − 𝑓(𝑆)] 

Where:  

 F is the set of all features.  

 S is a subset of features excluding j.   

 f(S) is the model prediction using features in S. 

2.2 Integration with SAP IBP 

The LSTM-XGBoost output 𝑦𝑡̂ (predicted demand) is fed into SAP IBP’s inventory optimization 

engine: 

Safety Stock𝑡 = Φ−1(1 − α) ⋅ √Lead Time𝑡 ⋅ σ𝑦𝑡̂

2 + μ𝑦𝑡̂

2 ⋅ σLead Time
2  

 Φ−1: Inverse normal distribution (service level α=98%). 

 μ𝑦𝑡̂
, σ𝑦𝑡̂

: Mean and standard deviation of demand forecasts. 

3. Results 

3.1 Performance Metrics 

The model was tested over 6 months at a European automotive supplier: 

Table 1 Performance metrics 

Metric Baseline (ARIMA) LSTM-XGBoost Improvement 

Forecast Accuracy (MAPE) 22% 14% 36% 

Stockout Frequency 15% 10.5% 30% 

Safety Stock Levels $8.2M $6.1M 25% Reduction 
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Statistical Validation: 

 Paired t-test confirms significant difference (p < 0.01) in stockout rates. 

 MAE reduced from 1,240 to 872 units/month. 

3.2 Case Study: Semiconductor Shortage Mitigation 

During the 2023 chip shortage, the model identified at-risk suppliers 8 weeks in advance. By rerouting 

orders via SAP IBP’s Supply Chain Control Tower, the supplier avoided $2.1M in lost sales (Fig. 2). 

 

Figure 2 Stockout Trends Before and After ML Implementation 

4. Discussion 

4.1 Technical Challenges 

 Data Latency: Real-time synchronization between SAP ECC and IBP required custom CDC 

(Change Data Capture) logic[4]. 

 Model Interpretability: SHAP analysis clarified feature impacts for stakeholders. 

4.2 Practical Implications 

 Cost Savings: 30% stockout reduction translates to ~$4.5M annual savings. 

 Scalability: The framework is adaptable to other industries (e.g., aerospace, consumer 

electronics). 

5. Conclusion 

This study demonstrates that integrating ML with SAP IBP significantly enhances supply chain 
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resilience. Future work will explore reinforcement learning for multi-echelon inventory optimization. 
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