Enhancing Supply Chain Resilience Using Machine Learning in SAP IBP: A Case Study in Automotive Manufacturing

Peng Lu

Hebei University of Economics & Business, Shijiazhuang, China

Abstract: Supply chain disruptions, exacerbated by global uncertainties, demand agile planning tools. This paper presents a machine learning (ML)-enhanced demand sensing model integrated into SAP Integrated Business Planning (IBP) to improve supply chain resilience in automotive manufacturing. We propose a hybrid ML architecture combining Long Short-Term Memory (LSTM) networks for temporal pattern recognition and XGBoost for feature importance analysis. Deployed in a tier-1 automotive supplier, the model reduced stockouts by 30% while maintaining 98% service levels. The study highlights technical implementation steps, quantifies performance gains, and provides actionable insights for scaling ML-driven planning in SAP IBP.

Keywords: Supply chain resilience; machine learning; demand sensing; SAP IBP; automotive manufacturing

1. Introduction

Global automotive supply chains face volatility due to geopolitical risks, component shortages, and fluctuating demand. Traditional statistical forecasting in ERP systems often fails to adapt to real-time disruptions. SAP IBP, augmented with machine learning, offers a transformative solution by enabling dynamic demand sensing and inventory optimization^[1]. This paper addresses two gaps:

- (1) Technical implementation of ML models within SAP IBP's framework.
- (2) Empirical validation of ML-driven planning in reducing stockouts.

2. Methodology

2.1 ML Model Architecture

Figure 1 ML Model Architecture

We developed a hybrid LSTM-XGBoost model (Fig. 1) to enhance SAP IBP's demand sensing:

LSTM Layer: Processes time-series data (historical sales, production lead times) with a 30-day window^[2].

ISSN 2616-5767 Vol.8, Issue 1: 94-98, DOI: 10.25236/AJETS.2025.080113

Hyperparameters: 64 hidden units, dropout rate = 0.2, Adam optimizer.

XGBoost Layer: Analyzes static features (e.g., supplier risk scores, geopolitical events) using gradient-boosted trees.

Key features: Supplier lead time variability (SHAP value = 0.38), regional logistics delays (SHAP value = 0.29).

Data Pipeline:

Input: 5 years of sales and production data (10M+ records) from SAP ECC, enriched with external API data (weather, port congestion).

Preprocessing: Anomaly detection via Isolation Forest, normalized using Min-Max scaling.

Integration with SAP IBP:

Deployed via SAP Cloud Platform using Python SDK for real-time inference.

Outputs fed into IBP's Inventory Optimization module for dynamic safety stock recalculation.

The hybrid LSTM-XGBoost model combines temporal pattern recognition (via LSTM) and feature importance analysis (via XGBoost) to enhance demand sensing.

2.1.1 LSTM Layer Formulation

The LSTM network processes time-series data $(X_t = \{x_1, x_2, ..., x_T\})$ with the following gates and cell states at time step t:

(1)Forget Gate (f_t) :

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

Determines which historical information to discard (e.g., outdated supplier lead times).

(2)Input Gate (i_t) and Candidate Cell State (\widetilde{C}_t) :

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\widetilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Identifies new information to store (e.g., sudden demand spikes).

(3)Cell State Update (C_t) :

$$C_t = f_t \odot C_{t-1} + i_t \odot \widetilde{C}_t$$

Updates the cell state with filtered information.

(4)Output Gate (o_t) and Hidden State (h_t) :

$$o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$$

$$h_t = o_t \odot \tanh(C_t)$$

Generates the hidden state for demand prediction.

Parameters:

- W_f, W_i, W_c, W_o : Weight matrices.
- b_f, b_i, b_c, b_o : Bias vectors.
- σ : Sigmoid activation, tanh: Hyperbolic tangent.

2.1.2 XGBoost Layer Formulation

The XGBoost model analyzes static features $\mathbf{Z} = z_1, z_2, ..., z_m$ (e.g., supplier risk scores) to predict demand residuals^[3]. The objective function minimizes:

$$\mathcal{L}(\phi) = \sum_{i=1}^{n} l(y_i, \widehat{y}_i) + \sum_{k=1}^{K} \Omega(f_k)$$

where:

ISSN 2616-5767 Vol.8, Issue 1: 94-98, DOI: 10.25236/AJETS.2025.080113

- l: Loss function (e.g., MSE, log loss).
- $\hat{y_t} = \sum_{k=1}^{K} f_{k(z_i)}$: Ensemble prediction from *K* regression trees.
- $\Omega(f_k) = \gamma T + \frac{1}{2}\lambda |w|^2$: Regularization term penalizing tree complexity.
 - \circ *T*: Number of leaves in the tree.
 - ow: Leaf weights (prediction value).
 - ο γ , λ : Hyperparameters controlling regularization strength (default: γ =0, λ =1).

Tree Construction:

Each tree f_k splits nodes to maximize the **gain**:

$$Gain = \frac{1}{2} \left[\frac{\left(\sum_{i \in I_L} g_i\right)^2}{\sum_{i \in I_L} h_i + \lambda} + \frac{\left(\sum_{i \in I_R} g_i\right)^2}{\sum_{i \in I_R} h_i + \lambda} - \frac{\left(\sum_{i \in I} g_i\right)^2}{\sum_{i \in I} h_i + \lambda} \right] - \gamma.$$

where:

$$oldsymbol{g} = \partial_{\hat{y}_i^{(t-1)}} \ell(y_i, \hat{y}_i^{(t-1)})$$
: First-order gradient.

•
$$h_i = \partial_{\hat{y}_i^{(t-1)}}^2 \ell(y_i, \hat{y}_i^{(t-1)})$$
: Second-order gradient.

• I_L, I_R : Instance sets of left/right child nodes.

Feature Importance:

SHAP (SHapley Additive exPlanations) values quantify the contribution of each feature z_i :

$$\phi_j = \sum_{S \subseteq F \setminus \{j\}} \frac{|S|! (|F| - |S| - 1)!}{|F|!} [f(S \cup \{j\}) - f(S)]$$

Where:

- F is the set of all features.
- S is a subset of features excluding j.
- f(S) is the model prediction using features in S.

2.2 Integration with SAP IBP

The LSTM-XGBoost output $\hat{y_t}$ (predicted demand) is fed into SAP IBP's inventory optimization engine:

$$\mathsf{Safety}\,\mathsf{Stock}_t = \Phi^{-1}(1-\alpha) \cdot \sqrt{\mathsf{Lead}\,\mathsf{Time}_t \cdot \sigma_{\widehat{\mathcal{Y}}_t}^2 + \mu_{\widehat{\mathcal{Y}}_t}^2 \cdot \sigma_{\mathsf{Lead}\,\mathsf{Time}}^2}$$

- Φ^{-1} : Inverse normal distribution (service level α =98%).
- $\mu_{\widehat{y_t}}$, $\sigma_{\widehat{y_t}}$: Mean and standard deviation of demand forecasts.

3. Results

3.1 Performance Metrics

The model was tested over 6 months at a European automotive supplier:

Table 1 Performance metrics

Metric	Baseline (ARIMA)	LSTM-XGBoost	Improvement
Forecast Accuracy (MAPE)	22%	14%	36%
Stockout Frequency	15%	10.5%	30%
Safety Stock Levels	\$8.2M	\$6.1M	25% Reduction

ISSN 2616-5767 Vol.8, Issue 1: 94-98, DOI: 10.25236/AJETS.2025.080113

Statistical Validation:

- Paired t-test confirms significant difference (p < 0.01) in stockout rates.
- MAE reduced from 1,240 to 872 units/month.

3.2 Case Study: Semiconductor Shortage Mitigation

During the 2023 chip shortage, the model identified at-risk suppliers 8 weeks in advance. By rerouting orders via SAP IBP's Supply Chain Control Tower, the supplier avoided \$2.1M in lost sales (Fig. 2).

Figure 2 Stockout Trends Before and After ML Implementation

4. Discussion

4.1 Technical Challenges

- **Data Latency**: Real-time synchronization between SAP ECC and IBP required custom CDC (Change Data Capture) logic^[4].
 - Model Interpretability: SHAP analysis clarified feature impacts for stakeholders.

4.2 Practical Implications

- Cost Savings: 30% stockout reduction translates to ~\$4.5M annual savings.
- Scalability: The framework is adaptable to other industries (e.g., aerospace, consumer electronics).

5. Conclusion

This study demonstrates that integrating ML with SAP IBP significantly enhances supply chain

Academic Journal of Engineering and Technology Science

ISSN 2616-5767 Vol.8, Issue 1: 94-98, DOI: 10.25236/AJETS.2025.080113

resilience. Future work will explore reinforcement learning for multi-echelon inventory optimization.

References

- [1] SAP. (2023). SAP IBP Machine Learning Guide. [Online]. Available: https://help.sap.com/ibp
- [2] Hochreiter, S., & Schmidhuber, J. (1997). "Long Short-Term Memory." Neural Computation.
- [3] Chen, T., & Guestrin, C. (2016). "XGBoost: A Scalable Tree Boosting System." KDD.
- [4] IEEE Standards Association. (2022). Ethical Guidelines for AI in Supply Chains.