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Abstract: Quantum mechanics holds a very important position as the theoretical foundation of the micro 
world. Harmonic oscillator system is a very classical model in quantum mechanics. In this paper, the 
wave function of a three-dimensional linear harmonic oscillator is derived based on the linear harmonic 
oscillator model in quantum mechanics. According to the probabilistic interpretation of quantum 
mechanics, we obtain the probability density function of the harmonic oscillator electron cloud. In this 
paper, Monte Carlo selection method is used for sampling, and Mathematica software is used to draw 
electron cloud images with different quantum number, so that people can intuitively see the distribution 
of electron cloud in three-dimensional space. 
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1. Introduction 

In classical physics, the motion of any system near a stable equilibrium point can be approximated as 
a one-dimensional harmonic oscillator, such as the vibrations of diatomic molecules, atoms and ions in 
crystal structures, nuclear vibrations, and so on[1,2]. As one of the most important models in quantum 
mechanics, the study of harmonic oscillator is crucial to the exploration of the micro world. The study of 
harmonic oscillator motion and its related properties is of great significance in both theory and 
application. However, most textbooks on atomic and molecular physics and quantum mechanics only 
provide a rough representation of the eigenfunctions and probability density images of three-dimensional 
linear harmonic oscillators. Most of the existing in-depth studies use MATLAB software to draw two-
dimensional images, not a complete and intuitive three-dimensional visual spatial image of the electron 
cloud. This makes it impossible for beginners to specifically understand the contour and density of the 
electron cloud distribution region of a linear harmonic oscillator. This article hopes to start from the wave 
function solution of the linear harmonic oscillator Schrodinger equation, use Monte Carlo simulation 
methods, and combine Mathematica software programming to specifically draw a three-dimensional 
spatial visualization image of the electron cloud of a linear harmonic oscillator, to better interpret the 
quantum image of the existence of microscopic particles, As an important resource for quantum 
mechanics courses, 

Monte Carlo method is a computational method based on generating random numbers to simulate 
various random processes, also known as random sampling techniques or statistical testing methods. This 
method can realistically describe the characteristics of things and the process of physical experiments, 
and solve some problems that are difficult to solve by analytical methods. In this paper, the rejection 
sampling method of Monte Carlo method is used to simulate the electron cloud of a three-dimensional 
linear harmonic oscillator. Combining the powerful functions of computer graphics software, visual 
analysis of three-dimensional linear harmonic oscillator wave functions is carried out. In recent years, 
Lu Zhiheng and others have used MATLAB as a development tool and applied three-dimensional 
reconstruction technology [3] to achieve the appearance of the ground state and excited state electron 
clouds of hydrogen atoms Zhou Qunyi analyzed the distribution of electron probability density in one-
dimensional linear harmonic oscillator based on MATLAB, providing an algorithm idea for electron 
cloud image visualization [4]. 

Starting from solving the Schrodinger equation to obtain the wave function solution, this paper uses 
Monte Carlo method to generate a series of random numbers. Finally, use Mathematica software to 
program and set the quantum number of the wave function to achieve visualization of the three-
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dimensional linear harmonic oscillator electron cloud [5]. By referring to the existing images of particle 
multidimensional electron clouds that have been studied [6,7], and by changing the quantum number, the 
multidimensional electron cloud images are made more intuitive, providing help for teachers to explain 
the relevant knowledge of three-dimensional harmonic oscillators. The content discussed in this article 
is of great significance for improving the teaching of linear harmonic oscillators in the course. 

2. Principles and algorithms 

2.1 Wave function of one-dimensional linear harmonic oscillator 

In classical mechanics, the equation of motion of a linear harmonic oscillator is a simple harmonic 
equation of motion. First, we solve the problem of a three-dimensional isotropic harmonic oscillator in 
rectangular coordinates. In this case, the problem of a three-dimensional isotropic harmonic oscillator 
can be transformed into three independent one-dimensional harmonic oscillator problems. We consider 
the linear harmonic oscillator problem in quantum mechanics, which involves solving the energy levels 
and wave functions of the system The potential energy function of a one-dimensional linear harmonic 
oscillator in rectangular coordinates is U=m ω The Schrodinger equation for a 2x2/2 system can be written 
as: 

− ℏ2

2m
d2ψ
dx2

+ mω2x2

2
ψ = Eψ                             (1) 

For convenience, dimensionless variables are introduced ξ Instead of x, their relationship is: 

ξ = �mω
ℏ

x = αx,     α = �mω
ℏ

                            (2) 

And order: 

λ = 2E
ℏω

                                     (3) 

The Schrodinger equation can be rewritten as: 
d2ψ
dξ2

+ (λ − ξ2)ψ = 0                             (4) 

This is a second order ordinary differential equation with variable coefficients We put Ψ Write it in 
the following form to find the solution of equation (4): 

ψ(ξ) = e−
ξ2
2 H(ξ)                               (5) 

The function H to be solved in the formula(ξ) stay ξ Should be limited when limited, H(ξ) And when 
ξ Progressive behavior at →∞ must also ensure that Ψ (ξ) "Is finite, and only in this way can the standard 
conditions of the wave function be satisfied." 

Substitute Equation (5) into Equation (1), and first find the pair of Equation (5) ξ 's secondary WeChat 
business: 

dψ
dξ

= �−ξH + dH
 dξ
� e−

ξ2
2 ,                            (6) 

d2ψ
dξ2

= �−H − 2ξ dH
 dξ

+ ξ2H + d2H
 dξ2

� e−
ξ2
2 .                      (7) 

Substitute to obtain the equation satisfied: 
d2H
 dξ2

− 2ξ dH
 dξ

+ (λ − 1)H = 0                          (8) 

Using a series solution, expand H into ξ To find the solution of this equation. This series must contain 
only limited terms, ξ When → ∞ Ψ ( ξ) Is limited; The condition for a series to contain only limited terms 
is λ Odd: 

λ = 2n + 1,  n = 0,1,2,⋯                            (9) 

By substituting Equation (3), the energy level of the linear harmonic oscillator can be obtained as 
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En = ℏω�n + 1
2
� ,  n = 0,1,2,⋯                         (10) 

Therefore, the energy of a linear harmonic oscillator can only take discrete values the interval between 
two adjacent energy levels is ℏ ω: 

En+1 − En = ℏω                                (11) 

Different n or different λ, Equation (6) has different solutions Hn( ξ), Hn( ξ) Known as Hermitian 
polynomials, it can be represented by the following formula: 

Hn(ξ) = (−1)neξ2 dn

 dξn
e−ξ2                           (12) 

Hn( ξ) The highest power of is n, and its coefficient is 2n. From Equation (10), Hn can be obtained( ξ) 
The following recursive relationship is satisfied: 

dHn
 dξ

= 2nHn−1(ξ)                               (13) 

Hn+1(ξ) − 2ξHn(ξ) + 2nHn−1(ξ) = 0                        (14) 

The wave function for energy E (n) is: 

ψn(x) = Nne−
α2
2 x

2
Hn(αx)                             (15) 

It consists of orthogonal normalization conditions: 

∫  ∞
−∞ ψn

∗ (x)ψn′(x)dx = δn,n′                           (16) 

The normalization factor Nn is determined as: 

Nn = � α

π
1
22nn!

�

1
2
                                (17) 

Of which Ψ N (x) is the wave function of a linear harmonic oscillator along the x-axis with a quantum 
number of n. The same is true for the y-axis and z-axis. 

Due to the independence of directions, the corresponding wave function is the product of the wave 
functions in three directions: 

ψn(x, y, z)=ψnx(x)ψny(y)ψnz(z)                         (18) 

From the above discussion, we can obtain that the probability density function for energy E (n) is 

Wθ(δ) = ψn(δ)2                                 (19) 

2.2 Sampling random numbers using the first type of rounding method 

The electrons of a three-dimensional linear harmonic oscillator are distributed around the atomic 
nucleus with a certain probability and have a certain probability density distribution function [8]. In order 
to simulate the distribution of electrons in a linear harmonic oscillator in three-dimensional space, the 
first type of rejection method in Monte Carlo method is selected for sampling. Since the rectangular 
coordinates of the three-dimensional linear harmonic oscillator wave function are x, y, and z, we sample 
the corresponding functions to obtain the random positions of electrons. 

We can only use the first type of rounding method to select random numbers within a finite interval, 
but the sampling interval of the linear harmonic oscillator wave function tends to infinity, in order to 
meet the rounding range of the first type of rounding method. For coordinates in the x direction, we need 
to truncate the value range of x. By adjusting different value ranges, we ultimately retain 80% of the 
electrons in the x direction to be taken to the corresponding range, and determine the value range of x to 
be x ∈ [- xm, xm]. Truncating the range here ensures that the electron cloud image is relatively complete. 

First, we will perform the following steps to select x: 

1) Write the probability density function expression WR (x) of the electron, and calculate its maximum 
value M in the value range [- xm, xm] 

2) Select a uniform random number x1 in the [0,1] interval to construct a random number uniformly 
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distributed in [- xm, xm] δ= xm * x1 

3) Then select a uniform random number x2 in the [0,1] interval, and judge whether x2 ≤ WR(δ)/M is 
satisfied. If the above inequality is satisfied, proceed to the next step; If not, return to the previous step. 

4) Select x3= δ As a sampling value 

Using the same method, we sample y, z. 

By using the rounding method, we can obtain three independent arrays {Xi},{Yi},{Zi}, and construct 
the three sets of sampled values into the rectangular coordinates (xi, yi, zi) of the electron. 

3. Result 

3.1 Visualization of the three-dimensional linear harmonic oscillator electron cloud 

According to Equations (15) to (19), we used Mathematica software to draw three-dimensional linear 
harmonic wave function simulation diagrams under different particle numbers in rectangular coordinates, 
and obtained probability density histograms under the following three rectangular coordinates. See 
Figure 3 and Figure 4. The three-dimensional electron cloud visualization image is obtained as shown in 
Figure 4. The electron cloud image output by Mathematica software is not limited by the size of quantum 
numbers, but can be inputted with a set of quantum numbers of arbitrary size that meet the value range. 

In the image of the electron cloud, each marker point represents the possible spatial location of the 
electron. Studying the distribution of electron clouds can roughly observe the density of points within a 
certain region. The denser the points in the selected region, the greater the probability of electrons 
appearing in this region. However, we must use the histogram of probability density distribution to 
analyze and explain the laws by comparing electron cloud images under different quantum number values. 

3.2 Analysis 

From the previous analysis, we can know that when n is determined. The value is constant 1, so that 
the corresponding wave function and probability density can be calculated. 

Figure 1, Figure 2, and Figure 3 show the probability density image of a one-dimensional linear 
harmonic oscillator with quantum number n=0,1,2. 

 
Figure 1: Histogram of probability distribution of one-dimensional linear harmonic oscillator with 

n=0 

 
Figure 2: Histogram of probability distribution of n=1 one-dimensional linear harmonic oscillator 
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Figure 3: Histogram of probability distribution of one-dimensional linear harmonic oscillator with 

n=2 

Combining the theoretical derivation of three-dimensional harmonic oscillators, using Mathematica 
software to draw the wave function probability density of linear harmonic oscillators under different 
quantum numbers, the electron cloud visualization images of three-dimensional linear harmonic 
oscillators under 10 conditions are obtained. 

 
a.nx=0; ny=0; nz=0      b.nx=0; ny=1; nz=0      c.nx=0; ny=2; nz=0 

 
d.x=0; ny=1; nz=1      e.nx=0; ny=1; nz=2      f.nx=0; ny=2; nz=2 

 
g.nx=1; ny=1; nz=1      h.nx=1; ny=1; nz=2      i.nx=1; ny=2; nz=2 

 
j.nx=2; ny=2; nz=2 

Figure 4: Image of electron cloud of three-dimensional spatial linear harmonic oscillator 

Using mathematical programming, we simulated linear harmonic oscillator electron clouds with 
different quantum numbers in three-dimensional coordinates. 

As shown in Fig 4 (a), when n is 0, the electron cloud image is a uniform sphere. And we can also 
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draw the above conclusions theoretically by observing the geometric symmetry of the electron cloud 
image in Fig4(g), Fig4(j), and three-dimensional space n when they are 1 and 2. 

The images of different quantum numbers in the remaining three-dimensional space, such as Fig4(b), 
Fig4(c), Fig4(d), Fig4(e), Fig4(f), Fig4(h), and Fig4(i), intuitively display the electron cloud distribution 
characteristics of three-dimensional linear harmonic oscillator, providing a good display for people to 
understand the electron cloud distribution of three-dimensional linear harmonic oscillator  

4. Summary 

In this paper, the wave function solution of a one-dimensional linear harmonic oscillator is obtained. 
Using the first type of rejection method, three-dimensional spatial visualization images of electron clouds 
with different quantum numbers of a three-dimensional linear harmonic oscillator are plotted using 
Mathematica software. In most textbooks, students cannot directly observe the distribution of atomic 
electron clouds, but using programs to visually simulate electron clouds can intuitively experience the 
morphology of microscopic particles. This article provides a feasible research idea for solving the 
probability distribution of microscopic particles by simulating the visualized electron clouds of linear 
harmonic oscillators with different quantum numbers in three-dimensional space, thereby further helping 
us understand the quantum mechanical model [9,10]. The study of three-dimensional linear harmonic 
oscillators in this paper is more helpful for people to understand and master abstract concepts. 
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