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Abstract: In order to achieve dynamical pattern recognition of univariate time series from the 
perspective of structural stability, this paper proposes a method based on Extended State Observer (ESO) 
and deterministic learning for addressing the issue of recognizing the structural stability of the 
topological structure of dynamical patterns in univariate time series. The ESO is capable of 
reconstructing the system states and their unknown dynamics during the observation phase, while the 
deterministic learning effectively resolves the challenges associated with obtaining and modeling the 
derivative information of the dynamics. During the learning phase, the ESO is employed to recover state 
trajectories from sampled output signals. These trajectories utilize the regressed trajectories as inputs, 
satisfying the partially persistent excitation (PE) condition, thereby accurately approximating the 
unknown dynamics through the estimated regressed trajectories. Subsequently, we establish a novel 
recognition error system that approximates the first-order derivatives of the system dynamics using a 
finite difference method, thus avoiding the need for re-modeling the test patterns and enabling the 
identification of dynamic behaviors from the topological structural perspective. Finally, we theoretically 
demonstrate that the residuals of the recognition error system reflect the structural stability differences 
in system dynamics between the training and test patterns, and simulation further substantiate the 
effectiveness and accuracy of the proposed method. 

Keywords: Extended State Observer; Structural Stability; Univariate Time Series; Dynamical Pattern 
Recognition; Deterministic Learning 

1. Introduction 

Dynamical pattern recognition, as a complex and challenging field, has garnered widespread attention 
in the fields of biomedicine, control, and human activity recognition[1]. Compared with static patterns 
represented by vectors, dynamical patterns contain a large amount of information distributed over time 
and can usually be represented as time series. Due to various limitations in practical applications, 
dynamical patterns are often obtained only for univariate time series[2]. Therefore, it is necessary to carry 
out dynamical pattern recognition tasks from the perspective of univariate time series 
classification/recognition. Recently, for the learning problem of dynamical systems, a deterministic 
learning theory was proposed to ensure partially PE conditions during the recognition process and to 
enable locally accurate RBFN modeling of nonlinear dynamics[3]. The theory is further applied to 
dynamical pattern recognition by proposing a unified recognition framework based on dynamic 
differences.  

The contributions of this paper are: 1) The problem of observing unknown dynamical patterns is 
solved by estimating the system state and unknown dynamics using ESO and storing the training patterns 
as time-invariant information using deterministic learning, which clearly demonstrates a locally accurate 
NN approximation along the periodic pattern trajectory. 2) A recognition error system based on structural 
stability is constructed, where the dynamics partial derivatives are approximated using first-order 
differences during the recognition phase, avoiding the need for learning modeling of the test patterns. 3) 
It is shown that these estimator state errors can be used to describe the structural stability differences 
between dynamical systems related to the test and training time series, allowing for rapid generation of 
recognition results based on the average 𝐿𝐿1 norm of the output errors. 
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2. Preliminary knowledge and problem formulation 

2.1 Preliminary knowledge 

An RBFN with an optimal weight vector 𝑊𝑊⋆ ∈ 𝑅𝑅𝑁𝑁 and a sufficiently large number of neural nodes 
can be used to approximate an arbitrary continuous function 𝑓𝑓(𝑥𝑥):𝑅𝑅𝑛𝑛 → 𝑅𝑅 within any accuracy range 
𝜀𝜀⋆ > 0. That is, 𝑓𝑓(𝑥𝑥) = 𝑊𝑊∗𝑇𝑇𝑆𝑆(𝑥𝑥) + 𝜀𝜀(𝑥𝑥),∀𝑥𝑥 ∈ Ω𝑥𝑥. |𝜀𝜀(𝑥𝑥)| < 𝜀𝜀⋆ denotes the ideal approximation error 
and 𝑆𝑆(𝑥𝑥) = [𝑠𝑠1(𝑥𝑥), … , 𝑠𝑠𝑁𝑁(𝑥𝑥)]𝑇𝑇 , where 𝑠𝑠𝑖𝑖(𝑥𝑥):𝑅𝑅𝑛𝑛 → 𝑅𝑅, 𝑖𝑖 = 1, … ,𝑁𝑁  is the radial basis function. The 
common basis function can be chosen as the Gaussian function 𝑠𝑠𝑖𝑖(𝑥𝑥) = exp [−((𝑥𝑥 − 𝜉𝜉𝑖𝑖)𝑇𝑇(𝑥𝑥 − 𝜉𝜉𝑖𝑖))/𝜂𝜂2], 
where 𝜉𝜉𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛 and 𝜂𝜂 are the center and the width of the receptive field, respectively. Inspired by the 
localization property of the RBFN, 𝑓𝑓(𝑥𝑥) can be modeled by a local RBFN that consists of a finite 
number of neural nodes placed in a local region along an arbitrary trajectory  𝑥𝑥(𝑡𝑡) , i.e., 𝑓𝑓(𝑥𝑥) =
𝑊𝑊𝜁𝜁

∗𝑇𝑇𝑆𝑆𝜁𝜁(𝑥𝑥) + 𝜀𝜀𝜁𝜁(𝑥𝑥)∀𝑥𝑥 ∈ Ω𝑥𝑥, where 𝜀𝜀𝜁𝜁 = 𝑂𝑂(𝜀𝜀) = 𝑂𝑂(𝜀𝜀⋆). 

Lemma 1[4]. For almost any recurrent trajectory 𝑥𝑥(𝑘𝑘) that stays in Ω𝑥𝑥, and a local RBFN (whose 
nodes are regularly placed to cover Ω𝑥𝑥),  𝑆𝑆𝜁𝜁(𝑥𝑥) satisfies the partial PE condition, i.e., for 𝑐𝑐1 > 0, 
𝑐𝑐2 > 0, and 𝛿𝛿𝑘𝑘, 

𝑐𝑐1𝐼𝐼 ≤ �  
𝑘𝑘+𝛿𝛿𝑘𝑘−1

𝜏𝜏=𝑘𝑘

𝑆𝑆𝜁𝜁�𝑋𝑋(𝜏𝜏)�𝑆𝑆𝜁𝜁𝑇𝑇�𝑋𝑋(𝜏𝜏)� ≤ 𝑐𝑐2𝐼𝐼,∀𝑘𝑘 ≥ 0 (1) 

Where 𝐼𝐼 ∈ 𝑅𝑅𝑁𝑁𝜁𝜁×𝑁𝑁𝜁𝜁 Is the unit matrix. 

Lemma 2 Consider the nonlinear dynamical systems 𝑓𝑓 and 𝑓𝑓′, if the state trajectory of any one 
system can be obtained through continuous transformation or homeomorphism mapping of the trajectory 
of the other system, then the two systems are topologically equivalent. 

Lemma 3 Andronov’s structural stability[5]: A system defined in a region Ω ⊂ 𝑅𝑅𝑛𝑛  Is said to be 
structurally stable in a region Ω0 ⊂ Ω if for any sufficiently 𝐶𝐶1-close in Ω of another system there 
exists a region 𝑈𝑈,𝑉𝑉 ⊂ Ω,Ω0 ⊂ 𝑈𝑈, such that the system is topologically equivalent in 𝑈𝑈 to the other 
system in 𝑉𝑉,  

∥ 𝑓𝑓 − 𝑓𝑓′ ∥𝐶𝐶1= 𝑠𝑠𝑠𝑠𝑠𝑠
𝑥𝑥∈𝛺𝛺

 �∥ 𝑓𝑓 − 𝑓𝑓′ ∥𝐶𝐶0 +∥
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝑓𝑓′

𝜕𝜕𝜕𝜕
∥𝐶𝐶0� , (2) 

Where ∥⋅∥𝐶𝐶0 denotes a vector norm in 𝑅𝑅𝑛𝑛. 

2.2 Problem formulation 

For an 𝑛𝑛th order nonlinear system with uncertain disturbances, it can be expressed in the following 
form: 

𝑦𝑦(𝑛𝑛) = 𝑓𝑓�𝑦𝑦,𝑦𝑦(1), … ,𝑦𝑦(𝑛𝑛−1),𝑤𝑤,𝑑𝑑� + 𝑏𝑏𝑏𝑏 (3) 

Where  𝑤𝑤 is the unmodeled dynamics, 𝑑𝑑 is an external perturbation, and 𝑢𝑢  is a known input. The 
nonlinear function 𝑓𝑓(⋅)  is bounded but not measurable and represents uncertainty, i.e., the “total 
perturbation”. 

Let 𝑦𝑦 = 𝑥𝑥1, … ,𝑦𝑦(𝑛𝑛−1) = 𝑥𝑥𝑛𝑛, 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑛𝑛+1,𝑓̇𝑓(𝑥𝑥) = ℎ. The expanded nonlinear system is written in the 
form of an equation of state: 

�𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐸𝐸ℎ
𝑦𝑦 = 𝐶𝐶𝐶𝐶 (4) 

Where 𝑥𝑥 = [𝑥𝑥1, … , 𝑥𝑥𝑛𝑛+1]  ∈ 𝑅𝑅𝑛𝑛+1  And 𝑦𝑦 ∈ 𝑅𝑅  denote the state inputs and measurable outputs, 
respectively. 𝐴𝐴 = [0 𝐼𝐼𝑛𝑛×𝑛𝑛

0 0 ] ∈ 𝑅𝑅(𝑛𝑛+1)×(𝑛𝑛+1),𝐵𝐵 = [0, … , 𝑏𝑏, 0]𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛+1,𝐶𝐶 = [1,0, … ,0] ∈ R𝑛𝑛+1,𝐸𝐸 =
[1,0, … ,0]𝑇𝑇 ∈ R𝑛𝑛+1  is the unit matrix. The nonlinear function 𝑓𝑓(⋅):𝑅𝑅𝑛𝑛 → 𝑅𝑅  is the dynamics in the 
dynamical pattern 𝜑𝜑 , which is usually assumed to be bounded but not measurable. The mode 𝜑𝜑 
represents the state trajectory from 𝑥𝑥0.  

Realistically accurate system matrices 𝐴𝐴,𝐵𝐵 and 𝐶𝐶 are often difficult to obtain, and the ESO requires 
minimal known information about the system, allowing it to be regarded as a model-free method. The 
observer has great dilated state tracking performance for a range of uncertain systems and is generalized 
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over a range[6]. Take a second-order system as an example. After adding disturbance observation states, 
it is expanded into a third-order system. Construct a Luenberger observer for such a system after 
coordinate transformation, have 

�𝑥𝑥�̇ = 𝐴𝐴𝑥𝑥� + 𝐵𝐵𝐵𝐵 + 𝐿𝐿(𝑦𝑦 − 𝑦𝑦�)
𝑦𝑦 = 𝐶𝐶𝑥𝑥�

(5) 

Where 𝑥𝑥� represents the state estimate, 𝑦𝑦 is the output, 𝑦𝑦� is the estimated output, and 𝐿𝐿(𝑦𝑦 − 𝑦𝑦�) is the 
feedback term used to adjust the state estimate. The term 𝑦𝑦 − 𝑦𝑦� represents the observation error. Write it 
in component form, 

⎩
⎪
⎨

⎪
⎧𝑥𝑥�̇1 = 𝑥𝑥�2 + 𝛽𝛽1(𝑦𝑦 − 𝑦𝑦�)
𝑥𝑥�̇2 = 𝑥𝑥�3 + 𝑏𝑏𝑏𝑏 + 𝛽𝛽2(𝑦𝑦 − 𝑦𝑦�)
𝑥𝑥�3 = 𝛽𝛽3(𝑦𝑦 − 𝑦𝑦�)
𝑦𝑦� = 𝐶𝐶𝑥𝑥� = 𝑥𝑥1        

(6) 

Where 𝛽𝛽 denotes the observer parameters. Let 𝑒𝑒 = 𝑥𝑥 − 𝑥𝑥�. By subtracting the observer (5) from the 
original system (4), we have 

𝑒̇𝑒 = 𝐴𝐴𝑒𝑒𝑒𝑒 + 𝐸𝐸ℎ (7) 

𝐴𝐴𝑒𝑒 = 𝐴𝐴 − 𝐿𝐿𝐿𝐿 = �
−𝛽𝛽1 1 0
−𝛽𝛽2 0 1
−𝛽𝛽3 0 0

� (8) 

Where the characteristic polynomial of the matrix 𝐴𝐴𝑒𝑒 is 𝑓𝑓(𝜆𝜆) = 𝜆𝜆3 + 𝛽𝛽1𝜆𝜆2 + 𝛽𝛽2𝜆𝜆 + 𝛽𝛽3.  

If we want to ensure that the observer error converges, all the eigenvalues should be located in the 
left half-plane. Assume the ideal characteristic polynomial is 𝑓𝑓∗(𝜆𝜆) = (𝜆𝜆 + 𝑤𝑤𝑜𝑜)3 , this satisfies the 
requirement for all eigenvalues to be negative, and there is only one adjustable parameter. The 𝑤𝑤𝑜𝑜 here 
can be related to the physical concept of bandwidth, drawing on the idea from Loop Shaping of balancing 
performance and noise. When disturbances are small, 𝑤𝑤𝑜𝑜 can be taken larger. By expanding the cubic 
polynomial, we can obtain the relationship between 𝛽𝛽 and bandwidth 𝑤𝑤𝑜𝑜: 𝛽𝛽1 = 3𝑤𝑤𝑜𝑜,𝛽𝛽2 = 3𝑤𝑤𝑜𝑜2,𝛽𝛽3 = 𝑤𝑤𝑜𝑜3. 

In this paper, we assume that the output sampling data is available. The univariate time series data 
𝑦𝑦𝑚𝑚(𝑘𝑘) (i.e., 𝑦𝑦𝑚𝑚(𝑘𝑘𝑘𝑘)) sampled from 𝑦𝑦𝑚𝑚(𝑡𝑡) can be characterized using Eulerian system if we specify 
the sampling period 𝑇𝑇 > 0, 𝑚𝑚 ∈ {1, … ,𝑀𝑀} and 𝑀𝑀 ∈ 𝑁𝑁+ to denote the different dynamical patterns: 

�𝑥𝑥
𝑚𝑚(𝑘𝑘 + 1) = 𝑥𝑥𝑚𝑚(𝑘𝑘) + 𝑇𝑇𝑇𝑇𝑥𝑥𝑚𝑚(𝑘𝑘) + 𝑇𝑇𝑇𝑇𝑢𝑢𝑚𝑚 + 𝑇𝑇𝑇𝑇ℎ𝑚𝑚
𝑦𝑦𝑚𝑚(𝑘𝑘) = 𝐶𝐶𝑥𝑥𝑚𝑚(𝑘𝑘) (9) 

Where 𝑥𝑥𝑚𝑚(𝑘𝑘0) ∈ ω𝑋𝑋 and ω𝑋𝑋 is a tight set. The training set φ = {𝑦𝑦𝑚𝑚 ∣ 𝑚𝑚 = 1, … ,𝑀𝑀} contains 𝑀𝑀 
univariate time series with different dynamical patterns 𝜑𝜑𝑚𝑚 , which are generated by the dynamical 
system (9) with corresponding dynamics 𝑓𝑓𝑚𝑚 . Similarly, the test univariate time series 𝑓𝑓𝑟𝑟  can be 
described by the following dynamical system: 

�𝑥𝑥
𝑟𝑟(𝑘𝑘 + 1) = 𝑥𝑥𝑟𝑟(𝑘𝑘) + 𝑇𝑇𝑇𝑇𝑥𝑥𝑟𝑟(𝑘𝑘) + 𝑇𝑇𝑇𝑇𝑢𝑢𝑟𝑟 + 𝑇𝑇𝑇𝑇ℎ𝑟𝑟
𝑦𝑦𝑟𝑟(𝑘𝑘) = 𝐶𝐶𝑥𝑥𝑟𝑟(𝑘𝑘) (10) 

Assumption 1: the system state 𝑥𝑥𝑚𝑚  is assumed to be uniformly bounded, i.e., 𝑥𝑥𝑚𝑚 (𝑘𝑘) ∈ 𝛺𝛺𝑋𝑋 ⊂
𝑅𝑅𝑛𝑛,∀𝑘𝑘 ≥ 𝑘𝑘0. Furthermore, the system trajectory starting from 𝑥𝑥𝑚𝑚(0) is a cyclic motion, or a cyclic 
system trajectory. 

For this expanded system (9), the following state observer can be built: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑒𝑒1 = 𝑥𝑥�1𝑚𝑚 − 𝑦𝑦𝑚𝑚

𝑥𝑥�̇1𝑚𝑚 = 𝑥𝑥�2𝑚𝑚 − 𝛽𝛽1𝑥𝑥�1
𝑥𝑥�̇2𝑚𝑚 = 𝑥𝑥�3𝑚𝑚 − 𝛽𝛽2|𝑒𝑒1|

1
2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑒𝑒1)

⋮

𝑥𝑥�̇𝑛𝑛𝑚𝑚 = 𝑥𝑥�𝑛𝑛+1𝑚𝑚 − 𝛽𝛽𝑛𝑛|𝑒𝑒1|
1

2𝑛𝑛−1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑒𝑒1) + 𝑢𝑢𝑚𝑚

𝑥𝑥�̇𝑛𝑛+1𝑚𝑚 = −𝛽𝛽𝑛𝑛+1|𝑒𝑒1|
1
2𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑒𝑒1)

(11) 

Written in Euler discretization form as, 
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⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑒𝑒1(𝑘𝑘) = 𝑥𝑥�1𝑚𝑚(𝑘𝑘) − 𝑦𝑦𝑚𝑚(𝑘𝑘)
𝑥𝑥�1𝑚𝑚(𝑘𝑘 + 1) = 𝑥𝑥�1𝑚𝑚(𝑘𝑘) + 𝑇𝑇(𝑥𝑥�2𝑚𝑚(𝑘𝑘) − 𝛽𝛽1𝑥𝑥�1(𝑘𝑘))

𝑥𝑥�2𝑚𝑚(𝑘𝑘 + 1) = 𝑥𝑥�2𝑚𝑚(𝑘𝑘) + 𝑇𝑇(𝑥𝑥�3𝑚𝑚(𝑘𝑘) − 𝛽𝛽2|𝑒𝑒1|
1
2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑒𝑒1(𝑘𝑘)))

⋮

𝑥𝑥�𝑛𝑛𝑚𝑚(𝑘𝑘 + 1) = 𝑥𝑥�𝑛𝑛𝑚𝑚(𝑘𝑘) + 𝑇𝑇(𝑥𝑥�𝑛𝑛+1𝑚𝑚 − 𝛽𝛽𝑛𝑛|𝑒𝑒1|
1

2𝑛𝑛−1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑒𝑒1(𝑘𝑘)))

𝑥𝑥�𝑛𝑛+1𝑚𝑚 (𝑘𝑘 + 1) = 𝑥𝑥�𝑛𝑛+1𝑚𝑚 (𝑘𝑘) − 𝑇𝑇𝛽𝛽𝑛𝑛+1|𝑒𝑒1|
1
2𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑒𝑒1(𝑘𝑘))

(12) 

Where 𝑇𝑇 represents the sampling period, and 𝛽𝛽 = [𝛽𝛽1, … ,𝛽𝛽𝑛𝑛+1] denotes the observer parameters. 
The term 𝑒𝑒1(𝑘𝑘) indicates the tracking error. The function sign(𝑥𝑥) is a sign function that determines the 
sign of the input value based on the tracking error 𝑒𝑒1(𝑘𝑘). The test pattern employs the same observer. 
With a proper choice of the parameter 𝛽𝛽, this system is able to estimate well the state variable 𝑥𝑥𝑚𝑚(𝑘𝑘) of 
the system under test and the real−time action of the dilated state 𝑥𝑥𝑛𝑛+1𝑚𝑚 (𝑘𝑘) = 𝑓𝑓𝑚𝑚(𝑥𝑥𝑚𝑚(𝑘𝑘)) . 
𝑥𝑥𝑖𝑖𝑚𝑚(𝑘𝑘)→𝑥𝑥�𝑖𝑖𝑚𝑚(𝑘𝑘), 𝑓𝑓𝑚𝑚(𝑥𝑥𝑚𝑚(𝑘𝑘))→𝑥𝑥�𝑛𝑛+1𝑚𝑚 (𝑘𝑘).  

3. Dynamic Modeling and Similarity Measurement 

3.1 Dynamical pattern recognition from state observation 

Consider the dynamic model 𝜑𝜑𝑚𝑚(𝑚𝑚 =  1, . . . ,𝑀𝑀) of a univariate time series. Currently, observer-
based deterministic learning methods can only observe the state trajectories 𝑥𝑥𝑚𝑚(𝑘𝑘) and 𝑥𝑥𝑟𝑟(𝑘𝑘) of the 
system. The representation of the unknown nonlinear dynamics 𝑓𝑓𝑚𝑚(𝑥𝑥𝑚𝑚(𝑘𝑘)) and 𝑓𝑓𝑟𝑟(𝑥𝑥𝑟𝑟(𝑘𝑘)) becomes 
inevitable if we want to realize the identification of dynamic systems from the perspective of structural 
stability. Existing deterministic learning methods based on structural stability, where the test pattern 
𝑓𝑓𝑟𝑟(𝑥𝑥𝑟𝑟(𝑘𝑘))  and the training pattern 𝑓𝑓𝑚𝑚(𝑥𝑥𝑚𝑚(𝑘𝑘))  take the same representation of 𝑓𝑓𝑟𝑟(𝑥𝑥𝑟𝑟(𝑘𝑘))  by 
𝑊𝑊� 𝑟𝑟𝑇𝑇𝑆𝑆(⋅), require the learning of the test pattern, which increases the complexity of the algorithm. The 
deterministic learning method based on ESO and structural stability proposed in this paper can be realized 
in three stages for the recognition task of dynamical systems, as shown in Fig. 1. First, the observation 
phase realizes the observation of the state trajectories 𝑥𝑥𝑚𝑚(𝑘𝑘) and 𝑥𝑥𝑟𝑟(𝑘𝑘) with the unknown nonlinear 
dynamics 𝑓𝑓𝑚𝑚(𝑥𝑥𝑚𝑚(𝑘𝑘))  and 𝑓𝑓𝑟𝑟(𝑥𝑥𝑟𝑟(𝑘𝑘))  by ESO. Second, the learning phase inputs the observed 
trajectories 𝑥𝑥𝑚𝑚(𝑘𝑘) into the RBFN recognizer, which is trained to obtain the time-invariant weight vector 
𝑊𝑊�𝑚𝑚 to construct the dynamical system library. Finally, the identification stage constructs the structural 
stability identification error system to obtain the residuals based on the state trajectories 𝑥𝑥𝑟𝑟(𝑘𝑘) of the 
test pattern, the unknown nonlinear dynamics 𝑓𝑓𝑟𝑟(𝑥𝑥𝑟𝑟(𝑘𝑘)), and the weight vector 𝑊𝑊�𝑚𝑚. The algorithm 
flowchart is depicted in Fig. 1. 

 
Figure 1 Algorithm flowchart 

First, we reconstruct the underlying dynamics 𝑓𝑓𝑚𝑚(𝑥𝑥𝑚𝑚(𝑘𝑘)) of the univariate time series using the 
dilated state observer. Second, the following dynamical identifiers are constructed through deterministic 
learning: 

𝜒̂𝜒𝑚𝑚(𝑘𝑘 + 1) = 𝑥𝑥�𝑛𝑛𝑚𝑚(𝑘𝑘) − 𝑇𝑇𝑇𝑇�𝜒̂𝜒𝑚𝑚(𝑘𝑘) − 𝑥𝑥�𝑛𝑛𝑚𝑚(𝑘𝑘)� + 𝑇𝑇𝑊𝑊� 𝑚𝑚𝑇𝑇(𝑘𝑘)𝑆𝑆�𝑥𝑥�𝑚𝑚(𝑘𝑘)� (13) 

Where 𝜒̂𝜒𝑚𝑚 is the state of the dynamical rbf network. 𝑥𝑥�𝑚𝑚 = [𝑥𝑥�1𝑚𝑚, … , 𝑥𝑥�𝑛𝑛𝑚𝑚] is the state estimate of the 
system (12) for (9). The gain 𝛼𝛼 > 0 is a design constant. 

The adaptive learning law satisfies the following form: 
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𝑊𝑊�𝑚𝑚(𝑘𝑘 + 1) = 𝑊𝑊�𝑚𝑚(𝑘𝑘) − 𝑇𝑇𝑇𝑇𝑇𝑇�𝑥𝑥�𝑚𝑚(𝑘𝑘)��𝜒̂𝜒𝑚𝑚(𝑘𝑘 + 1) − 𝑥𝑥�𝑛𝑛𝑚𝑚(𝑘𝑘 + 1)� (14) 

Where γ = γt > 0. 

Consider the univariate time series 𝑓𝑓𝑚𝑚(𝑥𝑥𝑚𝑚(𝑘𝑘)) in 𝑦𝑦𝑚𝑚, the dilated state observer (12), the rbfn-based 
identifier (13), and the learning law (14), where 𝑊𝑊� 𝑚𝑚 (0) = 0. under assumption 1, the locally accurate 
nn approximation of the unknown dynamics 𝑓𝑓𝑚𝑚(⋅) of the time series 𝑦𝑦𝑚𝑚 as 𝑥𝑥𝑛𝑛𝑚𝑚(𝑘𝑘)→𝑥𝑥�𝑛𝑛𝑚𝑚(𝑘𝑘) can be 
achieved by the constant rbfn 𝑊𝑊�𝑛𝑛𝑚𝑚

𝑇𝑇𝑆𝑆𝑛𝑛(⋅) to realize the 

𝑓𝑓𝑚𝑚(⋅) = 𝑊𝑊�𝑚𝑚𝑇𝑇𝑆𝑆(⋅) + 𝜀𝜀1 (15) 

Where 𝑊𝑊�𝑚𝑚 = 1
𝑘𝑘𝑏𝑏−𝑘𝑘𝑎𝑎+1

� 𝑊𝑊� 𝑚𝑚(𝑘𝑘)𝑘𝑘𝑏𝑏
𝑘𝑘=𝑘𝑘𝑎𝑎

, [𝑘𝑘𝑎𝑎, 𝑘𝑘𝑏𝑏]  denotes the time period following the transient 
process, and 𝜀𝜀1 = 0(𝜀𝜀⋆)  ( 𝜀𝜀⋆  is a small constant) is the approximation error along the estimated 
trajectory 𝜑𝜑�𝑚𝑚. 

3.2 Definition of similarity measure 

Similarity measure is a key issue in pattern recognition. For dynamical patterns expressed by the 
trajectories of dynamical systems, existing methods measure the similarity between two dynamical 
patterns based on their dynamical differences, and we define the similarity between patterns from the 
perspective of structural stability. The local region  Ω𝜑𝜑𝜁𝜁𝑚𝑚  (or called the approximation region) can be 
expressed as follows: 

𝛺𝛺𝜑𝜑𝜁𝜁𝑚𝑚 ≔ �𝑋𝑋 ∣∣ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑋𝑋,𝜑𝜑𝜁𝜁𝑚𝑚� < 𝑑𝑑𝑚𝑚 ⇒∣∣ 𝑊𝑊� 𝑚𝑚𝑇𝑇𝑆𝑆(𝑋𝑋) − 𝑓𝑓𝑚𝑚(𝑋𝑋) ∣∣< 𝜀𝜀2 � (16) 

Where dist�𝑋𝑋,𝜑𝜑𝜁𝜁𝑚𝑚� denotes the minimum euclidean distance, 𝑑𝑑𝑚𝑚 > 0 is a constant denoting the 
size of the local region, and 𝜀𝜀2 = 𝑂𝑂(𝜀𝜀1) is the approximation error. 

Considering structural stability, if the dynamical pattern 𝜑𝜑𝑟𝑟 is in a neighborhood of the dynamical 
pattern 𝜑𝜑𝑚𝑚, the partial derivatives of the dynamics of the 𝜑𝜑𝑟𝑟 mode along the trajectories of the 𝜑𝜑𝑚𝑚 
mode can be efficiently represented based on the results of the sampling-deterministic learning modeling: 
for all 𝑋𝑋(𝑘𝑘) ∈ 𝜑𝜑𝑟𝑟, there are  

𝜕𝜕𝜕𝜕�𝑋𝑋(𝑘𝑘)�
𝜕𝜕𝜕𝜕�𝑋𝑋(𝑘𝑘)�

=
𝜕𝜕𝜕𝜕�𝑋𝑋(𝑘𝑘)�

𝜕𝜕𝑥𝑥𝑗𝑗
𝐶𝐶𝐶𝐶𝐶𝐶�𝑙𝑙�𝑋𝑋(𝑘𝑘)�, 𝑥𝑥𝑗𝑗�

= 𝑊𝑊� 𝑇𝑇 𝜕𝜕𝜕𝜕�𝑋𝑋(𝑘𝑘)�
𝜕𝜕𝑥𝑥𝑗𝑗

𝐶𝐶𝐶𝐶𝐶𝐶�𝑙𝑙�𝑋𝑋(𝑘𝑘)�, 𝑥𝑥𝑗𝑗� + 𝜀𝜀2′
(17) 

Where 𝜀𝜀2′  denotes the approximation error of the kinetic bias. Based on the assumption of a 
sufficiently small sampling time, the direction of the bias at each moment is estimated by differencing 
the previous moment 𝑙𝑙(𝑋𝑋[𝑘𝑘]) = 𝑋𝑋[𝑘𝑘]−𝑋𝑋[𝑘𝑘−1]

∥𝑋𝑋[𝑘𝑘]−𝑋𝑋[𝑘𝑘−1]∥
. Based on the regression vector property of gaussian rbfn, 

the bias derivative of its regression vector is can be calculated based on the rbf neuron input and neuron 
center: 

𝜕𝜕𝜕𝜕�𝑋𝑋(𝑘𝑘)�
𝜕𝜕𝑥𝑥𝑗𝑗

=

⎣
⎢
⎢
⎢
⎢
⎡−

2𝑠𝑠1�𝑋𝑋(𝑘𝑘)��𝑥𝑥𝑗𝑗 − 𝜉𝜉1𝑗𝑗�
𝜂𝜂2
⋮

−
2𝑠𝑠𝑁𝑁�𝑋𝑋(𝑘𝑘)��𝑥𝑥𝑗𝑗 − 𝜉𝜉𝑁𝑁𝑁𝑁�

𝜂𝜂2 ⎦
⎥
⎥
⎥
⎥
⎤

(18) 

Where 𝜉𝜉1𝑗𝑗 denotes the 𝑗𝑗th component of the 𝑖𝑖th neuron and 𝑆𝑆(𝑋𝑋) denotes the basis function. 

Definition 1 Consider the test pattern 𝜑𝜑𝑟𝑟 And the training pattern 𝜑𝜑𝑚𝑚, which are generated by the 
dynamical systems (10) and (9), respectively, and are sequences of sampled data that are periodic or 
regressive. If the state trajectory of the test pattern 𝜑𝜑𝑟𝑟 Is in the neighborhood of the state trajectory of 
the training pattern 𝜑𝜑𝑚𝑚, and the differences between the corresponding system dynamics along the orbit 
of pattern  𝜑𝜑𝑟𝑟 Is small, i.e. 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑋𝑋[𝑘𝑘]∈𝜙𝜙𝑟𝑟

 �𝑓𝑓𝑟𝑟�𝑋𝑋(𝑘𝑘)� − 𝑓𝑓𝑚𝑚�𝑋𝑋(𝑘𝑘)�� + 𝜆𝜆 �
𝜕𝜕𝑓𝑓𝑟𝑟�𝑋𝑋(𝑘𝑘)�
𝜕𝜕𝜕𝜕�𝑋𝑋(𝑘𝑘)�

−
𝜕𝜕𝑓𝑓𝑚𝑚�𝑋𝑋(𝑘𝑘)�
𝜕𝜕𝜕𝜕�𝑋𝑋(𝑘𝑘)�

� < 𝜀𝜀∗ (19) 
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Where 𝜀𝜀∗ Denotes the similarity between dynamical patterns, 𝜆𝜆 is a constant value greater than 0, 
and, ∂𝑓𝑓(𝑋𝑋(𝑘𝑘))

∂𝑙𝑙(𝑋𝑋(𝑘𝑘))
 Denotes the directional derivative of the dynamics along the 𝜑𝜑𝑟𝑟 Trajectory in the direction 

𝑙𝑙(𝑋𝑋(𝑘𝑘)) at each moment in time, and we claim that the test pattern 𝜑𝜑𝑟𝑟 is said to be similar to the training 
pattern 𝜑𝜑𝑚𝑚 , and when the test pattern 𝜑𝜑𝑟𝑟  is kept in the local region Ω𝜑𝜑𝜁𝜁𝑚𝑚 , we have the following 
definition. 

Definition 2 Consider the test pattern 𝜑𝜑𝑟𝑟 and the training pattern 𝜑𝜑𝑚𝑚, which are generated by the 
dynamical systems (10) and (9), respectively, and are sequences of sampled data that are periodic or 
regressive. If the state trajectory of the test pattern 𝜑𝜑𝑟𝑟 is in the neighborhood of the state trajectory of 
the training pattern 𝜑𝜑𝑚𝑚, it satisfies: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑋𝑋[𝑘𝑘]∈𝜙𝜙𝑟𝑟

  �𝑓𝑓𝑟𝑟�𝑋𝑋(𝑘𝑘)� −𝑊𝑊� 𝑚𝑚𝑇𝑇𝑆𝑆�𝑋𝑋(𝑘𝑘)�� + 𝜆𝜆 �
𝜕𝜕𝑓𝑓𝑟𝑟�𝑋𝑋(𝑘𝑘)�
𝜕𝜕𝜕𝜕�𝑋𝑋(𝑘𝑘)�

−
𝜕𝜕𝑊𝑊� 𝑚𝑚𝑇𝑇𝑆𝑆�𝑋𝑋(𝑘𝑘)�
𝜕𝜕𝜕𝜕�𝑋𝑋(𝑘𝑘)�

� < 𝜀𝜀∗ + 𝜆𝜆𝜉𝜉∗ (20) 

Where 𝜀𝜀∗ + 𝜆𝜆𝜉𝜉∗ denotes the similarity between dynamical patterns, ∂𝑓𝑓(𝑋𝑋(𝑘𝑘))
∂𝑙𝑙(𝑋𝑋(𝑘𝑘))

 denotes the directional 
derivative of the direction 𝑙𝑙(𝑋𝑋(𝑘𝑘)) at each moment of the dynamics along the trajectory of 𝜑𝜑𝑟𝑟, and 𝜉𝜉∗ 
is the structural stability approximation error. Then the test pattern 𝜑𝜑𝑟𝑟 is said to be similar to the training 
pattern 𝜑𝜑𝑚𝑚. 

4. Rapid dynamical pattern recognition 

Based on the modeling of the test pattern with the dynamical estimators and the lemma 3, the 
recognition errors can be expressed by the following system of recognition errors: 

𝜒𝜒�𝑚𝑚(𝑘𝑘 + 1) = 𝛾𝛾𝜒𝜒�𝑚𝑚(𝑘𝑘) + 𝑇𝑇 ��𝑊𝑊� 𝑚𝑚𝑇𝑇𝑆𝑆�𝑥𝑥�𝑟𝑟(𝑘𝑘)� − 𝑓𝑓𝑟𝑟�𝑥𝑥�𝑟𝑟(𝑘𝑘)�� + 𝜆𝜆 �
𝜕𝜕𝑊𝑊� 𝑚𝑚𝑇𝑇𝑆𝑆�𝑥𝑥�𝑟𝑟(𝑘𝑘)�
𝜕𝜕𝜕𝜕�𝑥𝑥�𝑟𝑟(𝑘𝑘)�

−
𝜕𝜕𝑓𝑓𝑟𝑟�𝑥𝑥�𝑟𝑟(𝑘𝑘)�
𝜕𝜕𝜕𝜕�𝑥𝑥�𝑟𝑟(𝑘𝑘)�

�� (21) 

Where 𝜒𝜒�𝑚𝑚(𝑘𝑘) =∥ 𝜒̅𝜒𝑚𝑚(𝑘𝑘) − 𝜒𝜒𝑟𝑟(𝑘𝑘) ∥𝐶𝐶1  is the state tracking (or synchronization) error. 𝜒̅𝜒𝑚𝑚 
represents the state of the dynamical discrete estimator and 𝑥𝑥�𝑟𝑟 represents the input to the estimator. 

Finally, we combine the average 𝐿𝐿1 norm for recognition decisions: 

∣∣ 𝜒𝜒�𝑚𝑚(𝑘𝑘) ∣∣𝐴𝐴1=
1
𝐾𝐾𝑝𝑝

� ∣ 𝜒𝜒�𝑚𝑚(𝑗𝑗) ∣ 
𝑘𝑘

𝑗𝑗=𝑘𝑘−𝐾𝐾𝑝𝑝+1

(22) 

Where 𝐾𝐾𝑝𝑝 is a predetermined positive integer and denoted as the range of the average 𝐿𝐿1 norm.  

Theorem 1 consider the dynamical pattern 𝜑𝜑𝑚𝑚 of univariate time series of the training dataset φ =
{𝑦𝑦𝑚𝑚 ∣ 𝑚𝑚 = 1, … ,𝑀𝑀}, the test pattern 𝜑𝜑𝑟𝑟 of the periodic trajectory, and the period  𝐾𝐾𝑝𝑝 of the average 𝐿𝐿1 
norm is a positive integer, and the dynamical estimator error 𝜒𝜒�𝑚𝑚(𝑘𝑘) will converge to a neighborhood of 
zero, and the neighborhood size is approximately proportional to the dynamic difference in structural 
stability inherent in the test pattern trajectory 𝜑𝜑𝑚𝑚  and the structural stability dynamics difference 
inherent in the training pattern trajectory 𝜑𝜑𝑚𝑚. 

Proof.  For ease of representation, we define the matching function: 

𝐻𝐻𝑚𝑚,𝑟𝑟(𝑘𝑘) ≔ �𝑊𝑊� 𝑚𝑚𝑇𝑇𝑆𝑆�𝑥𝑥�𝑟𝑟(𝑘𝑘)� − 𝑓𝑓𝑟𝑟�𝑥𝑥�𝑟𝑟(𝑘𝑘)�� + 𝜆𝜆 �
𝜕𝜕𝑊𝑊� 𝑚𝑚𝑇𝑇𝑆𝑆�𝑥𝑥�𝑟𝑟(𝑘𝑘)�
𝜕𝜕𝜕𝜕�𝑥𝑥�𝑟𝑟(𝑘𝑘)�

−
𝜕𝜕𝑓𝑓𝑟𝑟�𝑥𝑥�𝑟𝑟(𝑘𝑘)�
𝜕𝜕𝜕𝜕�𝑥𝑥�𝑟𝑟(𝑘𝑘)�

� (23) 

Representation of 𝜒𝜒�𝑚𝑚(𝑘𝑘) by iterative methods, it can be simplified as follows: 

𝜒𝜒�𝑚𝑚(𝑘𝑘) = 𝛾𝛾𝑘𝑘𝜒𝜒�𝑚𝑚(0) + � 
𝑘𝑘−1

𝑗𝑗=0

𝑇𝑇𝛾𝛾𝑘𝑘−1−𝑗𝑗𝐻𝐻𝑚𝑚,𝑟𝑟(𝑗𝑗) (24) 

Further, the average 𝐿𝐿1 norm of the recognition error is satisfied: 
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∥∥𝜒𝜒�𝑚𝑚(𝑘𝑘)∥∥𝐴𝐴1 =
1
𝐾𝐾𝑝𝑝

�  
𝑘𝑘

𝑗𝑗=𝑘𝑘−𝐾𝐾𝑝𝑝+1

|𝜒𝜒�𝑚𝑚(𝑗𝑗)|

=
1
𝐾𝐾𝑝𝑝

�  
𝑘𝑘

𝑗𝑗=𝑘𝑘−𝐾𝐾𝑝𝑝+1

�𝛾𝛾𝑘𝑘𝜒𝜒�𝑚𝑚(0) + � 
𝑘𝑘−1

𝑗𝑗=0

𝑇𝑇𝛾𝛾𝑘𝑘−1−𝑗𝑗𝐻𝐻𝑚𝑚,𝑟𝑟(𝑗𝑗)�

=
1
𝐾𝐾𝑝𝑝

�  
𝑘𝑘

𝑗𝑗=𝑘𝑘−𝐾𝐾𝑝𝑝+1

�𝛾𝛾𝑗𝑗𝜒𝜒�𝑚𝑚(0)� +
1
𝐾𝐾𝑝𝑝

�  
𝑘𝑘

𝑗𝑗=𝑘𝑘−𝐾𝐾𝑝𝑝+1

�𝑇𝑇�  
𝑗𝑗

𝑖𝑖=1

𝛾𝛾𝑗𝑗−𝑖𝑖𝐻𝐻𝑚𝑚,𝑟𝑟(𝑖𝑖)� (25)

 

For convenient representation, let 𝜒𝜒�𝑚𝑚(0) = 0 . That is, ∥∥𝜒𝜒�𝑚𝑚(𝑘𝑘)∥∥𝐴𝐴1 =
1
𝐾𝐾𝑝𝑝
∑  𝑘𝑘
𝑗𝑗=𝑘𝑘−𝐾𝐾𝑝𝑝+1 �𝑇𝑇 ∑  𝑗𝑗

𝑖𝑖=1 𝛾𝛾
𝑗𝑗−𝑖𝑖𝐻𝐻𝑚𝑚,𝑟𝑟(𝑖𝑖)�. Since |𝛾𝛾| < 1, 𝑉𝑉1 decays exponentially to a neighborhood of 0 as 

time 𝑘𝑘 increases. If 𝐾𝐾𝑝𝑝 is chosen to be a cycle of the periodic trajectory, then we have 

 ∥∥𝜒𝜒�𝑚𝑚(𝑘𝑘)∥∥𝐴𝐴1 =
1
𝐾𝐾𝑝𝑝

�  
𝑘𝑘

𝑗𝑗=𝑘𝑘−𝐾𝐾𝑝𝑝+1

�𝑇𝑇�  
𝑗𝑗

𝑖𝑖=1

𝛾𝛾𝑗𝑗−𝑖𝑖𝐻𝐻𝑚𝑚,𝑟𝑟(𝑘𝑘)�

<
1
𝐾𝐾𝑝𝑝

�  
𝑘𝑘

𝑗𝑗=𝑘𝑘−𝐾𝐾𝑝𝑝+1

𝑇𝑇|𝐻𝐻𝑚𝑚,𝑟𝑟(𝑘𝑘)|
1 − 𝛾𝛾

=
𝑇𝑇|𝐻𝐻𝑚𝑚,𝑟𝑟(𝑘𝑘)|

1 − 𝛾𝛾
(26)

 

With the above derivation, we obtain a representation of the average 𝐿𝐿1 norm of the recognition error 
𝜒𝜒�𝑚𝑚(𝑘𝑘). As time 𝑘𝑘 increases, ∥∥𝜒𝜒�𝑚𝑚(𝑘𝑘)∥∥𝐴𝐴1 will converge into a neighborhood of zero, and the size of the 
neighborhood is approximately proportional to the difference in the dynamics of structural stability 
inherent in the test pattern trajectory 𝜑𝜑𝑚𝑚 and the training pattern trajectory 𝜑𝜑𝑚𝑚. 

5. Simulation 

To demonstrate the effectiveness of the proposed method, we consider the Duffing System: 

�
𝑥̇𝑥1 = 𝑥𝑥2
𝑥̇𝑥2 = −𝑝𝑝2𝑥𝑥1 − 𝑝𝑝3𝑥𝑥13 − 𝑝𝑝1𝑥𝑥2 + 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 (𝜔𝜔𝜔𝜔)
𝑦𝑦 = 𝑥𝑥1,

(27) 

Where 𝑥𝑥 = [𝑥𝑥1, 𝑥𝑥2]𝑇𝑇 is the state of the system and 𝑝𝑝1,𝑝𝑝2,𝑝𝑝3,𝑤𝑤 and 𝑞𝑞 are constant parameters. The 
system dynamics 𝑓𝑓(𝑥𝑥) =  −𝑝𝑝2𝑥𝑥1 − 𝑝𝑝3𝑥𝑥13 − 𝑝𝑝1𝑥𝑥2 is an unknown smooth nonlinear function and 
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞(𝑤𝑤𝑤𝑤) is a known periodic term. We choose different parameter vectors to generate different modes, 
𝑦𝑦𝑚𝑚(𝑘𝑘),𝑚𝑚 = 1, . . . 5. We sample the output of the system at a sampling frequency of 1𝑘𝑘𝑘𝑘𝑘𝑘, 𝑥𝑥(0) =
[0.438; 0.07713]. 𝑦𝑦𝑟𝑟(𝑘𝑘), 𝑟𝑟 = 6, is the test pattern. The parameters corresponding to the above time 
series are shown in Table 1. 

Table 1 Univariate time series parameters 

parameter training pattern test pattern 
𝑦𝑦1 𝑦𝑦2 𝑦𝑦3 𝑦𝑦4 𝑦𝑦5 𝑦𝑦6 

𝑝𝑝1 1.2 0.4 0.55 0.4 0.6 0.6 
𝑝𝑝2 -1.5 -1.5 -1.1 -1.1 1.0 1.0 
𝑝𝑝3 1.0 1.0 1.0 1.0 0.8 1.3 
𝑞𝑞 0.9 0.9 1,498 1.498 1.0 1.0 
𝑤𝑤 1.8 1.8 1.8 1.8 1.498 1.498 

To simulate the noise present in actual data, Gaussian noise with a mean of 0 and a variance of 0.5 ×
10−6 is added to the original signal 𝑥𝑥1. This approach aims to enhance the robustness of the model, 
enabling it to better handle disturbances that may be encountered in real-world applications. For systems 
with disturbances, the ESO can achieve state trajectory reconstruction and has a filtering effect. 

The state trajectories 𝑥𝑥𝑚𝑚(𝑘𝑘) of the dynamical system and the system dynamics 𝑓𝑓𝑚𝑚(𝑥𝑥𝑚𝑚(𝑘𝑘)) are first 
reconstructed using the dilated state observer (12). The observer gain is set to 𝛽𝛽 = [100,300,3000]. Due 
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to the high observer gain, only the phase diagram after 1s is shown in order to show the reconstruction 
effect more clearly. The state trajectories of the reconstructed training and test patterns are shown in 
Figure 2, and accurate state estimation can be achieved from sampled output measurements for both 
training and test patterns. 

 
 

 
Figure 2 Reconstructing state trajectories and unknown dynamics 

In order to achieve good approximation ability and relatively high excitation level of the RBFN, 441 
neurons arranged in a regular lattice [-3, 3] × [-3, 3] with a width of 𝜂𝜂 = 0.3 are used. The neuron weight 
vectors are adjusted according to the updating law (13), and the initial value of the weights is 𝑊𝑊� 𝑚𝑚(0) =
0. The convergence of the weights is shown in Figure 3, demonstrating that the weight parameters 
achieve local convergence.  

 

 
Figure 3 Parameter convergence 

We adopt the RBFN based on deterministic learning to represent the dynamics along the trajectory 
and the partial derivatives of these dynamics. Figure 4 illustrates the effect of the phase space dynamic 
deviation approximation, where the dynamic partial derivative trajectories are consistent but exhibit some 
errors. Figure 5, based on the structural stability of the sampled data, presents the results of dynamical 
pattern recognition by assessing the average 𝐿𝐿1 norm of the error. 

Subsequently, a synthetic dataset was generated using dynamic systems 𝑦𝑦𝑚𝑚(𝑘𝑘),𝑚𝑚 = 1, . . . 5, with 
sampling data produced under different parameters. Keeping other parameters constant, this study 
employed various window ranges: 𝑝𝑝1 = [1,1.5], 𝑝𝑝1 = [0.38,0.48], 𝑝𝑝1 = [0.5,0.6], 𝑝𝑝1 = [0.38,0.42] 
and 𝑝𝑝1 = [0.5,1]. Each window range was divided into 50 parameters, yielding a total of 250 data sets. 
From these, 100 data sets were randomly selected to calculate the accuracy of two methods, utilizing the 
Rand Index (RI) as the evaluation metric. The results based on the observer-based deterministic learning 
method yielded an RI of 0.976. In contrast, the results from the deterministic learning method based on 
ESO and structural stability achieved an RI of 1, indicating superior identification performance. 
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Figure 4 Approximation of partial derivatives of dynamics in phase space 

 
Figure 5 Recognition results 

6. Conclusions 

This paper proposes a deterministic learning method based on ESO and structural stability, aiming to 
achieve dynamical pattern recognition of univariate time series from the perspective of topological 
structural stability. These time series consist of output signals from dynamical systems. Specifically, ESO 
is used to estimate the state of the training dynamical patterns, and then RBFN is employed for local 
precise recognition of the inherent dynamics of univariate time series. In the recognition phase, the 
system dynamics partial derivatives are approximated using first-order differences. Structural stability 
state estimators and recognition error systems are constructed based on the state trajectories of the test 
patterns and the nonlinear system dynamics. The 𝐿𝐿1 norm of the recognition error is used to identify the 
dynamics differences of the dynamical patterns, achieving dynamical pattern recognition from the 
perspective of structural stability. 
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