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Abstract: In this paper we study a widely-used mechanism in China to match finite number of primary 

school graduates to middle schools. The main question is what the equilibrium looks like when the 

number of schools are small. I solve the equilibrium by first eliminate weakly dominated strategies, 

then compute the incentive compatibility for each type of students. The equilibrium might or might not 

be unique, which depends on several variables such as the quota of each schools, the distribution of 

students’ preference and students’ valuation of each school available.  
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1. Introduction 

Here is how the mechanism works: We are matching n students to N schools, each with quota 

qi, i = 1,2, . . . , N respectively. ∑Ni=1 qi = n. Every schools are acceptable to each student, so we don’t 

consider student prefer being unmatched than admitted by some schools here. Students first report their 

preference in forms of an ordinal list of all N schools, with all schools contained and no repetition. 

Mathematically speaking each student submit a permutation of N schools as their preference. Then 

computer randomly match these n students with number 1 to n. This unique number assigned to 

each student represent his place on each school’s preference list of students. This means that every 

schools share a same ranking of students, which completely depends on the random permutation of 

students by computer. With both sides’ preference settled down, Boston Mechanism is then applied. 

We first introduce two lemmas which will make our calculation easier in the future.  

Lemma 1.1 Everyone gets a school.  

Proof of Lemma 1.1 The proof is trivial. If a student s is not admitted to any school after all N 

rounds, then the quota of each school must all be fulfilled. This means  

N ≥ ∑Ni=1 qi + 1 > ∑
N
i=1 qi  

contradict with our general conditions.  

Lemma 1.2 For any student i, if his worst school is Sj, then any report with Sj not at the last place 

is weakly dominated.  

Proof of Lemma 1.2  For any preference report P: S1, S2, ⋯ SN for student i, suppose Sm is his 

worst school. If m < N, assume his best school among Sm, Sm+1, ⋯ SN is Sn, m < n ≤ N. We claim 

that P′ generated by switching position of Sn and Sm in P while keeping other school unchanged 

weakly dominates P. 

For any fix P−i, The expected payoff for s with P and P′ is determined by his chance of being 

admitted in each round as well as his school choice in that round. To be more precise,  

Ei(P, P−i) = p1 ⋅ Vi(S1) + (1 − p1)p2 ⋅ Vi(S2) + ⋯+ (1 − p1)(1 − p2)⋯ (1 − pn−1)pn ⋅ Vi(Sn) 

Ei(P
′, P−i) = p1

′ ⋅ Vi(S1) + (1 − p1)p2 ⋅ Vi(S2) + ⋯+ (1 − p1)(1 − p2)⋯ (1 − pn−1)pn ⋅ Vi(Sn)  

Here pi(pi
′) stands for the probability that when reaching the i-th round, his probability of being 

admitted in that round. By defination of P′,  pi
′ = pi, Pi = Pi

′ for i = m, n. 
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Thus we have  

Ei(P
′, P−i) − Ei(P, P−i) = (qm

′ ⋅ Vi(Sn) + qm+1
′ ⋅ Vi(Sm+1) + ⋯+ qn′ ⋅ Vi(Sm) + ⋯+ qN

′ ⋅ Vi(SN
′ ))⏟                                            

A

 

−(qm ⋅ Vi(Sm) + qm+1 ⋅ Vi(PS+1) + ⋯+ qn ⋅ Vi(Sn) + ⋯+ qN ⋅ Vi(SN))⏟                                            
B

 

where qj
′ = ∏

j−1
i=1 (1 − pi

′)pj
′  and  qj = ∏

j−1
i=1 (1 − pi)pj  for j = m,m + 1,⋯ , N. 

Notice that ∑Nj=m qj
′ = ∑Nj=m qj because P and P′ are same among the first m− 1 rounds. We 

can consider A and B as two weighted average of Vi(Sk), k = m,m + 1,⋯ , N with total weights 

q = ∑Nj=m qj
′. 

pm
′ = 1: A = q ⋅ Vi(Sn) reaches the maximal value since all the weights are given to the largest 

term Vi(Sn). 

pm = 1: B = q ⋅ Vi(Sm) reaches the minimal value since all the weights are given to the smallest 

term Vi(Sm). 

pm
′ ≤ pm < 1 : pn = pn

′ = 0 , qn
′ ≤ qm, qm

′ ≥ qn, qi
′ ≥ qi  for i = m, n . Compared to B , A 

reduce(or keep) the weights of the smallest term and increase (or keep) the weights of all other terms. 

So we must have A ≥ B. 

pm ≤ pm
′ < 1 : pn = pn

′ = 0 , qn
′ ≤ qm, qm

′ ≥ qn, qi
′ ≤ qi  for i = m, n . Compared to B , A 

remove(or keep) the weights of all other terms to (or keep) Vi(Sn), which is the largest term. So again 

we must have A ≥ B. 

2. Equilibrium 

In this section we calculate the equilibrium for small N. We first calrify some notations and words. 

A student’s "best" school is the school on the top of his true preference list, while the "worst" school is 

the school at the least of his true preference list. We might use [S1, S2, S3] or equivalent notation for 

short of preference [S1 > S2 > S3] or equivalent. We might use the word "honest" for students who 

truthfully report their preference, and the word "lying" for students who manipulate. These are just for 

convenience and has nothing to do with moral judgement.  

Assumption 2.1. We assume that each student’s payoff for entering his best school are the same: V1, 

payoff for entering 2nd best school are the same: V2, etc. Vi > Vj for i < j. 

We understand that this assumption might not be true in some special cases, for instance some 

students might not differ between schools as other students do, or some students might be in-different 

between some schools. However, in reality, while choosing middle school to enter, students and their 

family usually lives on a ordinal preferences of schools, but not a precise cardinal order. By such 

assumption we can simplify our model quantitatively without qualitative sacrifice.  

N = 2 

Suppose there are only 2 schools S1 and S2 for n students to choose, with quota q1 and q2 

respectively. In this case, everyone truth reporting is an equilibrium by Lemma 1.2: Diviating from true 

preference leads to ranking one’s worst school among s1 and s2 not at second place(the last place). 

We claim this is the only equilibrium, to be more specific, truth reporting is a dominate strategy 

when N = 2.  

Proof of claim: Consider an arbitrary student i. Assume i’s true preference is Pi = [S1 > S2] 
without lost of generality. Suppose besides i, there are a students reporting P = (S1, S2), b students 

reporting P = (S2, S1), with a, b ≥ 0 and a + b = n − 1. We then compute the expected payoff of 

student i:  

(i) If a ≤ q1 − 1,then b = q1 + q2 − 1 − a ≥ q2. We have  

Ei(Pi, P−i) − Ei(Pi
′ = (S2, S1), P−i) = V1 − (

q2

b+1
V2 + (1 −

q2

b+1
)V1) =

q2

b+1
(V1 − V2) > 0  
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Noted that a ≤ q1 − 1, so i will certainly be admitted to S1 in the first round with Pi.  

(ii) If a ≥ q1,then b = q1 + q2 − 1 − a ≤ q2 − 1. We have  

Ei(Pi, P−i) − Ei(Pi
′ = (S2, S1), P−i) = (

q1

a+1
V1 + (1 −

q1

a+1
)V2) − V2 =

q1

a+1
(V1 − V2) > 0  

Noted that b ≤ q2 − 1, so i will certainly be admitted to S2 in the first round with P−i. 

This shows that student with preference S1 > S2 should always truthfully report their preference. 

The proof for student with S2 > S1 is similar.  

Truth-reporting is a strictly dominating strategy for all. Everyone will truthfully report their 

preference when there are only two schools available.  

N = 3 

Suppose now we have 3 schools S1, S2, S3 available, with quota qi, i = 1,2,3 respectively. The 

calculation is much more complicated then the previous and we will start with special cases. 

2.1 Common Preference  

We first discuss the simplest case where every students have the same preference profile. Without 

lost of generality suppose that everyone likes S1 better than S2 better than S3, which means Pi =
[S1 > S2 > S3] for all i. For arbitrary student i, by Lemma 1.2, we only need to consider one 

deviation: Pi
′ = [S2 > S1 > S3]. Suppose in equilibrium there are t1 students reporting [S1, S2, S3], 

t2 students reporting [S2, S1, S3]. If t2 ≥ q2, we call it a Type 1 equilibrium. If 0 < t2 < q2, we call 

it a Type 2 equilibrium.  

Proposition 2.1. t1 ≥ q1  

Proof: The proof is trivial. If t1 < q1,those who deiviated from truth preference should return to 

their truth preference(given other student’s report fixed) because he could guarantee a place in S1 by 

doing so. Thus it can’t be an equilibrium.  

Proposition 2.2. If  q1 ⋅ V1 + q2 ⋅ V2 + q3 ⋅ V3 = n ⋅ V2, then Type 2 equilibrium doesn’t exist.  

Proof: Proof by contradiction. If  q1 ⋅ V1 + q2 ⋅ V2 + q3 ⋅ V3 > n ⋅ V2: 

Suppose there is an equilibrium such that 0 < t2 < q2 , then t1 = n − t2 > q1 . For these t2 

students with P′ = [S2, S1, S3], their incentive compatibility gives:  

E[P′, P−i] = V2 ≥
q1

t1 + 1
⋅ V1 + (1 −

q1
t1 + 1

) ⋅ (
q2 − t2 + 1

t1 + 1 − q1
⋅ V2 + (1 −

q2 − t2 + 1

t1 + 1 − q1
) ⋅ V3) = E[P, P−i] 

Notice that (1 −
q2−t2+1

t1+1−q1
) =

t1+1−q1−q2+t2−1

t1+1−q1
=

q3

t1+1−q1
, thus we have  

V2 ≥
q1

t1+1
⋅ V1 +

q2−t2+1

t1+1
⋅ V2 +

q3

t1+1
⋅ V3  

Multiply both side with t + 1 and add (t2 − 1) ⋅ V2:  

(t1 + t2) ⋅ V2 ≥ q1 ⋅ V1 + q2 ⋅ V2 + q3 ⋅ V3  

t1 + t2 = n, so this contradict with our assumption. In this case everyone truthfully report is an 

equilibrium and t2 = 0 

Similarly, if q1 ⋅ V1 + q2 ⋅ V2 + q3 ⋅ V3 < n ⋅ V2: 

Consider incentive compatibility of a truth reporting student:  

E[P, P−i] =
q1
t1
⋅ V1 + (1 −

q1
t1
) ⋅ (

q2 − t2
t1 − q1

⋅ V2 + (1 −
q2 − t2
t1 − q1

) ⋅ V3) ≥ V2 = E[P, P−i] 

Since (1 −
q2−t2

t1−q1
) =

t1−q1−q2+t2

t1−q1
=

q3

t1−q1
,we have  

q1

t1
⋅ V1 +

q2−t2

t1
⋅ V2 +

q3

t1
⋅ V3 ≥ V2  
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which is equivalent to  

q1 ⋅ V1 + q2 ⋅ V2 + q3 ⋅ V3 ≥ (t1 + t2) ⋅ V2  

This again contradict with our assumption.  

This proposition shows that only if q1 ⋅ V1 + q2 ⋅ V2 + q3 ⋅ V3 = n ⋅ V2 should we consider Type 2 

equilibrium. More importantly, we can show that every Type 2 equilibrium yields same expected 

payoff.  

Corollary 2.3.  If  q1 ⋅ V1 + q2 ⋅ V2 + q3 ⋅ V3 = n ⋅ V2, then t2 = 0,1,2,⋯ , q2 − 1 each gives an 

equilibrium. The expected payoff for each student equals V2 in all these equilibriums.  

Proof: We first proof the case of t2 = 0. Expected payoff for any student given that everyone 

truthfully report P = [S1, S2, S3] is  

E[P, P−i] =
q1

t1
⋅ V1 + (1 −

q1

t1
) ⋅ (

q2

t1−q1
⋅ V2 + (1 −

q2

t1−q1
) ⋅ V3)  

Notice that t1 = n, 1 −
q2

t1−q1
=
t1−q1−q2

t1−q1
=

q3

t1−q1
, so  

E[P, P−i] =
1

n
⋅ (q1 ⋅ V1 + q2 ⋅ V2 + q3 ⋅ V3) = V2  

Deviating to P′ = [S2, S1, S3] while others report truthfully also yields payoff of V2, so everyone 

truth reporting (t2 = 0) is indeed an equilibrium. Proof for other values of t2 is basically the same as 

what we do in Proposition 2.2, hence omitted here.  

We then discuss Type 1 equilibrium. Suppose (t1, t2) leads to a Type 1 equilibrium. Then for those 

who truthfully reports P = [S1, S2, S3], since t2 > q2, which means all the quota of S2 will be given 

out in the first round, so these students with P will definately not be admitted by S2. Similarly, those 

with P′ = [S2, S1, S3] will not be admitted by S1 due to the assumption that t1 > q1. For t1 truth 

reporting students, we have  

E[P, P−i] =
q1

t1
⋅ V1 + (1 −

q1

t1
) ⋅ V3 ≥

q2

t2+1
⋅ V2 + (1 −

q2

t2+1
) ⋅ V3 = E[P′, P−i]  

which can be simplified to  

(t2 + 1)q1 ⋅ V1 − (t2 + 1)q1 ⋅ V3 ≥ t1q2 ⋅ V2 − t1q2 ⋅ V3  

Recall that t2 = n − t1, thus we have  

(n + 1)q1 ⋅ (V1 − V3) ≥ t1q1 ⋅ (V1 − V3) + t1q2 ⋅ (V2 − V3)  

Notice q1 ⋅ (V1 − V3) + q2 ⋅ (V2 − V3) > 0, hence  

t1 ≤
(n + 1)q1 ⋅ (V1 − V3)

q1 ⋅ (V1 − V3) + q2 ⋅ (V2 − V3)
= U 

For the lower bound of t1, consider t2 "lying" students. For them  

E[P′, P−i] =
q2
t2
⋅ V2 + (1 −

q2
t2
) ⋅ V3 ≥

q1
t1 + 1

⋅ V1 + (1 −
q1

t1 + 1
) ⋅ V3 = E[P, P−i] 

Following the same process we similarly get  

t2 ≤
(n + 1)q2 ⋅ (V2 − V3)

q2 ⋅ (V2 − V3) + q1 ⋅ (V1 − V3)
 

so the lower bound of t1 is given by  

t1 = n − t2 ≥
nq1 ⋅ (V1 − V3) + nq2 ⋅ (V2 − V3) − (n + 1)q2 ⋅ (V2 − V3)

q2 ⋅ (V2 − V3) + q1 ⋅ (V1 − V3)

=
nq1 ⋅ (V1 − V3) − q2 ⋅ (V2 − V3)

q2 ⋅ (V2 − V3) + q1 ⋅ (V1 − V3)
= L 
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Observe that  

U − L =
(n + 1)q1 ⋅ (V1 − V3) − nq1 ⋅ (V1 − V3) − q2 ⋅ (V2 − V3)

q2 ⋅ (V2 − V3) + q1 ⋅ (V1 − V3)
= 1 

U ≥ t1 ≥ L, so if U(or L) is not an integer, then there is an unique integer between U and L, 

which gives us the only solution for t1. If U and L are integers, then we have two solutions for t1.  

2.2 Common Dislike  

We now move on to the case where there are two preference types among all the students. What’s 

special here is that these two preference list the same school at the lowest place. The reason we care 

about this situation is a direct result of Lemma 1.2: Rational students will not consider weakly 

dominated reports. They will only consider deviating from true preference to those which also list their 

worst school at the bottom. 

Suppose there are k1 and k2 students with true preference P1 = [S1, S2, S3] and P2 = [S2, S1, S3] 
respectively. k1 + k2 = n. There are three potential cases:   

• k1 ≥ q1, k2 ≥ q2  

• k1 ≥ q1, k2 < q2  

• k1 < q1, k2 ≥ q2  

We primarily focus on the first case since the last two cases are symmetric and could be solved 

similarly by existing result. 

Given that k1 ≥ q1, k2 ≥ q2, it’s clear that Type 2 equilibrium doesn’t exist: If the quota of a 

school is not fulfilled at the first round, then there must exist some students who like this school best 

but didn’t list it at the top. These students then have incentive to deviate(to the report which lists this 

school at the first place). 

As for Type 1 equilibrium, suppose (t1, t2) leads to a Type 1 equilibrium. There are at most 4 

kinds of students:   

1) Honest student with true preference P1 and report P1  

2) Honest student with true preference P2 and report P2  

3) Lying student with true preference P1 and report P2  

4) Lying student with true preference P2 and report P1  

We can then calculate t1 and t2 using the incentive compatibility of these four kinds of student.  

For honest student with true preference P1, we have:  

E[P1, P−i] =
q1

t1
⋅ V1 + (1 −

q1

t1
) ⋅ V3 ≥

q2

t2+1
⋅ V2 + (1 −

q2

t2+1
) ⋅ V3 = E[P1

′, P−i]  

By previous result we know the solution of t1 is given by (2.1.2):  

t1 ≤
(n+1)q1⋅(V1−V3)

q1⋅(V1−V3)+q2⋅(V2−V3)
= U1  

Similarly, for lying student with true preference P1:  

E[P1
′, P−i] =

q2

t2
⋅ V2 + (1 −

q2

t2
) ⋅ V3 ≥

q1

t1+1
⋅ V1 + (1 −

q1

t1+1
) ⋅ V3 = E[P1, P−i]  

By (2.1.3), we have 

t1 ≥
nq1⋅(V1−V3)−q2⋅(V2−V3)

q1⋅(V1−V3)+q2⋅(V2−V3)
= L1  

For honest student with preference P2, we have  

E[P2, P−i] =
q2

t2
⋅ V1 + (1 −

q2

t2
) ⋅ V3 ≥

q1

t1+1
⋅ V2 + (1 −

q1

t1+1
) ⋅ V3 = E[P2

′, P−i]  

which simply gives  
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t2 ≤
(n+1)q2⋅(V1−V3)

q2⋅(V1−V3)+q1⋅(V2−V3)
  

Thus we have  

t1 = n − t2 ≥ n −
(n+1)q2⋅(V1−V3)

q2⋅(V1−V3)+q1⋅(V2−V3)
=
nq1⋅(V2−V3)−q2⋅(V1−V3)

q1⋅(V2−V3)+q2⋅(V1−V3)
= L2  

Similarly the incentive compatibility of lying student with preference P2 gives  

t1 ≤
(n+1)q1⋅(V2−V3)

q1⋅(V2−V3)+q2⋅(V1−V3)
= U2  

Notice that L2 < L1, U2 < U1 and U1 − L1 = 1, U2 − L2 = 1. 

Calculation above directly leads to the following result:  

Proposition 2.3.   

• If k1 > U1, then all students with preference P2 truthfully report while [L1, U1] students with 

preference P1  truthfully report and k1 − [L1, U1]  students with preference P1  manipulate is an 

equilibrium.  

• If U1 ≥ k1 ≥ L2, then everyone truthfully report is an equilibrium.  

• If L2 > k1, then all students with preference P1 truthfully report while n − [L2, U2] students 

with preference P2 truthfully report and [L2, U2] − k1 students with preference P2 manipulate is an 

equilibrium.  

We can apply this proposition to the last 2 cases directly. 

2.3 Common Best, Different Worst  

There is one more special case we need to settle down before we move on to the most general case. 

Suppose again we have 2 types of preference among all the students: P1 = [S1, S2, S3] and P2 =
[S1, S3, S2]. Notice that in Common Dislike case, deviation from P1 is exactly P2, so in all there are 

only 2 preferences involved. But here since P1
′ = [S2, S1, S3] = P2, P2

′ = [S3, S1, S2] = P1, hence we 

have to consider 4 different reports in equilibrium. 

Suppose there are k1,2 students with true preference P1,2, respectively, k1 + k2 = n.Suppose that 

t1 students report P1, t2 students report P2, t3 students report P1
′ and t4 students report P2

′ leads 

to an equilibrium, t1 + t3 = k1,t2 + t4 = k2. We must have t1 + t2 ≥ q1, hence t3 + t4 ≤ q2 + q3. 

Notice that If k1 ≥ q1 + q2, which means number of students who report P1 or P1
′ are larger than 

the sum of quota of S1 and S2, then S2 must be fulfilled in the first two rounds since P1 and P1
′ 

both have S2 in the first two places. This tells us that other students will never be admitted by S2 if 

they put S2 at the last place. By lemma 1.1 we immediately know that student who report P2 and P2
′ 

will be admitted in the first two rounds. We thus get the following result by lemma 1.2:  

Proposition 2.4. If k1 ≥ q1 + q2, then students with true preference P2 should truthfully report 

their preference.We have t2 = k2, t4 = 0 Symmetrically, if k2 ≥ q1 + q3, then students with true 

preference P1 should truthfully report their preference. We have t1 = k1, t3 = 0. 

Now, suppose k1 ≥ q1 + q2, k2 < q3. With k2 students truthfully report P2, we can apply what 

we did in Common Preference model to solve for the equilibrium. Assume t1 students report P1, t3 
students report P1

′ leads to an equilibrium, where t1 + t3 = k1 = n − k2 > q1 + q2, t1 + k2 ≥ q1. 

Then for these t1 students, if t3 < q2  

q1

t1+k2
⋅ V1 + (1 −

q1

t1+k2
)(

q2−t3

t1−t1⋅
q1

t1+k2

⋅ V2 + (1 −
q2−t3

t1−t1⋅
q1

t1+k2

) ⋅ V3) ≥ V2 = E[P1
′, P−i]  

Notice that if we let t1
′ = t1, q′1 = t1 ⋅

q1

t1+k2
, the inequality above has exactly the same form of 

Inequality (2.1), similarly for the incentive compatibility for t3 students who report P1
′. By corollary 

2.3, such (type 2) equilibrium doesn’t exist. 

If t2 ≥ q2, for t1 honest students, we have  

q1

t1+k2
⋅ V1 + (1 −

q1

t1+k2
) ⋅ V3 ≥

q2

t2+1
⋅ V2 + (1 −

q2

t2+1
) ⋅ V3  
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Let t1
′ = t1 + k2, this inequality is the same as what we solved in Common Preference case, 

similarly for the t3 lying students. The calculation is basically the same hence omitted here. 

Now we consider k1 < q1 + q2, k2 < q1 + q3. If t3 ≥ q2, which means S2 will be full after 

round 1, hence students with true preference P2 should truthfully report their preference. We then have 

t2 = k2 and again we are back to Common Preference case, symmetrically for t4 ≥ q3. Our last 

concern is the case where t3 < q2, q2 < t1 + t3 < q1 + q2  and symmetrically t4 < q3, q3 < t2 +
t4 < q1 + q3. 

First assume t1 > q1, then for t1 students who reports P1, their chance Pro1 for being admitted 

to S1 is 
q1

t1+t2
. 

We then calculate their chance Pro2  for being admitted to S2 . Fix a P1  student s(short for 

students who report P1 in equilibrium). For 0 ≤ i ≤ q1, the probability Ai that exactly i P1 students 

(but not s) are admitted to S1 is given by  

Ai
t1 =

(
t1 − 1
i

) ⋅ (
t2
q1 − i

)

(
t1 + t2
q1

)
 

let x = t1 + t3 − q2. For i ≤ x, If s was not admitted in the first round, the probability Bi that s 

are admitted to S2 is then given by  

Bi
t1 =

q2 − (k1 − t1)

t1 − i
 

For x < i ≤ q1, notice that if no less than x P1 students are admitted to S1, the remaining P1 

students will be garunteed a place in S2 at round 2, we have Bi
t1 = 1 since q2 − t3 > t1 − i. We 

claim that  

Pro2 =∑

q1

i=0

(Ai
t1 ⋅ Bi

t1) 

Then consider the incentive compatibility for student s:  

E[P1, P−s] = Pro1 ⋅ V1 + Pro2 ⋅ V2 + (1 − Pro1 − Pro2) ⋅ V3 ≥ V2 = E[P1
′, PS] 

For t2 students who report P1
′, their incentive compatibility is given by:  

E[P1
′, P−i] = V2 ≥ Pro1

′ ⋅ V1 + Pro2
′ ⋅ V2 + (1 − Pro1

′ − Pro2
′ ) ⋅ V3 = E[P1, P−i] 

Here Pro1
′ =

q1

t1+1+t2
, and Pro2

′ = ∑
q1
i=0 Ai

t1+1 ⋅ Bi
t1+1. Solving this two inequality we will get the 

upper and lower bound of t1 in forms of a function of t2:  

F(k1, k2, t2) ≥ t1 ≥ G(k1, k2, t2) 

Remark: for t1 ≤ q1, we have Pro2 = ∑
t1−1
i=0 (Ai

t1 ⋅ Bi
ti), which allow us to continue with similar 

calculation. Using the same method to analyze t2, we will get  

H(k1, k2, t1) ≥ t2 ≥ I(k1, k2, t1) 

Combining (2.3.3) and (2.3.4) we can solve for t1 and t3. 

2.4 Generalization  

Now we are ready to solve the most general cases, where we consider all 6 preferences among 

students. We use n(Si) to denote the number of students who like Si best. Since n(S1) + n(S2) +
n(S3) = n = q1 + q2 + q3, we have at least one i = 1,2 or 3 such that Si ≥ qi. Without lost of 

generality we assume that n(S1) ≥ q1. 

(i): n(S1) ≥ q1, n(S2) < q2, n(S3) < q3. Given that n(S1) ≥ q1, in equilibrium we must have the 
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quota of S1  fulfilled in the first round. Thus for students with true preference [S2, S3, S1] and 

[S3, S2, S1], they don’t need to worried about getting into their worst school S1 because they will 

certainly be admitted in the first two rounds. Hence by Lemma 2.1, truthfully report their preference is 

a weakly dominating strategy. We call the group of these students D1, short for "don’t like S1" 

Divide the remaining four types of students into two groups: D2 ={students with true preference 

[S1, S3, S2] or [S3, S1, S2]} and D3 ={students with true preference [S1, S2, S3] or [S2, S1, S3]}. We 

can then apply our analysis in previous case to solve the equilibrium for these case. Remark: |D2|, |D3| 
are fixed, which can be used as k1,2 as in prevous case. 

(ii): n(S1) ≥ q1, n(S2) ≥ q2, n(S3) < q3. Similar to previous case, in equilibrium we must have 

the quota of S1  and S2  fulfilled in the first round. We claim that students of type 

[S1, S3, S2], [S3, S1, S2], [S2, S3, S1] and [S3, S2, S1] should all truthfully report their type as a direct 

result of lemma 2.1. The game could them be simplifed to the Common Dislike case between students 

with true preference P1 = [S1, S2, S3] and P2 = [S2, S1, S3]. 

Suppose in equilibrium there are t1 students report P1 and t2 students report P2, then for honest 

students with true preference P1 and report P1, we have  

q1
t1 + x

⋅ V1 + (1 −
q1

t1 + x
) ⋅ V3 ≥

q2
t2 + y + 1

⋅ V2 + (1 −
q2

t2 + y + 1
) ⋅ V3 

Here x is the number of students with true preference [S1, S3, S2], and y is the number of students 

with true preference [S2, S3, S1]. Notice that t1 + t2 equals the number of students who don’t like S3 

most, and x, y are constants, hence this linear inequation is similar to the one we saw in Common 

Dislike case. Moreover, the incentive compatibility of other 3 kinds of students, namely honest students 

with true preference P2, lying students with true prference P1 and P2 respectively also involve only 

t1, t2 and x, y. The system we get is exactly a system of Common Dislike which we already solved, 

despite the fact that numbers are different. 

(iii): n(S1) ≥ q1, n(S2) ≥ q2, n(S3) ≥ q3 . In this case we must have n(S1) = qi, i = 1,2,3 . 

Everyone truthfully report their preference and all students get into their best schools. 

Students’ objective to deviate from their true preference mainly consist of aversion of risk. For an 

arbitrary student s, if large number of others like his worst school, then his chance for entering that 

school is low. He thus has less incentive to deviate. On the contrary, if relatively less students like his 

worst school(or lots of students like his best school), in order to avoid getting into it, he might give up 

his best school to seek a position in the second best. 

3. Extension 

In this section we introduce another silimar mechanism and make a simple comparison between 

these two for special cases. The difference between these two mechanisms is really simple: In our new 

mechanism, students report their preferences after they were assigned with ranking numbers. We are 

interested in how this slight change affect students’ strategies as well as social welfare. We called our 

previous mechanism M1 and the new one M2 for short.  

3.1 Common Preference  

Suppose all students share common preference [S1, S2, S3]. Fix a student s, assume he got number 

x, with 1 ≤ x ≤ n. 

(i). If 1 ≤ x ≤ q1, then s should truthfully report S1 as his best school because such a small x 
will garuntee his admission by S1. 

(ii). If q1 < x ≤ q1 + q2, there will be no place for s in S1 even though he list S1 as his best 

school. He thus should list S2 at top of his preference, since S2 is his best option left and his number 

x will garuntee his admission by S2. 

(iii). If q1 + q2 < x ≤ n, similarly there will be no place for s in both S1 and S2, he will then be 

admitted by S3, regardless of what he reports. 

We then see that the maximal expected return for x is given by  
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EM2 =
q1
n
⋅ V1 +

q2
n
⋅ V2 +

q3
n
⋅ V3 

We see that strategy “Report [S1, S2, S3] if x ≤ q1, Report [S2, S1, S3] if q1 < x" is a weakly 

dominating strategy for every students, and they all can reach EM2 by doing so. 

Recall that in the Common Preference case for M1, if q1 ⋅ V1 + q2 ⋅ V2 + q3 ⋅ V3 ≥ n ⋅ V2, every 

students will truthfully report, which leads to a expected return  

EM1 =
q1
n
⋅ V1 +

q2
n
⋅ V2 +

q3
n
⋅ V3 

for all students. We then have EM1 = EM2. 

If 
q1

n
⋅ V1 +

q2

n
⋅ V2 +

q3

n
⋅ V3 < n ⋅ V2 , recall that we calculated U − 1 ≤ t1 ≤ U  in (2.1.2) and 

(2.1.3). Hence for those who truthfully report [S1, S2, S3], we have  

q1
U
⋅ V1 + (1 −

q1
U
) ⋅ V3 ≤ EM1 ≤

q1
U − 1

⋅ V1 + (1 −
q1
U − 1

) ⋅ V3 

Let V1 = α ⋅ V3, V2 = β ⋅ V3, α > β > 1. Notice that 
q1

U
⋅ V1 + (1 −

q1

U
) ⋅ V3 ≥ EM2 implies  

nq1(α − 1)

q1α + q2β + q3 − n
≥ U 

If U satisfy (3.1.1), then EM2 < EM1 for honest students in M1. Similarly, 
q1

U−1
⋅ V1 + (1 −

q1

U−1
) ⋅

V3 ≤ EM2 implies  

nq1(α − 1)

q1α + q2β + q3 − n
+ 1 ≤ U 

If U satisfy (3.1.2), then EM2 > EM1 for honest students in M1. We can similarly calculte the 

expected return for lying students. Combining these interval provides us with a range in which we can 

say that the equilibrium of one mechanism is more efficient than the equilibrium of the other. 

4. Conclusion 

We calculated the equilibrium under different distribution of students’ preferences. When student’s 

payoff for entering their best school is relatively larger, more students will truthfully report and take the 

risk of being admitted by their worst school. The equilibrium might not be unique, however they are 

qualitatively identical and only differ in numbers. Letting students know their ranks before submitting 

their preference might increase social welfare, by not for sure. The comparison and refinement of this 

mechanism is worth to be further discussed.  
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