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Abstract: The rapid development of Internet information technology and automobile economy has 
spawned a large number of computation-intensive and time-delay sensitive vehicle applications. In the 
face of high amount of computing data and real-time response requirements of applications, how to 
improve the utilization of network resources and reduce the computing delay of vehicle applications has 
become an urgent problem to be solved. Most of the existing research focuses on the problem of vehicle 
task offloading within the coverage of edge servers, and the idle vehicle resources outside the one-hop 
range are not fully utilized. In this paper, we formulate a multi-hop offloading scheme for tasks with 
mobility awareness. Based on the high-speed movement characteristics of vehicles, the real-time location 
of vehicles and the multi-hop-assisted offloading of tasks are modeled as a Markov decision process, and 
a multi-hop-assisted task offloading and resource allocation algorithm is proposed to ensure the 
reliability of each hop link and minimize the computation delay of tasks. Simulation results show that the 
proposed multi-hop assisted offloading scheme can significantly improve the response delay of the task. 
When the vehicle speed is high, the proposed scheme can reduce the response delay of the task by at least 
17.2% compared with other algorithms (such as local and single-hop offloading algorithm and random 
multi-hop offloading algorithm). 

Keywords: Internet of vehicles, Movement awareness, Multi-hop communication, Task offloading, 
Resource allocation, Delay 

1. Introduction 

With the popularity of 5G mobile networks and other wireless networks, intelligent connected 
vehicles have come into reality, which plays an increasingly important role in promoting the construction 
of intelligent transportation systems and realizing safe and efficient driving [1]. Intelligent vehicles usually 
utilize their on-board processors and edge infrastructure to make real-time driving decisions, as the 
transmission delay of tasks uploaded to the cloud is long and prone to security issues [2, 3, 4]. By offloading 
tasks to the edge servers, vehicular edge computing can effectively reduce the transmission delay of the 
network backhaul links. At present, the construction of 5G vehicle-road collaborative demonstration 
application bases has been carried out in many places in China. However, the deployment cost of edge 
servers is very expensive, and it is difficult to have a high penetration rate [5, 6]. Therefore, it is essential 
to enhance the utilization of network resources and solve the complex scheduling problem of task 
computing resources. 

With the significant increase in the number of intelligent vehicles and the limitation of edge resources, 
more and more researches have pay attention to V2V offloading methods. In order to alleviate the 
problem of mobile data explosion in the vehicular networks, more and more scholars propose to share 
the vehicle task communication to the remaining neighboring vehicles, so as to reduce the delay or energy 
cost of the task [7-10]. In [7] and [8], vehicles are regarded as edge computing resources, which can share 
resources and conduct collaborative computing with edge servers. The authors of [9] and [10] proposed 
a relay-based task offloading scheme and task allocation algorithm according to the mobility of vehicles 
to solve the problem of task offloading and resource allocation. Compared with [7] and [8], researches 
[9] and [10] pay more attention to the impact of vehicle movement on V2V communication and task 
offloading. However, the above literatures focus on the problem of vehicle task offloading within the 
coverage of edge servers, and only consider single-hop offloading, which means that the task vehicle can 
only use the vehicle resources within its one-hop neighboring range, and it is difficult to use other idle 
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resources. 

Different from the above work, this paper proposes a mobility-aware V2V/V2R multi-hop assisted 
offloading scheme to address the problem that the vehicles outside the coverage range of the edge server 
cannot effectively utilize the computing resources of vehicles or the edge server outside the single-hop 
communication range. Specifically, the main contributions of this paper are as follows: 

(1) We model the interaction process between the real-time state of the vehicle and the multi-hop 
offloading of the task as a Markov process, and establish a V2V/V2R multi-hop offloading problem 
model with the goal of minimizing the delay. 

(2) We propose a multi-hop assisted task offloading and resource allocation algorithm. Firstly, the 
packet loss rate of multi-hop transmission is calculated, and the greedy algorithm is used to solve the 
multi-hop path search problem. On this basis, a resource allocation algorithm based on priority time 
reaching and fair proportional allocation is designed to solve the resource allocation problem of edge 
server. 

(3) By designing simulation experiments and analyzing the experimental results, the effectiveness 
and advantages of the proposed algorithm are verified. 

2. Related Work 

In this section, we summarize the existing work related to task offloading in mobile edge computing, 
especially the offloading researches with V2V communication mode. 

Compared with the abundant cloud resources, the computing resources of edge servers are relatively 
limited, coupled with their expensive deployment costs, more and more research has begun to focus on 
the aggregation and utilization of vehicle computing resources [11-15]. In [11], Wang et al. integrated and 
clustered idle vehicle resources by analyzing the service capability of vehicles within the coverage range 
of RSUs. They proposed an online VEC resource scheduling algorithm based on imitation learning, 
which uses each RSU to maintain the information within its cluster and reduce the communication 
overhead between vehicles and edge servers. Similar to research [11], the work of [12] proposed a cluster-
based cooperative task allocation scheme for C-V2X networks. In order to explore the collaboration 
between MEC servers and vehicles with idle computing resources, Bute et al. [12] used vehicle-to-vehicle 
(V2V) communication and vehicle-to-cellular network (V2N) communication to group vehicles and 
cellular communication base stations into clusters, and developed an improved matching algorithm to 
improve link reliability between nodes and achieve effective task allocation. The authors of [13], [14] 
and [15] respectively realized the utilization of vehicle resources based on software-defined network, 
digital twin technology and block chain technology. In [13], Luo et al. designed a software-defined 
collaborative data sharing architecture based on 5G-VANET, which uses SDN controller to collect 
contextual information and share cooperative data between adjacent vehicles. The work of [14] combined 
the digital twin technology and artificial intelligence into the design of vehicle edge computing network, 
and concentrated the use of potential edge service matching through edge image evaluation. To promote 
collaborative computation offloading between vehicles and ensure the security of computation offloading 
between vehicles, the authors of [15] proposed to use block chain technology to realize efficient data 
sharing between vehicles. They designed a new data sharing mechanism to improve the efficiency of 
data sharing and prevent malicious attacks. 

High speed movement of vehicles is one of the most significant characteristics of Internet of vehicles. 
The mobility of vehicles can greatly affect the quality of communication links and interrupt the offloading 
transmission process of tasks. Therefore, vehicle mobility and communication delay have always been 
important factors to be considered in vehicle computing offloading [16-20]. In order to cope with the rapid 
change of network structure caused by vehicle movement, Zhang et al. [16] described the task offloading 
of vehicles as a multi-armed slot machine problem, and proposed a distributed online decision algorithm. 
Based on long-term energy consumption constraints, Tang et al. [17] adopted Lyapunov optimization 
technique and two-stage greedy heuristic algorithm to obtain the approximate optimal solution of task 
offloading decision. In [18], the authors considering the computation offloading problem for mobile 
vehicle users in a heterogeneous VEC scenario, and they developed a network relay selection mechanism 
based on vehicle dwell time to address the network and base station selection problem in a rapidly 
changing in-vehicle environment. The authors of [19] proposed a task partition migration and offloading 
method based on multi-access edge computing (MEC) environment to balance the load of vehicles and 
edge services and improve the throughput and response delay of MEC system. Aiming at the problem of 
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frequent link disconnection and connection caused by fast movement of network nodes, the authors of 
[20] proposed a bee colony based task allocation algorithm for vehicle edge computing to reliably reduce 
the execution time of applications in vehicle edge computing systems. 

In VEC systems, the movement of vehicles will bring a certain burden to the offloading of tasks. 
However, it may also give some vehicles the advantage of being located closer to the edge servers, which 
will bring benefits for the timely processing of tasks. In [21], the authors exploit vehicle motion on urban 
roads to create vehicle edges and propose a distributed task orchestration framework (DTOF) to support 
a vehicle-to-vehicle based lightweight task orchestration scheme. The authors of [22] used machine 
learning algorithms to predict the number of users at each base station, combined the mobility of users 
with spatial correlation, and proposed an edge controller based cellular network architecture. The authors 
of [23] comprehensively considered vehicle speed perception, task offloading and resource allocation, 
established a vehicle utility function based on task execution cost and benefit, and proposed a joint 
optimization method of task offloading and resource allocation based on Multi-Agent Deep Deterministic 
Policy Gradient (JORA-MADDPG).In [24], the authors proposed a novel VEC multi-hop task offloading 
scheme based on the mobility analysis of vehicles. The task vehicle can simultaneously use the vehicle 
resources in its one-hop range or multi-hop range for task computation. However, their research focused 
on the collaboration between vehicles and does not consider the computing resource allocation of edge 
servers. 

Inspired by [24], this article from another new beneficial perspective to look at the movement of the 
vehicle. We consider a vehicular edge computing scenario that the task vehicle is outside the scope of 
edge services. Due to the mobility of vehicles in the scene, the task vehicle can migrate the task to other 
service vehicles with richer resources or within the coverage of edge servers through multi-hop 
transmission to optimize its own offloading delay. Different from [24], except for the multi-hop 
transmission between vehicles, we also consider the possibility of task vehicle-service vehicle-edge 
server link. The objective of this paper is to make full use of V2V and V2R communication resources in 
vehicle networks and minimize task response delay. 

 
Figure 1: Multi-hop assisted Internet of vehicles computing offloading scenario. 

3. System Model 

In this paper, we consider a multi-hop assisted urban IoV scenario as shown in Figure 1, in which 
multiple edge servers are set, but the coverage is limited. Vehicles equipped with wireless interfaces and 
on-board data processing unit, capable of supporting V2R with V2V two types of communication. 
According to whether or not within the scope of cover is located in the edge server, road vehicles 
respectively for consumers (CV) and the provider of the vehicle (RV) two types, expressed in set 

1 2 3{ , , ..., }mCV cv cv cv cv= and set 1 2 3{ , , ..., }nRV rv rv rv rv= respectively, the set of edge nodes is 

1 2 3{ , , ..., }rR rsu rsu rsu rsu= . When the consumer vehicle does not enter the communication range of the 
MEC server, it can carry out multi-hop offloading selectively, use the computing resources of nearby 
vehicles for task calculation, or use edge servers for calculation after multiple offloading and forwarding 
through nearby vehicles, so as to maximize the use of existing resources in the network. 
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3.1. Vehicle Location Model 

The position of the vehicle in the scene varies over time, while the edge RSUs are at fixed positions. 
Mobility of the vehicle will affect the transmission performance of V2V and V2R link. Considering the 
unsustainability of communication links between vehicles driving in the opposite direction, this paper 
assumes that the driving direction of consumer and server vehicles in the scenario is the same. The 
positions of CV, RV, and RSU at a certain time point are shown in Figure 2. 

 
Figure 2: Diagram of the relative positions of vehicle to vehicle and vehicle to edge server. 

Let RSUr− denote the RSU coverage radius, RSUh− denote the RSU antenna height, Vehh− denote the 
vehicle antenna height, and rrd denote the distance from the RSU to the road. According to the spatial 
distance formula, the distance between the vehicle and the RSU at each time vrd is obtained as follows: 

2 2 2
_ _= ( ) ( . )vr rr RSU Vehd d h h s t+ − +                              (1) 

Where s represents the speed of the vehicle, and s t⋅  is the distance of the vehicle from its position 
at time 0t =  to its current position. 

Similarly, the relative positions between vehicles at different times vvd are: 

2= [( ) ( ) ]vv vc vr c rd O O s s t− + −                               (2) 

Where vcO and vrO respectively denote the starting position coordinates of the consumer and service 
vehicle, cs and rs respectively denote their respective speeds. 

3.2. Communication Model 

Wireless communication has a great impact on the quality of edge-assisted intelligent driving. It is 
assumed that the consumer vehicle selects only one of the two communication modes V2R and V2V at 
a time for task offloading and computation.V2R and V2V links use different frequency bands to avoid 
interference with each other [25, 30]. 

(1)V2V communication 

When the consumer vehicle mcv is within the communication range of the service vehicle nrv , the 
communication rate between vehicles 2V V

tR can be calculated by the following equation: 

2 2
2 2

0 2

log (1 )( )V V t V V
t V V

V V

p g
R b t

N b
∗

= +                             (3) 

Where p  is transmission power, 2V Vb is channel bandwidth, 2V Vg is channel gain between CV and 
RV, and 0N is the noise power density. 

(2)V2R communication 
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The V2R communication link is based on Orthogonal Frequency Division Multiplexing (OFDMA) 
technology [26]. It is assumed that there are K orthogonal resource blocks without interference, and the 
bandwidth of each resource block isW . For each RSU, resource blocks are allocated equally to the 
relevant vehicles. When the vehicle is located within the coverage of the RSU, let 2V V

tR denote the 
communication rate between the vehicle and the RSU, and have: 

2
2

0

log (1 )( )V R n
t

t

p glKR W t
E N

α∗
=   +                            (4) 

Where p  is the transmission power, ⋅  is a downward rounding function, tE is the number of 
vehicles associated with the RSU, g represents the channel power gain, nl is the distance from the 
vehicle to its associated RSU, α is the path loss factor, and 0N is the noise power. 

3.3. Time Delay Model 

The computation delay of a task includes three types of delay, namely, the transmission time of each 
hop, the computation time, and the result collection time. Since the output result of task processing is 
small, the result collection time is ignored and the transmission time and computation time of the task 
are mainly considered [10, 12]. According to the calculation position of the task, it is divided into vehicle 
calculation model and server calculation model. 

(1) Vehicle calculation model 

The transmission time depends on the transmission rate of the channel and the size of the task. At 
each hop, the data transmission delay between vehicle and vehicle is as flows: 

2
t n

Vi V V
t

A
T

R
= ,                                      (5) 

Where nA is the data size of the task. 

The computation time of a task depends on the computational requirements of the task and the 
computing power of the serving device. Let nC represent the number of CPU cycles required to process 
one bit of data, and the time required to complete the task on the volunteer vehicle is shown as follows: 

i

comp n n
V Veh

i

A C
T

f
×

=                                     (6) 

(2) RSU calculation model 

The data transmission delay between the RSU and the volunteer vehicle is: 

2
t n

Ri R V
t

A
T

R
=                                      (7) 

The time required to complete the task computation on the RSU is as follows: 

i

comp n n
R RSU

i

A C
T

F
×

=                                   (8) 

4. Markov Process Transformation and Multi-Hop Offloading Problem Formulation 

In this part, we first develop a 2-D Markov process [27-29] to model the interactive process of multi-
hop offloading of a moving vehicle and a task, and then formulate the optimization problem with the 
goal of minimizing the delay. 

4.1. Modeling the Interaction Process between of Vehicle Movement and Multi-Hop Offloading  

In the process of multi-hop offloading, the number of multi-hop of the vehicle task and the final 
computing position are uncertain, that is, the consumer vehicle can offload its task to the service vehicle 
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or the edge server for computing through multi-hop transmission. As shown in Figure 3, due to the high-
speed movement of the vehicle and the passage of time, the V2V and V2R communication service nodes 
of the task vehicle may change at an uncertain time, which undoubtedly increases the complexity of the 
multi-hop offloading process. Considering that the position and speed of the vehicle will affect the time 
and type transformation of the link between the communication nodes, this paper uses the Markov 
process model to simulate the interaction process between the vehicle movement and the communication 
link change in the IoV network. 

 
Figure 3: Vehicle movement and communication link disconnection. 

 
Figure 4: Markov model of vehicle movement and multi-hop unloading process. 

As shown in Figure 4, let J denote the task set of consumer vehicles in the request queue and K
denote the network connection condition between V2V and V2R. Where 1K = denotes the V2V 
connection and 0K = denotes the V2R connection. According to the current network performance, this 
transformation can be occur between two type network connections. Let ( , , , )p k j hop n denote the 
probability that the task j is served by a network connection k and a device node n in each hop, hop
represent the number of hops, and n is the vehicle or server number. 

Let binary variables CVα represent the offloading or computation status indicator symbol of the task j

on the consumer vehicle CV , and the binary variable RVα denote the offloading or computation status 
indicator symbol of the task j on the service vehicle RV . The specific formula is shown as follows: 

1
0

V
CV

if CV offloaded
otherwise

α


= 


,                          (9) 

1
0

V
RV

if RV offloaded
otherwise

α


= 


,                         (10) 

Let the binary variable 2V Rβ represent the offloading indicator for the vehicle to offload task j to the 
base station _RSU r , and the formula is expressed as follows: 

2

1
0

r
C R

if RSU offloaded
otherwise

β


= 


                         (11) 

Combining the node connection probability ( , , , )p k j h n of the task j in each hop, the offloading or 
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computing status indicator RVα on the server vehicle, and the offloading indicator 2V Rβ on the base 
station,the communication node selection and task offloading situation of each hop can be determined, 
and then the corresponding delay can be calculated. 

4.2. Formulation of Multi-hop Offloading Optimization Problem 

Assuming that the total number of tasks is m , and the multi-hop number of task j  is jhop , the total 
delay after multi-hop transmission and using the resources of service vehicle to complete the calculation 
is 

2
0

+
jhop

Veh n n n
j R V Veh

t i

A A C
T

R f
×

= ∑                              (12) 

The total delay of the task to complete the calculation by using RSU resources after multi-hop 
offloading is: 

1
_

2 2
0

jhop
Veh RSU n n n n
j V V V R RSU

t t i

A A A C
T

R R F

− ×
= + +∑                        (13) 

Let and denote the number of tasks that complete computation through vehicles and edge servers, 
respectively. According to formula (12) and Formula (13), the average delay of all tasks is: 

1 2
_

0 0

1 2

m m
Veh Veh RSU
j j

j jVeh
avg

T T
T

m m
= =

+
=

+

∑ ∑
                          (14) 

1 2
_

0 0
: min

m m
Veh Veh RSU
j j

jn j
P T T

= =

+∑ ∑                           (15) 

1. . 1: 0 ( )s t C m t m≤ ≤                            (15a) 

22 : 0C m m≤ ≤                              (15b) 

1 23 : + =C m m m                              (15c) 

14 : ,n
Veh
jC DT j m≤ ∀ ∈                           (15d) 

2
_5 : ,Veh RSU

j nC DT j m≤ ∀ ∈                         (15e) 

The constraints in Problem P1 are explained as follows: C1 means that the number of tasks calculated 
after multi-hop unloading and using vehicle resources to complete tasks does not exceed the total number 
of tasks; C2 indicates that the number of tasks calculated by edge server resources after multi-hop 
offloading does not exceed the total number of tasks; C3 indicates that each task can be successfully 
processed; C4 and C5 respectively indicate that the delay cost after multi-hop offloading and using 
vehicle resources to complete task computation and after multi-hop offloading and using edge resources 
to complete task computation does not exceed the constraint delay of the task nD . 

5. Multi- hop assisted task offloading and resource allocation algorithm 

In this section, we propose a multi-hop assisted task offloading and resource allocation algorithm for 
optimal task offloading and resource allocation decisions. The algorithm can be divided into greed 
multiple hops path search and fair resource allocation in two stages. 

5.1. Multi- hop path search algorithm based on greedy strategy 

Vehicle movement can lead to rapid changes in communication links, and packet loss problems may 
occur during multi-hop transmission of tasks. The packet loss rate of packet transmission between 
vehicles is mainly affected by the distance between vehicles and the channel occupancy rate [10, 24, 31]. In 
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order to avoid the problem of communication channel congestion, this paper assumes that the link 
between each hop pair is a one-to-one connection, so the main cause of packet loss is the change of 
distance between vehicles. Firstly, the packet loss rate of task multi-hop transmission is defined as 
follows: 

During the time interval of the i th hop t∆  , the relative distance variation of the vehicles 1C and 2C
participating in multi-hop transmission is: 

1 1
1 2 2 1 2 1 1 2( , ) ( ) ( )i i i i i iD V V V V t V V V V t− −= ∆ − ∆ ×∆ = − + − ×∆ ,                  (16) 

Therefore, the packet loss rate of its data transmission 12
iP can be calculated by the following equation: 

12 2 1 1 21 {[( ) ( , )] }i i iP P X X D V V R= − − + < ,                          (17) 

Where 1
iX and 2

iX represents the initial position of the vehicle 1C and 2C . During each hop offloading 
of the task, the packet loss probability of each possible transmission route is firstly calculated, and then 
the greedy algorithm is used to select the multi-hop relay offloading node with the minimum packet loss 
probability as the best offloading. Finally, the multi-hop transmission delay of the task is optimized. The 
time complexity of the greedy algorithm is ( )hO m hop n⋅ ⋅ . The pseudocode for the algorithm is shown 
in Algorithm 1. 

Algorithm 1:Multi-hop path search algorithm based on greedy strategy 
1:Input:the parameters associated with the task: { }1 2 , ,...,  mTask task task task= ,related parameters of 
the candidate vehicle: 1 2 } ,  ,  ,. .  { . ,o nvehicV le vehicle vehicle vehicle= , related parameters of edge sever:

1 2{ , , }rRSU RSU RSU RSU= …, ; 
2:Initialize the starting position and resource status information of all vehicles and edge servers in 
the scenario; 
3:Output: multi-hop selection scheme: 1 2 }  ,  ,...,  { jResult op op op= ; 

4:for 0t =  to t T= do 

5:    for 0j =  to j m= do 

6:        0jh = ; 

7:        while task is not completed do 
8:             update the location and resource status information of vehicles and edge servers 
in the scene; 
9:             generate information about the nodes to be offloaded and calculate the packet 
loss probability; 
10:            select the smallest node packet loss probability as the next-hop node, and 
calculate the corresponding transmission delay; 
11:            while the transmission delay is smaller than the local computing delay do 
12:                 ++j jh h= ; 

13:                 If the offloading node is within the coverage of the edge server, add the 
edge server to the set of next hop nodes, and calculate the respective transmission delay; 
14:                 select the node with the lowest transmission delay as the next hop node; 
15:                 ++j jh h= ; 

16:    end for 

17:end for 
It is worth noting that within the maximum tolerance delay range of tasks, the criterion for 

determining whether a hop offloading node of a task is a RSU or a vehicle is the respective transmission 
delay size. 
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5.2. Task Resource Allocation Algorithm Based on Priority Time Arrival and Fair Proportion 

When the last hop node of multiple tasks is the edge server node, the corresponding computing 
resources are allocated to the tasks according to the arrival time and number of tasks. The steps of the 
algorithm are as follows: 

Algorithm 2: Task resource allocation algorithm based on priority time arrival and fair 
proportion 

1: Input: Task information and its offloading decision set A ; 
2:Initialize the starting position and resource status information of all vehicles and edge servers in the 
scene; 
3: Output: The set of resource allocations for the server F . 

4:for 1i = to i N= do 

5:    while t i t= ×∆ do 

6:        update the remaining computing resource value of the edge server; 
7:        obtain all task information and its offloading decision set A during the period 
(( 1) , )i t i t− ×∆ ×∆ , and calculate the number of tasks offloaded to the edge server; 
8:        allocate the remaining computing resources of the server to the task vehicles in equal 
proportion, and calculate the resource allocation value of each vehicle; 
9:        return F ; 

10:end for 

6. Experiment Simulation and Result Analysis 

In this section, we firstly set the main parameters of the experiment, and then set up the vehicle 
movement and communication link state analysis experiments and delay cost comparison experiments 
respectively for the proposed multi-hop assisted task offloading scheme, respectively. In the experiment 
of vehicle moving and communication link state analysis, the reliable link time of V2V and V2R link is 
analyzed by changing the vehicle moving speed, and the feasibility of multi-hop offloading scheme is 
determined. In the delay-cost comparison experiment, we compare the proposed multi-hop-assisted task 
offloading algorithm with several existing classical offloading schemes. By comparing their delay 
calculation costs, the advantages of the proposed scheme in reducing the task offloading delay were 
demonstrated. We present the results of the optimization algorithm and evaluate the performance of the 
proposed algorithm. 

6.1. Parameter settings 

We built the simulation environment based on open source optimization modeling languages Python 
and Pyomo [32]. Consider a realistic urban street IoV scenario, where two communication base stations 
are equidistantly distributed near a street with a length of 3km, the number of consumer vehicles is set to 
[5,50], and the number of server vehicles is 100. By default, all vehicles travel in the same direction. The 
vehicle communication network is based on IEEE 802.11p V2I physical /MAC protocol Settings. For 
V2R communication, the coverage of each base station is set to 0.5km [28], and the service vehicles that 
are within the coverage of the base station can offload tasks to the edge server for computation. For V2V 
communication, the communication range of each vehicle is set to 0.15km [10], and the task vehicle can 
transmit its task to any service vehicle within its communication range. In the same way, the service 
vehicle can offload the task to other service vehicles, or use its own computing resources to process the 
task. In addition, the height of all vehicle antennas is 1.5m, and the height of base station antennas is 9m 
[28]. Table 1 describe the main parameters used in the simulations. 

Table 1: Simulation parameters setting. 

Parameters Value 
Length of the street L /km 3 
The simulation time T /s 30 
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Single time slot length t∆ /ms 20 
The number of consumer vehicles [5,50] 

The number of service vehicles 100 
The speed of the vehicle s /(km/h) [3,40] 
Height of vehicle antenna Vehh− /m 1.5 

Height of the base station antenna RSUh− /m 9 
The number of base stations 2 

The base station coverage RSUr− /m 500 
Vehicle communication range Vehr− /m 150 
Transmitted power of vehicle p /mw 200 

Vehicle to RSU resource block bandwidth 2V Rb /kHz 180 
Total number of V2R resource blocks K  50 

Vehicle to vehicle communication bandwidth 2V Vb /kHz 60 
Noise spectral density 0N /(dBm/Hz) -174 

Path loss coefficientα  3.75 
The amount of task input data nA /kb [400,1000] 

The number of CPU cycles required per unit of data nC

/(cycles/bit) 
[200,500] 

Maximum tolerable delay of the task nD /ms [90,120] 
Vehicle computing capacity f /(cycles/s) [1×109,2×109] 

Edge server computing power F /(cycles/s) [2×1010,8×1010] 

6.2. Analysis of experimental results 

(1) Experiments on vehicle mobility and communication link state analysis 

In this article, the reliable link time of a communication link refers to the duration of the state in 
which a vehicle is within the communication range of other vehicles or edge server nodes. Based on the 
above analysis, it mainly depends on the moving speed of the vehicle. In order to obtain the mobile 
communication link of vehicles at different speeds, we set up a time comparison experiment under low 
speed, medium speed and high speed, in which the moving speeds of consumer and service provider 
vehicles are (5,10)km/h, (15,20)km/h and (35,40)km/h in turn. The numerical result curves correspond 
to V2V_A (V2R_A), V2V_B (V2R_B), and V2V_C (V2R_C) in sequence. The simulation duration was 
300s, and the distance between vehicles and the distance between vehicles and the edge server was 
calculated every two seconds. If the distance is within the vehicle communication range or the base 
station coverage range, the vehicle V2V or V2R communication link is considered to be linkable at that 
time, and the corresponding value is positive; otherwise, the value is zero. The experimental results are 
shown in Figure 5 (a) and Figure 5 (b). 

As for the experimental results in Figure 5 (a), firstly, by comparing the experimental results of three 
types of ABC V2V communication links, it is found that, at different speeds, the state of V2V 
communication links will change intermittently in the irrelevant time slot state. The reason for this 
phenomenon is the irregular change of vehicle speed. Secondly, by analyzing the link duration of each 
single communication link at different vehicle speeds, it can be found that with the increase of vehicle 
speed, the probability that the link duration of a single communication link becomes smaller keeps rising, 
which can be explained by the increase of distance variation caused by the increase of speed. As for the 
experimental results shown in Figure 5 (b), firstly, the duration of V2R communication links is 
significantly higher than that of V2V communication links due to the wide coverage of edge servers. 
Second, due to the limited number of edge servers, there is no global coverage, so vehicles cannot 
complete V2V communication links at long intervals. This means that vehicles can only use their own 
computing resources to compute tasks when they do not use V2V communication links. If the computing 
resources of vehicles are insufficient, it is difficult to ensure that tasks are processed in a timely manner. 
According to the experimental results in figure 5 (a) and figure 5 (b), when the task vehicle is outside the 
coverage of the edge server, compared with the mode of waiting for the vehicle to enter the coverage of 
the server before offloading, enabling the two communication modes of V2V and V2R can improve the 
utilization of network equipment resources and better ensure the completion time of the task. 
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(a) V2V communication links 

 
(b) V2V communication links 

Figure 5: V2V and V2R communication links in different time slots. 

(2) Delay Cost Comparison Experiment 

To verify the effectiveness of the proposed MHORA algorithm in reducing the delay cost, it is 
compared with three other multi-hop offloading algorithms. The first algorithm is Local and Single-hop 
offloading algorithm (LSHORA), which represents that vehicle tasks can only use local resources or 
single-hop task offloading vehicles for task processing. The second algorithm is Random Multi-hop 
offloading algorithm (RMHORA), which represents that each hop offloading node of the consumer 
vehicle is randomly generated. The third comparison algorithm is the MMTO algorithm proposed in 
literature [24]. 

We first studied the impact of the number of consumer vehicles on the delay cost of different 
algorithms, and the experimental results are shown in Figure 6. The simulation time set in the experiment 
is 1000s, and the number of service vehicles is 100, evenly distributed on the street. Set all the vehicle's 
speed is (3, 10 km/h). The experimental results show that the delay cost of the four unloading schemes 
is increasing as the number of consumer vehicles increases. Compared with the other three algorithms, 
MHORA algorithm proposed in this paper has the best overall performance and the lowest delay cost. 
Due to the limitations of greedy algorithm, MHORA algorithm does not gain obvious advantages over 
the other three comparison algorithms in the case of some consumer vehicles. Firstly, when the number 
of vehicles is 20, the delay cost of MHORA algorithm is higher than that of RMHORA algorithm and 
MMTO algorithm. This is because each hop target node of the greedy algorithm is selected according to 
the optimal value under the current situation, which may miss some multi-hop offloading paths with 
better performance in the future. Secondly, when the number of consumer vehicles increases to 50, the 
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delay cost of local or single-hop offloading algorithm LSHORA is the lowest compared with other 
schemes. This is because that, in the case of limited number of server vehicles, vehicle users will compete 
with each other for limited relay multi-hop offloading nodes, which will increase the completion delay 
of the task when there are too many vehicles of consumers. However, the local or single-hop offloading 
algorithm can support local computing mode, which is beneficial to alleviate the problem of multi-hop 
resource shortage. The results in Figure 6 illustrate that multi-hop offloading is more advantageous in 
scenarios with sufficient resources of service vehicles. 

 
Figure 6: Impact of the number of consumer vehicles on the delay cost of different algorithms. 

 
Figure 7: Impact of edge server computing capacity on delay cost of different algorithms. 

Figure 7 shows the offload delay cost of different algorithms when the computing power of edge 
servers is gradually increasing. In the scenario, the number of consumer vehicles is set to 30, and the 
simulation time, number of server vehicles, vehicle position and driving speed are the same as those in 
Figure 7.It can be seen from the figure that the delay cost of the four algorithms shows a decreasing trend 
as the computing power of the edge server increases. Compared with the other three algorithms, the 
LSHORA algorithm has the worst performance in cost reduction. This is because when the consumer 
vehicle is outside the scope of the edge server, the local or single-hop offloading calculation method is 
difficult to effectively utilize the resources of the edge server and the service vehicle, which results in the 
highest delay cost. RMHORA algorithm and MMTO algorithm adopt multi-hop offloading mode, which 
improves the utilization rate of vehicle resources of the server, so the delay cost is relatively low, and the 
random multi-hop unloading algorithm shows relatively strong instability. In general, the MHORA 
algorithm proposed in this paper has the highest resource utilization efficiency for the server vehicles 
and edge server devices in the network, and when the computing power of the edge server increases, the 
effect of reducing the delay cost is most significant. 
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Figure 8: Impact of vehicle speed on delay cost of different algorithms. 

The experimental results in figure 8 demonstrate the impact of vehicle speed on the delay cost of 
different algorithms. The driving speed of the vehicle determines the contact time between the vehicle 
and its current server vehicle or the edge RSU. The higher the vehicle speed is, the shorter the contact 
time between the vehicle and its neighboring nodes is. Therefore, the time delay cost of offloading will 
increase with the increase of vehicle speed. According to the communication link reliability analysis 
experiment, V2V multi-hop offloading can provide higher reliable link probability for vehicle task 
offloading in the process of high speed driving. Compared with the other three algorithms, the MHORA 
algorithm in this paper improves the resource utilization of service vehicles and edge nodes in the 
network through multi-hop task offloading and server resource allocation, so as to achieve the lowest 
offloading delay. Although the random multi-hop offloading algorithm RMHORA achieves lower delay 
cost than the MHORA algorithm when the vehicle speed is (20, 25) km/h, similar experimental results 
are not obtained in the other four sets of speed-delay experiments. According to the experimental results 
of figure 6, figure 7 and figure 8, the MHORA algorithm of the proposed scheme can better reduce the 
task delay cost and improve the satisfaction of vehicle users compared with the other three comparison 
algorithms in the case of unstable vehicle speed and sufficient edge resources or idle vehicle resources. 

7. Conclusion 

Aiming at the problems of long transmission distance and long offloading delay of vehicle tasks 
outside the coverage of edge servers in Internet of vehicles (IoV), this paper proposes a multi-hop assisted 
offloading scheme based on mobile perception. By using the flexible change characteristics of vehicle 
location, the vehicle can be offloaded to the edge server or other vehicles with richer computing resources 
in advance through multi-hop transmission when it does not enter the coverage of the edge server. The 
multi-hop offloading of vehicle mobility and task was modeled as a Markov decision process, and a 
multi-hop-assisted task offloading and resource allocation algorithm MHORA was designed to solve the 
problem iteratively. According to the numerical results of simulation experiments, the proposed scheme 
has more advantages than some existing task computing offloading schemes when the vehicle is running 
at a high speed and the edge resources are sufficient. In the future research work, we will focus on the 
limitations of the greedy algorithm to improve, and strive to find the multi-hop offloading scheme as the 
optimal solution. At the same time, the dependence or priority characteristics of tasks will be considered 
to meet the personalized service needs of different vehicle users. 
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