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Abstract: For the predictive effects of individual models vary, unlike conventional implementations, this 

paper presents a new more comprehensive approach-CEEMDAN-BPMs model, which aim to the goal to 

the accuracy improvement of stock price forecasting, especially interesting for analysis nonlinear and 

nonstationary financial time series. This paper introduced a new model, that is BPMs model, furthermore, 

this new model is applied to financial time series prediction for high frequency data and low frequency 

data respectively. The key idea on the BPMs model relies on method of weighted linear stacking. Based 

on this new model with two decomposition method empirical mode decomposition (EMD) and complete 

ensemble empirical mode decomposition with adaptive noise (CEEMDAN) are proposed in this paper. 

The paper employs the indicator mean absolute percentage error（MAPE), mean absolute error（MAE), 

mean square error（MSE)and correlation coefficient evaluation criterion and empirical results present 

that forecasting effects of new model CEEMDAN-BPMs is optimal in forecasting. 

Keywords: Forecasting, EMD-BPMs forecasting, CEEMDAN-BPMs forecasting 

1. Introduction 

Today's world is in the era of intelligence, which gradually presents complicated connectness 

relationship with external things. In other words, in most cases, the depiction of this peculiar relationship 

is nonlinearity instead of linearity relationship. This chaotic system plays an important role in complex 

mathematics-based subjects, such as the atmosphere, aerospace engineering, finance, etc. [1] 

Additionally, research on this complex system in recent years has mainly focused on how to improve the 

prediction accuracy [1-3]. Thus, in this era of big data, scholars are keen to use machine learning and 

deep learning for predicting stock prices and its trends which is concluded in chaotic system for recent 

research trends in prediction [4]. These chaotic systems including finance system, considering the 

financial market filled with all kinds of transaction information (fundamentals, news event, rumors, 

investor sentiment etc.), which is affected by a variety of factors [5]. Thus, basically the image of the 

financial market is characterized by a dynamic, nonlinearity, non-stationarity, noisy and chaotic, which 

makes the traditional theoretical methods based on stationarity and linearity assumptions no longer 

applicable [6-7]. This feature of the financial time series hints the task of prediction is full of challenge. 

However, scholars have never stopped the pursuit of research of this area of how to improve the 

prediction accuracy of the model in financial time series prediction, which is the objective of contribution 

this paper, attempting to understand the world from an alternative nonlinear perspective. Furthermore, 

this research of this paper has certain significance contribution in practical applications for financial 

industry, for the neural network intelligent algorithm model proposed by this paper in somewhat extent 

possibly for reference for some finance companies that employed neural network intelligent algorithm 

model to forecast time series [8-9]. 

This article will use a new decomposition and combination model to predict time series. It can be 

seen that the prediction advantage of combination model with CEEMDAN decomposition is over other 

single algorithm models and combination models respectively in comparative analysis result given by 

MAE, MAPE, MSE and 𝑅2. 
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2. Methodology-Proposed model 

2.1. Empirical mode decomposition (EMD)& Complete ensemble empirical mode decomposition with 

adaptive noise (CEEMDAN) 

Empirical mode decomposition (EMD) is one kind of decomposition method, which is an adaptation 

approach [12]. Such decomposition method is appropriate for non-linear and nonstationary data analyses, 

producing a collection of intrinsic mode functions (IMFs) and one residue. To be specific, if the initial 

data is decomposed by EMD, IMF functions and a new residue will be produced after decomposition. If 

does not exist any extreme value and high frequency oscillation in the residue, EMD will incessantly 

decompose the residuals into new IMF functions and a new residue till the item of decomposition residual 

meets the Cauchy standard. The differences between IMFs and residues of EMD decomposition process 

are given as following [10,11] 

𝑟𝑘[𝑡] = 𝑟𝑘−1[𝑡] − 𝐼𝑀𝐹𝑘[𝑡], 𝑘 = 2, … , 𝐾     (1) 

where  𝑟𝑘[𝑡] denotes the k-th residue at the time t and K denotes the sum of IMFs and residues. 

Afterwards, Huang, et.al tackled the flaw of EMD of thoroughly extracting the local characteristics 

from the blended characteristics of the initial sequence. Hence, they put forward Ensemble Empirical 

Mode Decomposition (EEMD), adding white noise to the initial time series and performing EMD 

multiple times [39]. Thus, a new time series is given as following [11] 

𝑥𝑖[𝑡] = 𝑥[𝑡] + 𝑤𝑖[𝑡], 𝑖 = 1,2, … , 𝑁          （2) 

where x[t] represents the initial time series data, 𝑤𝑖[𝑡]denotes the i-th white noise, N represents the 

times of EMD decompsitional process. 

EEMD can decompose x[t] into, the actual 𝐼𝑀𝐹̅̅ ̅̅ ̅̅ euqals the mean of  𝐼𝑀𝐹𝑘
𝑖[𝑡]. 

𝐼𝑀𝐹̅̅ ̅̅ ̅̅ = 1/𝑁 ∑ 𝐼𝑀𝐹𝑘
𝑖[𝑡]𝑁

𝑖=1                  (3) 

EEMD can decompose x[t] adding white noise into substantial 𝐼𝑀𝐹𝑘
𝑖[𝑡] Nevertheless, the scholar 

[40] discovered the flaw of EEMD put forward by [13]. They developed a novel decompositional 

approach, i.e., CEEMDAN. Thus, the actual IMF function is given as following [13] 

𝐼𝑀𝐹̅̅ ̅̅ ̅̅ = 1/𝑁 ∑ 𝐸1(𝑟𝑘−1[𝑡] +𝑁
𝑖=1 𝜀𝑘−1𝐸𝑘−1(𝑤𝑖[𝑡]) (4) 

𝑟𝑘[𝑡] = 𝑟𝑘−1[𝑡] − 𝐼𝑀𝐹𝑘
̅̅ ̅̅ ̅̅ ̅ (5) 

𝑥[𝑡] = 𝐼𝑀𝐹𝑘 +  𝑟𝑘[𝑡] (6) 

where the x[t] denotes the targeted time series data, 𝐼𝑀𝐹̅̅ ̅̅ ̅̅  denotes the mean decomposition functions 

2.2 BPMs model 

As a single modeling method can merely forecast a certain tendency, for the sake of acquiring a 

superior forecast effect, our team utilized the approach of weighted linearity stacking of several models 

with the aim of combining into a more precise model. We acquired the forecast outcomes of the 4 

modeling methods aforesaid: 

𝑦1(𝑥) = 𝑓𝑢𝑛𝑐1(𝑥)  

 𝑦2(𝑥) = 𝑓𝑢𝑛𝑐2(𝑥)   

… 

 𝑦𝑛(𝑥)  = 𝑓𝑢𝑛𝑐𝑛(𝑥) 

We aimed to establish a weighting matrix for the purpose of weighting the aforesaid modeling 

methods and acquire the superimposition forecast outcomes 

𝑦𝐶omb(𝑥) = ∑ 𝑤(𝑖)𝑦𝑖(𝑥)

𝑛

𝑖=1

 

where yEn denotes the eventual forecast outcome of the aforesaid model combination, and denotes 

the weight coefficient of the entire modeling methods utilized for weighting, which ought to meet the 
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constraints below 

We mainly intended to acquire a series of optimum weighting variables, for the sake of minimizing 

the forecast error. Hence, we established the optimized goal function: 

∑ 𝑤(𝑖)

𝑛

𝑖=1

=1 

𝑚𝑖𝑛 𝐸mse=
1

𝑚
∑[∑ 𝑤(𝑖)𝑦𝑖(𝑥𝑐𝑟𝑜𝑠𝑠𝑘) − 𝑦𝑟𝑒𝑎𝑙(𝑥𝑐𝑟𝑜𝑠𝑠𝑘)]2

𝑛

𝑖=1

𝑚

𝑘=1

 

𝑠. 𝑡 𝑤(𝑖) ≥ 0,  ∑ 𝑤(𝑖)

𝑛

𝑖=1

= 1 

It’s noteworthy that, 𝑥𝑐𝑟𝑜𝑠𝑠𝑘  denotes a test input specimen for the m-fold cross-verification 

partition of the learning specimen, 𝑦𝑟𝑒𝑎𝑙(𝑥𝑐𝑟𝑜𝑠𝑠𝑘) denotes the real output value in correspondence to 

the input specimen at present.  

We’ll briefly introduce m-selective cross-verification. The m-selective cross-verification aims at 

dividing the entire learning specimens into m parts equally, taking m-1 of them for learning every time 

and afterwards taking the rest. One to test, this process loops m times, so that every specimen is tested, 

the specimen established in such way 𝑥𝑐𝑟𝑜𝑠𝑠𝑘 denotes an input specimen of m-selective cross-

verification. 𝑦𝑖(𝑥𝑐𝑟𝑜𝑠𝑠𝑘) denotes the forecast outcome of the ith model, n denotes the model quantity, 

and m denotes the cross-verification quantity. Eventually, we acquired a fitness function minimizing the 

forecast error based on the cross-verification of learning specimens. For the solution of the aforesaid 

modeling method, the genetic arithmetic was utilized to obtain the solution. The genetic arithmetic input 

is the aforesaid weight wi, the fitness function is Emse, the fitness equals to Emse in the aforesaid 

equation; the objective was to realize the minimization of the fitness function. Eventually, we utilized the 

weights to weight the outcomes of these 4 arithmetics to acquire the optimum forecast outcomes. 

2.2. Evaluation criteria 

In this paper, an optimal prediction model will be selected by several evolution indicators. The 

evaluation indicators employed is mean absolute percentage error (MAPE), mean absolute error (MAE), 

mean square error (MSE) and R square (correlation coefficient), which are defined as respectively as 

following 

MAE=1/n∑ | 𝑌𝑖 −𝑛
𝑖=1 𝑌𝑖̂| 

MAPE=1/n∑ | 𝑌𝑖 −𝑛
𝑖=1 𝑌𝑖̂|/𝑌𝑖 

MSE=[1/𝑛 ∑ ( 𝑌𝑖 −𝑛
𝑖=1 𝑌𝑖̂)]2 

𝑅2=1-
∑ (𝑛

𝑖=1 𝑌𝑖̂−𝑌𝑖)2

∑ (𝑌𝑖−𝑛
𝑖=1 𝑌̅)2  

where the predicted value 𝑌𝑖̂ is the result of fitting the model learned from the training set to the test 

set, the observed value 𝑌𝑖 is the observed value in the test set, and the superscript of n represents the 

number of predicted observations. MAE is a measure of the average magnitude of forecast error without 

directional considerations. MSE measure prediction error is based on the average of the squared 

differences of the distances between the actual and predicted values. MAPE measures prediction error is 

based on the difference between the actual value and the predicted value as a percentage of the actual 

value. 𝑅2 is used to measure the degree to which the predicted value fits the regression line. The higher 

the degree of fit the better the prediction to the actual value. 

3. Experimental results and discussions 

The experimental data in this paper comes from the Wind database, and the 15-minute-high frequency 

data and the daily closing price low frequency data of the CSI 300 Index are used as the research objects. 

The interval of the selected time series is March 18, 2019 to March 17, 2022. During the modeling process, 

80% of the data will be used to train the model, and the remaining 20% of the data will be used to test 

the predicted performance of the model. 
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3.1 The results of data decomposition by EMD and CEEMDAN for high frequency and low frequency 

data 

This part presents the decomposition result of EMD and CEEMDAN for the high-frequency and low-

frequency data of the CSI 300 index respectively. We can see that Fig.1. (a) shows the decomposition of 

15-minute high-frequency time series data that after EMD decomposition, the high-frequency time series 

is decomposed into 20 IMFs. Fig.1. (b) presents the decomposition of CEEMDAN, which is decomposed 

into 8 IMFs. We set the noise amplitude to 0.2, the number of noise additions to 500, and the maximum 

number of iterations to 5000 in the parameter setting. For the low frequency data, we can see that Fig.2. 

(a) shows the decomposition result of the time series data of the stock index daily data that decomposed 

by EMD method, presenting that the high frequency time series is decomposed into 11 IMFs. Fig.2. (b) 

presents the result that is decomposed into 8 IMFs by CEEMDAN. In the parameter setting, we also set 

the noise amplitude to 0.2, the number of noise additions to 500, and the maximum number of iterations 

to 5000. 

 
(a) 15 minutes High Frequency Data Decomposed by EMD 

 
(b) 15 minutes High Frequency Data Decomposed by CEEMDAN 

Figure 1: Decomposition results of CSI300 index for 15 minutes Data. 
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(a) Daily Data Low Frequency Data Decomposed by EMD 

 
(b)Daily Data Low Frequency Data Decomposed by CEEMDAN 

Figure 2: Decomposition results of CSI300 index for Daily Data. 

3.2 Model prediction errors comparison for high frequency data and low frequency data 

In this section, we would show how to choose an optimal forecasting model. Thus, the following will 

show the comparison results of the prediction performance of a single model and a combined model, 

which is evaluated by Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), Mean 

Square Error (MSE) and R-squared (Correlation coefficient) indicators to choose an optimal forecasting 

model. We adhere to a principle of selecting the optimal prediction model, that is, the value of evaluation 

the smaller the better. 
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Table 1: Comparison of the experimental results of the prediction error between the stacked model and 

the pure single model. 

Panel A: Result of 15 minutes high frequency data 

Model MAE MAPE MSE 𝑅2 

BP 46.308288 0.009750 4127.812086 0.953282 

LSTM 21.580714 0.004497 653.640832 0.996130 

KELM 9.243126 0.001950 184.163850 0.997610 

SVM 8.63899 0.001825 163.105792 0.997839 

BPMs 8.656891 0.001826 163.515182 0.997864 

EMD-BPMs 5.905360 0.001287 154.527893 0.998024 

CEEMDAN-BPMs 6.704520 0.001414 94.928101 0.998759 

Panel B: Result of daily data low frequency data 

Model MAE MAPE MSE 𝑅2 

BP 57.729137 0.012124 5120.422006 0.932427 

LSTM 44.592704 0.009377 3385.740622 0.963151 

KELM 41.333389 0.008731 2903.165490 0.964174 

SVM 40.710606 0.008606 2881.230556 0.963809 

BPMs 40.559036 0.008572 2895.082520 0.963735 

EMD-BPMs 33.772346 0.007151 1838.364624 0.981951 

CEEMDAN-BPMs 24.841278 0.005214 901.286255 0.995212 

From the comparison results given by Panel A and Panel B in Table 1, the prediction performance of 

the CEEMDAN-BPMs model is the optimal model in prediction of high-frequency data and low-

frequency data. 

Following the analysis is given of Panel A of the prediction error of 15 minutes high frequency data. 

Firstly, we could make comparison of the purely model BP, LSTM, KELM, SVM and the newly stacked 

model BPMs model. From the comparison error results, the best prediction performance is the SVM 

model among other purely models, because its error indictors are smaller than previous purely model. 

Then we would compare the single best model SVM model with the BPMs model, and we find that the 

new stacked BPMs model is slight inferior to the SVM model, for most of the indicators are not as good 

as the single optimal model. Even though the fitting degree of the BPMs model is higher than the SVM 

model, which is 0.997864. Therefore, we consider improve the prediction performance of the new 

combination model by decomposition method. We can clearly see that the prediction performance of the 

BPMs model after decomposition is significantly improved, which can defeat the SVM model and its 

stacked BPMs model. Specifically, we could make comparison with SVM model, BPMs mode and EMD-

BPMs model. The prediction error indicators of EMD-BPMs for MAE, MAPE, MSE and R square for 

5.905360,0.001287,154.527893 and 0.998024 respectively, which is better than SVM model of its MAE, 

MAPE, MSE for 2.73363,0.000538 and 8.577899 respectively, and for R square, EMD-BPMs model is 

higher 0.000185 than SVM model. When compare with BPMs model, EMD-BPMs model prediction 

error has improved significantly its MAE, MAPE and MSE indictor is smaller for 2.751531,0.000539 

and8.987289 respectively and its R square has improved 0.00016. 

On the other hand, for the prediction error of CEEMDAN-BPMs for MAE, MAPE, MSE and R square 

is 6.704520,0.001414,94.928101and 0.998759 respectively, and finally we have reason to believe that 

the CEEMDAN-BPMs model is the optimal model in forecasting, for comparing with the EMD-BPMs 

model with its the high goodness of fit and its MSE value is smaller. 

Next, we would give an analysis of precision performance of models in low frequency data given by 

Panel B. The analysis logic is the same as mentioned above. We firstly start to analyze and compare the 

single model BP, LSTM, KELM, SVM and the newly stacked BPMs model. From this result given by 

Panel B, the results will not be too confusing. Thus, obviously, the newly stacked BPMs model has a 

relatively small prediction error and a high degree of fit. Therefore, there is no doubt that the BPMs 

model is the best prediction model in the first stage comparing with other purely models. Then, taking 

into improve prediction performance of the BPMs model, the low-frequency time series is to decompose 

in the second stage. Surprisingly, the result is satisfactory that is what we expected. The prediction result 

of CEEMDAN-BPMs does not disappoint for its MAE, MAPE, MSE is 24.841278,0.005214 and 

901.286255, the R square is 0.995212, which significantly beat other models in comparison of prediction 

performance. 
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In conclusion, for the prediction and analysis of high-frequency data, the combined model needs to 

be decomposed to improve the prediction performance. For the prediction and analysis of low-frequency 

data, whether the stacked model in decomposition or not, its forecasting performance is better than those 

of a single model. Therefore, prediction performance would be improved potentially after decomposition. 

we could conclude that CEEMDAN-BPMs model is the optimal model in prediction of high frequency 

data and low frequency respectively. 

4. Conclusion 

CEEMDAN-BPMs model is used to predict historical data of stock index namely CSI300 CSI300 

from emerging stock markets in this paper. Firstly, the original data for high frequency data and low 

frequency data is decomposed by the CEEMDAN and EMD method respectively. The paper creates a 

new model-BPMs model and adds SVM, BP, LSTM and KELM model as comparative models, and uses 

MAE, MAPE, MSE and R-square to evaluate the accuracy of single model and hybrid model, then 

concludes that the CEEMDAN-BPMs model is optimal no matter for high frequency data or low 

frequency data. 

The method of decomposition prediction is used to construct the financial time series prediction 

model. It can be found that the prediction accuracy of the decomposed superimposed BPMs model is 

significantly improved. Among them, the prediction accuracy of the decomposed BPMs model is 

satisfactory for the prediction accuracy of high-frequency data and low-frequency data respectively. 

Therefore, for the prediction and analysis of high-frequency data, the combined model needs to be 

decomposed to improve the prediction performance. For the prediction and analysis of low-frequency 

data, the prediction performance of the stacking model is better than that of the single model with or 

without decomposition. Therefore, the prediction performance after decomposition may be improved. 

We can conclude that the CEEMDAN-BPMs model is the optimal model for predicting high-frequency 

data and low-frequency data, respectively. 
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