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Abstract: To improve the accuracy of reconstructing morphology in shield tunnel monitoring by fiber-

optic Bragg grating (FBG) sensors, a Transformer network-based optimized tunnel cross-sectional curve 

reconstruction method is proposed to solve the problem of low reconstruction accuracy due to the 

cumulative error of discrete curvature points. In this research, the optimization method uses all 

interpolation points as initial points to minimize the cumulative error in fitting the curve with discrete 

curvature points. Simulation model experiments of the shield tunnel were carried out to verify the 

accuracy of the optimization method in reconstructing the tunnel section curve. The results show that the 

shield tunnel simulation model experiments, more accurate tunnel section reconstruction curves were 

obtained using this optimization method, increasing reconstruction accuracy by 27.3424%. 
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1. Introduction 

With the rapid development of China’s transport network in recent years, the shield method of tunnel 

construction has become the most common method due to its advantages in terms of construction safety 

and speed of excavation. However, after a long period of construction, more and more shield tunnels are 

being built and put into service. Consequently, the structural health of shield tunnels during operation 

has become an issue of concern to tunnel managers. Due to the geological environment of the shield 

tunnel, seismic hazards, structural fatigue, and other adverse factors, the tunnel structure inevitably 

suffers from morphological deformation. When the accumulated deformation of shield tunnels reaches a 

certain level, it can lead to the decay of the shield tunnel resistance and the spread of cracks, which can 

affect the structural health of the shield tunnel tube during the operational phase and lead to safety 

incidents in tunneling operations. Therefore, it is imperative to monitor the changes quickly and 

effectively in tunnel structure morphology. Fiber-optic sensor measurement uses sensors to collect 

information about a deformed object. Its working principle sends an optical signal to a modulator through 

an optical fiber. After interacting with the parameters to be measured, the optical properties of the optical 

signal will change and become the source of the modulated signal, which is then sent to a light detector 

to obtain the measured parameters through a demodulation algorithm. FBG sensors are widely used and 

have achieved good results in the morphological monitoring of small and high-precision equipment in 

aerospace, industry, and medical devices [1-3]. In 1993, researchers at the University of Toronto, Canada, 

first applied fiber optic sensor measurement to bridge monitoring [4]. Nowadays, FBG sensors are used 

for monitoring large civil engineering projects such as buildings and tunnels [5-7]. Shahriar Sefati et al. 

optimized the morphological reconstruction curves of FBG for objects with large curvature using 

artificial neural networks. They compared them with the conventional method, and the results showed 

that the performance of the reconstruction curves optimized using artificial neural networks was better 

than the conventional method [8]. Gongyu Hou et al. monitored tunnel cross-section deformation using 

distributed fiber optic sensors combined with neural network optimization [9]. 

Although the above studies optimize the discrete curvature point fitting curve and minimize the error 

in fitting the tunnel profile through neural networks, these studies only focus on and reconstruct the local 

tunnel profile information, not the overall tunnel profile. In assessing overall tunnel safety, the local 

morphological information does not reflect the actual general morphological changes in the tunnel. 

Therefore, there is a risk of misjudgment in using it as a basis for the overall tunnel safety assessment. 

In this regard, reconstructing the tunnel profile’s general morphology is imperative. However, the 
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accuracy of the discrete curvature points required to close the curve fitted by recursion of the discrete 

curvature points in reconstructing the overall morphology of the tunnel section is exceptionally high. 

Therefore, this request cannot meet it in general engineering projects. To solve the problem of excessive 

reconstruction curve error due to the accumulated error of the discrete curvature point fitting curve and 

to improve the monitoring accuracy of the fitted tunnel section curve, this research proposes a curvature 

reconstruction curve optimization method based on Transformer neural network [10]. Finally, a shield 

tunnel Simulation model experiment is carried out to verify the accuracy of the proposed method in the 

scaled section model presented in this research.  

2. Curvature Offset Correction Method 
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Figure 1: Transformer network sketch. 

As the discrete point curvature fitting curve is obtained by the recurrence of curvature information 

from each point in turn, there is a cumulative error. Moreover, in actual engineering applications, there 

are inevitable fluctuations in the readings of each sensor, so the reconstruction curve needs to be corrected 

for offsets. Therefore, the method sets each insertion point in turn as the initial insertion point for curve 

fitting and compares many curves fitted by different initial points with the actual curve training through 

the Transformer neural network to obtain the weight relationship between the curves fitted by different 

initial points, to obtain the final fitted curve. The network sketch is shown in Figure 1. In this research, 

the same position data of each initial insertion point at the exact moment is normalized and passed into 

the Transformer encoder with position information. Then the actual coordinate point values are given to 

the Transformer decoder with position information. The Transformer network is then trained to obtain 

the possible values of each point.  

2.1. Background: Self-attention in Transformer 

The Transformer neural network uses an encoder-decoder structure, which extracts target features by 

stacking encoders and decoders to obtain target relationships. Each encoder and decoder layer comprises 

a self-attention sub-layer and a feed-forward network sub-layer interconnected by residuals. The 

network’s internal structure is shown in Figure 2. 
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Figure 2: The Transformer neural network internal structure. 

The self-attention sub-layer maps the incoming vector to a query and a key-value pair output 

according to the self-attention function and obtains the attention at the corresponding position by 

weighting the computation. This is done by first transforming a sequence of 𝑀 𝑁-dimensional vectors 

𝑋 into a query matrix 𝑄 = 𝑋𝑊𝑁×𝑁
𝑄

, a key matrix 𝐾 = 𝑋𝑊𝑁×𝑁
𝐾  and a value matrix 𝑉 = 𝑋𝑊𝑁×𝑁

𝑉  by 

means of the 𝑊𝑁×𝑁
𝑄

, 𝑊𝑁×𝑁
𝐾  and 𝑊𝑁×𝑁

𝑉  matrix transformations, respectively. Each of the query matrix 

𝑄 , key matrix 𝐾  and value matrix 𝑉  is then divided into multi-head attention of 𝐻 , each with 

dimension 𝑁ℎ  =  𝑁 / 𝐻, by focusing on the correlation between each point and outputting a vector of 

multi-head attention 𝑌ℎ. 

Attention( , , ) Softmax( )
h hT

h h h h h

h

Q K
Y Q K V V

N
                 (1) 

The feed-forward network sub-layer combines and linearly transforms the results of each multi-head 

attention output to obtain a 𝑀 ×  𝑁 result matrix 𝑌, 

1 1 2 2RELU( )Y YW b W b  
                          (2) 

Where 𝑊1, 𝑏1, 𝑊2, 𝑏2 are the weight and deviation matrices of the two fully connected layers, 

respectively. The Multi-head Attention flow chart is shown in Figure 3. 

 

Figure 3: The Multi-head Attention flow chart. 

2.2. Extracting the information features of each fitted point 

In order to sort out the relationship between curves obtained from multiple initial points, this research 

passes the information of each curve's corresponding point into the fully connected layer. It gets each 

curve's weight based on the data training, as shown in Figure 4(a). Similarly, this method uses the fully 

connected layer to process information for each point to obtain the summation information for that point, 

as shown in Figure 4(b). 
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(a)                                   (b) 

Figure 4: Extracting the information features: (a) Extracting line features; (b) Extracting point’s 

features. 

3. Shield tunnel simulation model section curve fitting experiment 

3.1. Introduction to the simulation model of the shield tunnel 

This experiment takes a river crossing shield tunnel as the background. The river crossing shield 

tunnel comprises reinforced concrete segments with a strength grade of C60. The outer diameter is 15.2m, 

the inner diameter is 13.9m, the segment thickness is 0.65m, and the segment ring width is 2m. The 

author uses ANSYS to establish a numerical simulation model and applies the typical load of the shield 

tunnel environment and the limit load in case of emergency. Generally, the main forces of a shield tunnel 

can be divided into water pressure, soil pressure, and soil resistance. In the simulation experiment, 

applying uniform force on the outer surface of the model segment is equivalent to water pressure, 

applying vertical pressure is equivalent to soil pressure, and applying transverse load is equivalent to soil 

resistance. The ratio of layer pressure to soil resistance is 1:0.5. Finally, the shape information of the 

shield tunnel section under each load is obtained. The model is shown in Figure 5. Specific loads are 

shown in Table 1. 

Table 1: Limit loads for each working condition. 

Test Simulation hydraulic load Simulation soil load Simulation soil resistance 

1 2 MPa 2 MPa 1 MPa 

2 5 MPa 3 MPa 1.5 MPa 
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Figure 5: Shield tunnel simulation model. 

3.2. Result and Discussion 

The Transformer network was used to optimize the fitted curve, obtain the reconstruction curve of 

the simulation tunnel model cross-section, and compare it with the reconstruction curve without 

optimization. Meanwhile, to evaluate the curve fitted by discrete point curvature, this research uses the 

root mean square error formula, which visually reflects the difference between the fitted curve and the 

actual curve, to evaluate the error of the fitted curve. Finally, this research selects the maximum load for 

each working condition for visualization in Figure 6. Reconstruction errors before and after calibration 

for different working conditions are shown in Table 2.  

 
(a)                                     (b) 

Figure 6: Comparison of curvature recursion fitted curve and simulation tunnel section curve: (a) Test 

1 maximum load; (b) Test 2 maximum load. 



Academic Journal of Computing & Information Science 

ISSN 2616-5775 Vol. 5, Issue 12: 15-21, DOI: 10.25236/AJCIS.2022.051203 

Published by Francis Academic Press, UK 

-20- 

2 2

0
( ) ( )

RMSE

n

i ii
x x y y

n


  




                   (3) 

Table 2: The compared results with learning-based for curvature offset correction. 

Test 

RMSE 

without corrections with corrections 

Average [mm] Max [mm] Average [mm] Max [mm] 

1 115.5252 223.7604 1.7228 2.9124 

2 138.5234 382.9287 1.8229 2.9967 

Using the calibration method, the average error of the tunnel cross-section reconstruction curve is 

reduced by 27.3424%, and the maximum error is reduced by 93.3016%. After using the calibration 

method, the tunnel cross-section reconstruction curve error is significantly reduced. The experimental 

results show that the proposed recursive curve fitting method based on Transformer network optimization 

of discrete point curvature can effectively improve the reconstruction accuracy of tunnel section curves 

and provide a more reliable basis for assessing the safety of shield tunnels. Finally, this study’s shield 

tunnel section optimization fitting method was compared with the ANN [9] and PNN [11]. The final results 

are shown in Table 3.  

Table 3: RMSE comparison of the proposed method and other algorithms. 

Test Approach 
RMSE 

Average [mm] Max [mm] 

1 

ANN 7.8176 9.0562 

PNN 4.6580 6.3354 

Ours 1.7228 2.9124 

2 

ANN 8.0247 9.1437 

PNN 4.5523 6.8983 

Ours 1.8229 2.9967 

The fitted curves of the shield tunnel cross-section model by each method meet the deformation 

monitoring code Level 3 standard of the Code for Deformation Measurement of Building and Struct [12], 

with an error of ∆𝑑 ≤ 10𝑚𝑚 in displacement observation. Furthermore, the optimized fitting method 

proposed in this study can meet the deformation monitoring code level 2 standard ∆𝑑 ≤ 3𝑚𝑚 in the 

Code for Deformation Measurement of Building and Struct. As a result, the method in this research can 

obtain more accurate shield tunnel section morphology, providing tunnel managers with better data to 

support the structural morphology of shield tunnels. 

4. Conclusion 

This research presents a Transformer network-based method for optimizing discrete point curvature 

fitted curves. Precisely, the optimization method fits the curves with multiple starting curvature points 

and integrates the information from each fitted curve by extracting the information from the transformer 

neural network to obtain an approximation of the actual curve. The overall morphology of the shield 

tunnel section reconstructed by the optimization method presented in this paper provides a better 

indication of the shield tunnel’s overall morphology than the shield tunnel’s local morphology. Therefore, 

it provides a better basis for the safety assessment of the shield tunnel. The results of this study lead to 

the following conclusions: 

1) In this research, the optimization method of fitting curves with discrete curvature points is 

compared with the traditional curvature fitting curve optimization method, and the error of the fitted 

curves is smaller and closer to the actual object curves, which verifies the feasibility of the optimization 

method in practical application.  

2) By comparing the effects of different neural networks on the optimization method, this research 

demonstrates that transformer neural networks can achieve better optimization performance with the 

same training. 

3) The optimization method can be used to fit the shield tunnel cross-section more accurately, with 

an average error rate of 0.6981% and a maximum error rate of 3.4072% between the maximum error 

point and the corresponding point of the actual profile, giving an accuracy of 99.3019% in fitting the 
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tunnel cross-section and meets the Deformation Monitoring Code Level 2 of the Code for Deformation 

Measurement of Building and Struct, i.e., each single measurement point error ∆𝑑 ≤ 3𝑚𝑚. 
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