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Abstract: The performance degradation and safety risks associated with altered stiffness and damping
in hydro-pneumatic suspensions are often caused by blockages. This paper presents an intelligent fault
diagnosis method based on the Gramian Angular Summation Field (GASF) and a Convolutional Neural
Network (CNN) for the precise identification and classification of blockage severity. Firstly, a single-
wheel hydro-pneumatic suspension vibration test platform was developed for blockage-fault experiments.
Then, by installing a throttle valve within the hose, five levels of partial blockage faults (30%-50%) were
simulated. Subsequently, the body acceleration signals were acquired under sinusoidal excitations at
various frequencies. To enable effective fault diagnosis, the one-dimensional time-series acceleration
data were transformed into two-dimensional GASF images, which preserve critical temporal
dependencies in the system's dynamic behavior. A CNN-based diagnostic model was then developed and
trained on this GASF-image dataset for accurate blockage severity classification. The experimental
results demonstrate that the proposed GASF-CNN approach achieves outstanding diagnostic accuracy
across all tested conditions, with robustness confirmed under noisy conditions, demonstrating its
potential for practical applications.
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1. Introduction

The suspension system is a critical subsystem of a vehicle chassis, directly affecting driving safety,
stability, and ride comfort "l Among various suspension types, hydro-pneumatic suspension (HPS)
systems are extensively deployed in military and engineering vehicles due to their superior stiffness and
damping characteristics [?. However, such vehicles often operate under harsh conditions, where the HPS
systems endure sustained high pressure, impact loads, and cyclic stresses, resulting in elevated failure
rates. Statistical analyses indicate that suspension-related faults account for approximately 13% of total
vehicle failures B1. Notably, hydraulic line blockage represents a particularly detrimental progressive
degradation mode in the HPS systems, typically initiated by oil contamination or particulate deposition.
This fault may fundamentally alter the HPS’s stiffness and damping characteristics ¥, degrade suspension
performance, and may precipitate critical vehicle instability.

Currently, the maintenance of HPSs still primarily relies on periodic inspections and corrective repairs,
lacking early warning capabilities and precise diagnostic methods. Consequently, research on the
intelligent fault diagnosis methods for critical components of HPS is of great importance for enhancing
vehicle operational and maintenance levels and ensuring safety. Existing studies have primarily focused
on the diagnosis of macro-level faults, such as oil and air leakage >, while studies on internal faults are
relatively scarce. This is primarily attributed to the weakness and indistinctiveness of their signals,
making it difficult to effectively isolate these signals from the complex system response.

Deep learning has demonstrated significant potential in mechanical fault diagnosis in recent years. A
convolutional neural network (CNN) enables end-to-end intelligent diagnosis by autonomously
extracting discriminative features from raw data. To harness CNNs' superior image processing
capabilities, time-series encoding techniques have been widely adopted. For example, the Gramian
Angular Summation Field (GASF) effectively transforms one-dimensional time-series signals into two-
dimensional images while preserving temporal dependencies and amplitude information ), thereby
facilitating CNN-based feature extraction. Although the GASF-CNN framework has proven successful
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across multiple diagnostic applications 19, its implementation for diagnosing hydraulic blockages in
HPS remains notably underexplored, representing a critical gap in current research.

This study adopted a GASF—CNN-based fault diagnosis method to quantitatively assess blockage
severity in a HPS system. A dedicated single-wheel HPS vibration test platform was developed to
simulate graded blockage conditions and acquire corresponding body-acceleration response data. The
acquired temporal signals were subsequently converted into two-dimensional feature representations
using GASF, and a tailored CNN architecture was implemented to achieve precise blockage severity
classification.

2. Single-Wheel HPS Vibration Test

In this study, a blockage fault was simulated by inserting an adjustable flow valve inline in the hose
between the actuating cylinder and the accumulator, and different blockage severities were further
emulated by varying the valve opening. On this basis, single-wheel HPS vibration tests were conducted.
As shown in Figure 1, the blockage-level labeling procedure used an inclinometer to partition the valve
opening and mark percentage graduations, so that the valve opening could be used during experiments
to represent the severity of blockage.
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Figure 1: Schematic of the blockage severity marking procedure.

The marking procedure was as follows: first, using an inclinometer, the fully closed angle of the
adjustable throttle valve was measured to be approximately 88.65°, and the fully open angle
approximately 0.30°. Next, the adjustable angular range was divided into ten equal intervals and labeled
0%—-100%, with the fully open position defined as 0% blockage and the fully closed position as 100%
blockage. As the objective of this study was to acquire vibration signals under different blockage levels,
the valve was assumed to be linear with respect to opening, and nonlinear effects were neglected.
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Figure 2: Schematic of the single-wheel hydro-pneumatic suspension vibration test bench.

Figure 2 shows the single-wheel hydro-pneumatic suspension vibration test bench, which consists
primarily of a servo-hydraulic shaker, a single-wheel hydro-pneumatic suspension, a data-acquisition
system, a road-simulation controller, and sensors. The test procedure was as follows: first, the single-
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wheel suspension—equipped with an inline throttle valve in the hose—was mounted on the hydraulic
shaker. Two vertical guide rails were installed on the rear side of the vehicle body and connected to a
reaction wall to maintain lateral balance and ensure strictly vertical motion. Next, an accelerometer was
installed at the body’s center to measure the vertical acceleration at that location. Finally, the excitation
amplitude and frequency were configured in the vibration-testing software, and body-acceleration signals
were collected for blockage levels of 30%, 35%, 40%, 45%, and 50% under sinusoidal excitations of 1
Hz, 2 Hz, 3 Hz, 5 Hz, and 10 Hz, yielding 25 datasets in total, with a sampling rate of 2048 Hz.

According to ISO 2631-1:1997 (Mechanical vibration and shock—Evaluation of human exposure to
whole-body vibration—Part 1), the frequency range of interest for evaluating the effects on “health,
comfort, and perception” is 0.5-80 Hz. This indicates that the effective content of vertical vehicle-
vibration responses is mainly concentrated within this band. Therefore, a 50 Hz low-pass filter was
applied to the raw signals. This cutoff preserves the fundamental responses and low-order harmonics
induced by the 1-10 Hz excitations, while effectively suppressing higher-frequency components
dominated by noise. Taking the body-acceleration signal acquired under a 5 Hz sinusoidal excitation as
an example, the signal after 50 Hz low-pass filtering is shown in Figure 3.
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Figure 3: Vehicle acceleration signal under 5 Hz excitation after 50 Hz low-pass filtering.

3. GASF-CNN-Based Diagnostic Model for Blockage Severity in HPS

Considering the periodic nature of the vibration-test data, this study adopted a combined GASF-CNN
approach to train a diagnostic model for blockage severity in a hydro-pneumatic suspension. To prevent
information leakage from test samples, the signals were split into training and test sets in an 8:2 ratio
before any segmentation. The filtered signals were then segmented using a sliding window with a length
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of 2,048 samples and a step of 512 samples. Figure 4 illustrates the sliding-window scheme. The
windowed one-dimensional time series were subsequently converted into two-dimensional images via
the GASF method and supplied to the CNN as inputs.
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Figure 4: Sliding-window schematic.

The CNN comprises four convolutional blocks that extract fault features from the GASF-transformed
images and perform blockage severity classification. Feature extraction is carried out by four blocks,
each consisting of a 3x3 convolution layer, batch normalization, a ReLU activation, and 2x2 max pooling.
A global average pooling layer then reduces the feature maps to 4x4, followed by a classifier composed
of three fully connected layers; Dropout is applied in the fully connected layers to mitigate overfitting.
The output layer contains five neurons corresponding to the five blockage severities. The network
configuration is given in Table 1.

Table 1: CNN architecture and parameters.

Layer type Parameter setting Output size (CxHxW) Activation
Input 1x64x64
Conv + BN 16 filters,3%3, padding=1 16%64%64 ReLU
Max pool 2x2 16%x32x32
Conv + BN 64 filters,3x3, padding=1 64x32x32 ReLU
Max pool 2x2 64x16x16
Conv + BN 128 filters,3x3, padding=1 128x16x16 ReLU
Max pool 2x2 128x8x8
Conv + BN 256 filters,3x3, padding=1 256x8x8 ReLU
Global avg pool 4x4 256x4x4
Flatten 4096
FC 512 units 512 ReLU
FC 128 units 128 ReLU
Output 5 units 5

4. Experiment Results and Analysis

All training and testing in this study were conducted under the same hardware and software
environment: Windows 11, an Intel Core i17-10870H CPU, and an NVIDIA GeForce RTX 2060 GPU.
The models were implemented in PyCharm using the PyTorch framework (version 2.3.1) with GPU
acceleration via CUDA 12.1 and cuDNN 9.5.1.

For each image dataset converted from body-acceleration signals under sinusoidal excitations at 1 Hz,
2 Hz, 3 Hz, 5 Hz, and 10 Hz, a diagnostic model for blockage severity was trained using the cross-entropy
loss. The image size was 64x64. The training, validation, and test sets were split in a 6:2:2 ratio. Training
hyperparameters were set as follows: 50 epochs, a batch size of 128, an initial learning rate of 0.0001,
the Adam optimizer, and a regularization coefficient of 0.0001.

Taking the 5 Hz case as an example, the training loss and accuracy curves are shown in Figure 5. As
indicated by Fig. 5, the loss drops rapidly and converges by the 10th epoch, at which point the validation
accuracy reaches 100%. This suggests that, under sinusoidal excitation, different blockage severities
manifest clearly distinguishable features, and that the model learns the dominant patterns early in training.
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Figure 5: Training curves (loss and accuracy) for the 5 Hz model

Based on the trained blockage severity models, performance was evaluated on the test sets under
sinusoidal excitations at 1 Hz, 2 Hz, 3 Hz, 5 Hz, and 10 Hz. The mean test accuracies at each frequency
are shown in Table 2. The results indicate that, across all excitation frequencies, the average diagnostic
accuracy exceeds 99%. This confirms that GASF images effectively preserve the distinctive patterns of
vibration signals at different blockage severities, and that the CNN possesses strong feature-learning and
classification capabilities, enabling precise discrimination among five blockage levels.

Table 2: Mean test accuracy at different excitation frequencies.

Excitation frequency 1Hz 2Hz 3Hz 5Hz 10Hz

Mean accuracy 100% 100% 99.59% 100% 100%
The high diagnostic accuracy achieved by the GASF-CNN blockage severity model under sinusoidal
excitation may be attributed to the following: (1) clear boundaries between blockage levels; (2) the
repeatability and consistency of vibration responses under sinusoidal excitation, which yield small intra-
class differences and pronounced inter-class differences, facilitating the CNN’s learning of discriminative
features; (3) suppression of high-frequency noise by applying a 50 Hz low-pass filter to the raw signals;
and (4) the GASF, which encodes one-dimensional time-series signals into two-dimensional images
while preserving temporal structure and amplitude information, thereby enhancing pattern visualization
and separability. Consequently, the model’s strong performance in this study results from the combined
effects of clear fault boundaries, data quality, and signal-encoding strategy, and is reasonable and
reproducible under the specified conditions.
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Figure 6. Noise test results of the blockage severity diagnostic model under different sinusoidal
excitations.

To further assess robustness, noise experiments were conducted by superimposing Gaussian white
noise of varying intensity onto the original signals to construct test signals with different signal-to-noise
ratios (SNRs): 30 dB, 25 dB, 20 dB, 15 dB, 10 dB, 5 dB, and 0 dB. The results, summarized in Figure 6
for different sinusoidal excitations, show that when the SNR is at least 15 dB, the diagnostic accuracy
remains above 95% at all frequencies. Even at 10 dB, accuracies exceed 70% for all models except the 3
Hz case. These findings indicate that the proposed GASF-CNN model exhibits strong robustness to noise,
stemming mainly from two factors: first, the GASF transformation imparts a smoothing effect on random
noise, yielding visually stable images; second, the CNN learns higher-level features that are sensitive to
fault patterns yet insensitive to noise.
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5. Conclusions

This study adopted a GASF-CNN-based fault-diagnosis approach for blockage in hydro-pneumatic
suspensions, enabling identification of different blockage severities. A single-wheel hydro-pneumatic
suspension vibration test bench was built, five blockage levels (30%, 35%, 40%, 45%, 50%) were
emulated, and body-acceleration signals were collected under sinusoidal excitations at 1, 2, 3, 5, and 10
Hz. The one-dimensional vibration signals were then encoded into two-dimensional images via GASF,
and a CNN with four convolutional blocks was constructed to diagnose blockage severity. The main
conclusions are: (1) Under 1, 2, 3, 5, and 10 Hz sinusoidal excitations, the GASF-CNN model achieves
diagnostic accuracies of at least 99% across the five blockage levels. (2) Noise tests show strong anti-
interference capability. When the signal-to-noise ratio is at least 15 dB, the diagnostic accuracy remains
at or above 95% for 1, 2, 5, and 10 Hz, whereas the model trained at 3 Hz is comparatively less robust.
(3) Combining GASF image encoding with CNN feature learning avoids complex hand-crafted feature
engineering and enables end-to-end diagnosis from raw signals to blockage severity, providing an
effective solution for component-level fault diagnosis of hydro-pneumatic suspensions.
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