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Abstract: In the current era of rapid technological development, modern mechanical equipment 
systems continue to move towards automation and intelligence, which puts higher demands on the 
technical performance of various aspects of the system. Structured light 3D intelligent cameras have 
been widely used in many fields such as artificial intelligence (AI) and industrial inspection due to their 
significant advantages of fast imaging speed and high accuracy. Structured light measurement is the 
process of measuring from multiple angles using a structured light measurement system to achieve a 
complete representation of the object being measured. However, the stitching of measurement data 
from multiple perspectives can have an impact on the completeness of the expression of the measured 
object. This article innovatively proposes an intelligent fault diagnosis algorithm for mechanical and 
electronic systems that combines deep learning (DL) technology. The algorithm deeply explores the 
feature information in structured light data and utilizes the powerful pattern recognition ability of DL 
to achieve accurate diagnosis of mechanical and electronic system faults. The results show that the 
algorithm proposed in this paper can effectively improve the efficiency and accuracy of fault diagnosis, 
providing strong support for ensuring the stable operation of mechanical and electronic systems. 
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1. Introduction 

In today's digital age, the wave of information technology is sweeping across the globe at an 
unprecedented speed, and the rapid development of AI technology has become the core force driving 
changes in various fields. With the continuous advancement of Industry 4.0 and intelligent 
manufacturing concepts, modern mechanical equipment is firmly moving towards automation, 
integration, and intelligence [1]. These advanced mechanical equipment bring efficiency and 
convenience to production, while their reliability and stability in operation have also become crucial 
considerations [2]. To ensure the healthy operation of these 'industrial brains', it is necessary to collect 
massive amounts of data to accurately reflect their health status. Carrying out status monitoring and 
diagnosis of mechanical equipment is like installing an "intelligent doctor" for mechanical equipment, 
which can timely detect, accurately diagnose, and scientifically predict potential faults [3]. This can not 
only effectively avoid production interruptions caused by sudden equipment failures, thereby reducing 
economic losses and operating costs, but also greatly reduce the risk of major accidents.  

There is a very important practical need and significance for ensuring the continuity, stability, and 
personnel safety of production [4]. Structured light measurement technology, as an active optical 
measurement method, has attracted much attention in many fields such as reverse engineering, digital 
modeling, and computational measurement [5]. It cleverly obtains the three-dimensional information of 
the measured object by projecting encoded gratings, which is fundamentally different from traditional 
passive three-dimensional measurement techniques such as binocular stereo vision [6]. The core of 
structured light based 3D imaging lies in the measurement and reproduction of 3D parameters, which 
enables it to more accurately reproduce the true form of objects [7]. However, in practical applications, 
the quality of light stripe images can be affected by various factors such as the shape, material, and 
environment of the object being measured [8]. Therefore, how to quickly and accurately extract the 
center of the light strip has become the key to achieving high-precision measurement and the core issue 
in the research of line structured light sensors. 
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In recent years, DL theory has gradually become a hot learning algorithm in the field of machine 
learning (ML), especially in the field of image processing where remarkable achievements have been 
made. DL, with its powerful automatic feature learning ability, has also achieved significant success in 
the field of fault diagnosis. It can directly perform complex tasks such as target recognition, pose 
estimation, depth estimation. It is worth mentioning that in unstable measurement environments, DL 
does not rely on environmental and lighting conditions, which greatly improves the stability and 
reliability of measurements. Based on the above background, this article innovatively proposes an 
intelligent fault diagnosis algorithm for mechanical and electronic systems that combines DL 
technology. This algorithm deeply mines the feature information in structured light data, fully utilizes 
the powerful pattern recognition ability of DL, and achieves accurate diagnosis of mechanical and 
electronic system faults.  

2. Application of DL in Intelligent Fault Diagnosis of Mechanical and Electronic Systems 

2.1 DL 

In the field of intelligent fault diagnosis of mechanical and electronic systems, traditional fault 
diagnosis methods mainly rely on fault feature extraction and pattern recognition [9]. Specifically, by 
conducting time-domain analysis on the vibration signals of mechanical equipment, we can understand 
the changing patterns of the signals over time; Frequency domain analysis can reveal the frequency 
components of a signal; Time frequency domain analysis combines the two to more comprehensively 
display signal characteristics [10]. Extract the fault features of each state from these analyses, input 
them into the classifier, and then complete the fault diagnosis. However, with the significant increase in 
computing power and the rapid development of computer vision technology, AI technologies such as 
DL have made breakthrough progress. In the field of fault diagnosis, DL algorithms that use vibration 
signals in one-dimensional and two-dimensional forms as network inputs have emerged in large 
numbers. 

DL breaks the limitations of traditional ML based on shallow network structures and greatly 
enhances the ability to learn high-dimensional features. Compared with traditional methods, DL 
algorithm exhibits unique advantages in intelligent fault diagnosis of mechanical and electronic 
systems. It does not require manual complex feature engineering and can automatically learn fault 
features, greatly improving diagnostic efficiency and accuracy. Moreover, the DL model has stronger 
generalization ability and can adapt to the fault diagnosis needs under different working conditions, 
providing stronger guarantees for the stable operation of mechanical and electronic systems. 

2.2 Specific Applications 

Thanks to the rapid development of AI technology, data-driven intelligent fault diagnosis methods 
have become the mainstream of research in the field of fault diagnosis. Among them, Convolutional 
Neural Networks (CNNs), as a typical feedforward neural network, play a crucial role with their unique 
structure and computational methods. CNN achieves layer by layer extraction of topological features 
from input data by setting multiple filters in the network and using convolution and pooling operators. 
As the number of network layers increases, the extracted features become increasingly abstract, 
ultimately enabling the extraction of robust features with rotational and translational invariance from 
the original input data. A typical CNN mainly consists of three parts. Sample preprocessing is 
responsible for adjusting the input samples to meet the input requirements of CNN. 

Feature extraction consists of multiple filtering stages, each of which includes a convolutional layer 
and a pooling layer. The convolutional layer convolves the local region of the input signal with the 
convolutional kernel, generating a nonlinear mapping under the action of the activation function; The 
pooling layer downsamples the convolutional results, reducing the amount of data while preserving key 
features. A typical CNN is shown in Figure 1. Sample classification adopts a multi-layer perceptron 
structure, consisting of one or more fully connected layers, with the last fully connected layer used for 
classification. Compared with traditional fault diagnosis methods, CNN based intelligent fault 
diagnosis methods do not require manual and carefully designed feature extraction processes, and can 
automatically learn effective features from large amounts of data, greatly improving diagnostic 
efficiency and accuracy. Moreover, the strong generalization ability of CNN enables it to better adapt 
to the fault diagnosis needs of mechanical and electronic systems under different working conditions, 
providing solid support for ensuring the stable operation of the system. 
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Figure 1 CNN structure 

3. Algorithms and Experiments 

3.1 Algorithm Principle 

In monocular structured light systems, the projection process of the projection module can be 
regarded as the inverse operation of the camera imaging process. Specifically, the coordinates of a 
spatial point in the camera coordinate system can be determined through the principle of pinhole 
imaging; Correspondingly, the coordinates of a spatial point in the "imaging" coordinate system 
constructed by the projector can be characterized by its corresponding absolute phase value. 
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In this formula, pu
 represents the horizontal coordinates of a spatial point on the projection plane; 

W  represents the width of the projector image; vN  represents the number of periods of the stripes; 

And ( )yx,φ  represents the absolute phase value corresponding to the spatial point. 
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Among them, ∗  represents the convolution operator; ( )jyl
i
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 represents the output of the j  

neuron in the i  feature surface in the 1+l  layer; FF is the activation function. 

The pooling layer is a key component that scales and maps the feature maps output by the previous 
convolutional layer. It performs downsampling operations to reduce the number of parameters in the 
network. In this process, commonly used pooling operations include max pooling and mean pooling. 
Specifically, max pooling selects the maximum value within the perceptual domain of each feature 
surface as the final output for that region, while mean pooling calculates the average value of all 
elements within the perceptual domain and outputs it. The formulaic expressions for these two pooling 
operations are as follows: 
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Among them, ( )tai
l  represents the activation value of the t  neuron in the i  feature plane of the 

l  layer, w  represents the width of the pooling region, and ( )jpi
l 1+  is the pooled value 

corresponding to a certain neuron in the 1+l  layer. 

During supervised training, we simultaneously optimize feature extractor fG
 and classifier C . 

The source domain dataset consists of raw data { }ss YX , , where sX  is the source domain data and 

sY  is its corresponding label; The target domain dataset { }tX  only contains unlabeled target domain 

data tX . During training, the source domain data sX  is first input into the feature extractor fG
 to 

extract high-dimensional feature representations of the data. Subsequently, these features are further 

input into two independent classifiers 21,CC . The task of these two classifiers is to accurately classify 
the source domain data into K  categories (where K  is the total number of categories in the source 
domain). The classifier uses the Softmax function as the output layer to obtain the probability 
distribution on each category. The classification loss function is: 
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In the formula, ( )sxyp |  corresponds to the probability output of the classifier on the source 
domain samples. 

3.2 Experimental Result 

To verify the effectiveness of the algorithm proposed in this paper, a comparative experiment will 
be conducted between the algorithm proposed in this paper and traditional algorithms based on BP 
neural network (BPNN). The experiment used the same mechanical and electronic system fault dataset 
to train and test the proposed CNN based fault diagnosis model and the traditional BPNN based fault 
diagnosis model separately. Figure 2 shows the accuracy comparison results of two algorithms on the 
test set. From the figure, it can be seen that the CNN based algorithm proposed in this paper 
significantly outperforms the traditional BPNN algorithm in terms of fault diagnosis accuracy. This 
result fully demonstrates the superiority of the algorithm proposed in this paper. The main reason for 
the performance improvement of the algorithm in this article is that CNN can automatically learn more 
effective fault features from the original structured light data. Traditional BPNN relies on manual 
feature extraction, which is not only time-consuming and labor-intensive, but also difficult to capture 
deep level information in the data. By stacking convolutional and pooling layers, CNN can 
automatically extract local and global features of data, thus better characterizing the fault states of 
mechanical and electronic systems. In addition, CNN also has strong robustness and can effectively 
deal with noise and interference in structured light data, further improving the accuracy of diagnosis. 
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Figure 2 Accuracy comparison 

4. Conclusions 

Traditional intelligent fault diagnosis algorithms face many challenges in practical applications. It 
relies on manual feature extraction and expert knowledge, making it difficult to adapt well to different 
scenarios in the complex and changing working environment and conditions of mechanical and 
electronic equipment. Once the operating conditions of the equipment change, the diagnostic accuracy 
and efficiency of traditional algorithms will be greatly reduced. In contrast, this article innovatively 
proposes an intelligent fault diagnosis algorithm for mechanical and electronic systems that combines 
CNN technology. This algorithm deeply mines the feature information in structured light data, and with 
the powerful feature extraction ability of CNN, accurately diagnoses mechanical and electronic system 
faults. The experimental results show that the algorithm significantly improves the accuracy of fault 
diagnosis, effectively ensures the stable operation of mechanical and electronic systems, and provides 
new ideas and technical support for the intelligent development of related fields.  

However, the algorithm presented in this article also has certain limitations. On the one hand, the 
dependence on a large amount of high-quality structured light data is high, and the cost and difficulty 
of data acquisition are high. If the data volume is insufficient or the quality is poor, it will affect the 
algorithm performance. On the other hand, algorithm models are relatively complex, consume large 
amounts of computing resources, and have low efficiency when running on devices with limited 
hardware configurations. In the future, we plan to further optimize algorithms, reduce dependence on 
data volume, improve the lightweighting of models, and enable them to be efficiently applied in more 
scenarios, continuously promoting the development of intelligent fault diagnosis technology for 
mechanical and electronic systems. 
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