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Abstract: This paper proved the Fundamental Theorem of Arithmetic, which asserts the existence and 

uniqueness of prime factorization for every integer greater than 1, and extends it to all integers including 

the negatives. The proof is solely based on the ring axioms, order axioms and the well-ordering principle. 

After establishing the basic arithmetic operations from these axioms, the main proof is completed by 

defining canonical factorization, proving a key result known as the fundamental lemma (if 𝑝 prime 

divides 𝑎𝑏, then 𝑝 divides 𝑎 or 𝑏), and then demonstrating both the existence and uniqueness of prime 

factorizations. This proof broke free from the use of the Euclidean algorithm, Bézout’s theorem, and 

mathematical induction—methods commonly employed in previous proofs. By doing so, it provides a 

new insight into the structure of the integer ring and how “fundamental” is the Fundamental Theorem 

of Arithmetic. 
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1. Introduction 

The Fundamental Theorem of Arithmetic, stating that every integer can be uniquely factorized into a 

product of primes, up to the order of the factors, serves as a building block for number theory 

investigations[1-3]. The motivation of this proof is to determine the presence of the Fundamental Theorem 

of Arithmetic in the integer ring and to make sure that people understand these simple but important 

ideas. In this way, we get a better understanding of the structure and behavior of numbers by proving 

basic lemmas and theorems. The proof starts by establishing basic arithmetic lemmas and operations, 

including basic operations like −(−𝑎) = 𝑎 and the concept of divisors. Some important results will be 

that all positive integers have a prime divisor and The Fundamental Lemma[4-5], which will involve use 

of the Well-Ordering Principle, a unique property of integers[6-7]. Piling up all of these results, we will 

prove the Fundamental Theorem of Arithmetic. 

2. Math 

2.1 Foundational Concepts 

We will first prove some basic results from the axioms that will be essential in our proof. 

Definition 1.1. For 𝑎 ∈ ℤ, −𝑎 is an element such that 𝑎 + (−𝑎) = 0. 

Theorem 1.2. For all 𝑎 ∈ ℤ, −𝑎 exists. 

Proof. This follows from the negatives in the ring axioms.  

Lemma 1.3. ∀𝑎, 𝑎 ⋅ 0 = 0. 

Proof. By the zero axiom, 0 + 0 = 0, so 𝑎 ⋅ (0 + 0) = 𝑎 ⋅ 0 + 𝑎 ⋅ 0 = 𝑎 ⋅ 0. We then have 𝑎 ⋅ 0 +

𝑎 ⋅ 0 + (−(𝑎 ⋅ 0)) = 𝑎 ⋅ 0 + (−(𝑎 ⋅ 0)), so 𝑎 ⋅ 0 + 0 = 𝑎 ⋅ 0 = 0.  

Theorem 1.4.  0 is uniquely defined. 

Proof. Suppose for the sake of contradiction that ∃ 𝑧 such that 𝑧 ≠ 0, and for all 𝑎 ∈ ℤ, 𝑎 + 𝑧 = 𝑎. 
Then, 0 + 𝑧 = 0.  However, we also have that 0 + 𝑧 = 𝑧 + 0 = 𝑧,  which means that 𝑧 = 0.  This 

contradicts our definition of 𝑧 as nonzero, so it can only be concluded that 𝑧 doesn’t exist.  

Theorem 1.5. If a ring has at least two elements, 0 ≠ 1. 

Proof. Let’s assume for the sake of contradiction that 0 = 1. By Theorem 1.4, only one element in 
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the set can be 0, so we can choose another that is not, call it 𝑎. Then, we have 𝑎 ⋅ 1 = 𝑎, and 𝑎 ⋅ 1 = 𝑎 ⋅
0 = 0 by Lemma 1.3, which means that 𝑎 = 0. This contradicts our definition of 𝑎 as nonzero, so we 

can only conclude that 0 ≠ 1.  

Theorem 1.6. ℤ has at least two elements. 

Proof. By definition, ℤ+ is nonempty, so there must be an element 𝑎 ∈ ℤ such that 𝑎 ∈ ℤ+. Since 0 ∉
ℤ+  by non-triviality, 𝑎  is not 0, so 𝑎  and 0 are distinct elements in ℤ, making it have at least two 

elements.  

Theorem 1.7.  ℤ has 0 ≠ 1. 

Proof. This follows from Theorem 1.6 and Theorem 1.4.  

Theorem 1.8.  If 𝑎 + 𝑏 = 𝑎 + 𝑏′, 𝑏 = 𝑏′. 

Proof. If we have 𝑎 + 𝑏 = 𝑎 + 𝑏′,  we have (−𝑎) + 𝑎 + 𝑏 = (−𝑎) + 𝑎 + 𝑏′,  so 0 + 𝑏 = 0 + 𝑏′, 
which means that 𝑏 = 𝑏′.  

Theorem 1.9.  For 𝑎 ∈ ℤ, −𝑎 is uniquely defined. 

Proof. Let’s assume there exists 𝑥, 𝑦 ∈ ℤ such that 𝑎 + 𝑥 = 0 and 𝑎 + 𝑦 = 0. By Theorem 1.8, 𝑥 =
𝑦, so only one unique solution can exist. Then, −𝑎 must be this unique solution.  

Theorem 1.10.  −(−𝑎) = 𝑎. 

Proof. By definition, (−𝑎) + (−(−𝑎)) = 0. We also have that (−𝑎) + 𝑎 = 0. Thus, by Theorem 1.8, 

−(−𝑎) = 𝑎.  

Theorem 1.11.  −(𝑎𝑏) = (−𝑎)𝑏. 

Proof. We have that 𝑎𝑏 + (−(𝑎𝑏)) = 0  by negativity. Thus, 𝑎𝑏 + (−(𝑎𝑏)) + (−𝑎)𝑏 = 0 +

(−𝑎)𝑏 = (−𝑎)𝑏.  We then get that (−(𝑎𝑏)) + (𝑎𝑏 + (−𝑎)𝑏) = (−(𝑎𝑏)) + (𝑎 + (−𝑎))𝑏 =

(−(𝑎𝑏)) + 0 ⋅ 𝑏. By 1.3, then, this is equal to (−(𝑎𝑏)) + 0 = (−(𝑎𝑏)), so −(𝑎𝑏) = (−𝑎)𝑏.  

Theorem 1.12.  −(𝑎𝑏) = 𝑎(−𝑏). 

Proof. We can rewrite −(𝑎𝑏) as −(𝑏𝑎), which means it is equal to (−𝑏)𝑎 = 𝑎(−𝑏) by Lemma 1.3.  

 𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟏. 𝟏𝟑. −(𝑎𝑏) = (−𝑎)𝑏 = 𝑎(−𝑏) 

Proof. This follows from Lemma 1.11 and Lemma 1.12.  

Theorem 1.14.  (−𝑎)(−𝑏) = 𝑎𝑏. 

Proof. Using Lemma 1.13, It can be found that (−𝑎)(−𝑏) = −(𝑎(−𝑏)) = −(−(𝑎𝑏)), which is 

equal to 𝑎𝑏 by Lemma 1.10.  

Theorem 1.15.  −𝑎 = (−1) ⋅ 𝑎. 

Proof. By Lemma 1.13, (−1) ⋅ 𝑎 = −(1 ⋅ 𝑎) = −𝑎.  

Definition 1.16. For 𝑎, 𝑏 ∈ ℤ, 𝑎 − 𝑏 is defined as 𝑦 ∈ ℤ where 𝑎 = 𝑏 + 𝑦. 

Lemma 1.17.  𝑎 − 𝑏 = 𝑎 + (−𝑏). 

Proof. By definition, if 𝑎 − 𝑏 = 𝑦,  then 𝑎 = 𝑦 + 𝑏. Thus, 𝑎 + (−𝑏) = 𝑦 + 𝑏 + (−𝑏) = 𝑦 + 0,  so 

𝑎 + (−𝑏) = 𝑦.  

Theorem 1.18.  −1 ∉ ℤ+. 

Proof. Let’s assume for the sake of contradiction that −1 ∈ ℤ+. Since ℤ+ is nonempty, there exists 

some 𝑎 ∈ ℤ+. Then (−1)𝑎 ∈ ℤ+ by multiplicative closure, so −𝑎 ∈ ℤ+ by Lemma 1.15. However, by 

Trichotomy, we cannot have −𝑎 ∈ ℤ𝑝, creating a contradiction, so our assumption that −1 ∈ ℤ+ must 

be false.  

Theorem 1.19.  1 ∈ ℤ+. 

Proof. By Theorem 1.7, 1 ≠ 0. We also have that −1 ∉ ℤ+. Thus, by Trichotomy, −(−1) = 1 ∈
ℤ+.  

Lemma 1.20.  𝑏 − 𝑎 = −(𝑎 − 𝑏). 
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Proof. By Lemma 1.7, 𝑏 − 𝑎 = 𝑏 + (−𝑎), and −(𝑎 − 𝑏) = −(𝑎 + (−𝑏)). By Lemma 1.15, −(𝑎 +

(−𝑏)) = (−1)(𝑎 + (−𝑏)) = (−1)𝑎 + (−1)(−𝑏) = (−𝑎) + (−(−𝑏)).By Lemma  1.10, this is equal 

to (−𝑎) + 𝑏 = 𝑏 + (−𝑎), so 𝑏 − 𝑎 = −(𝑎 − 𝑏).  

Lemma 1.21. If 𝑎𝑏 = 𝑎𝑏′ and 𝑎 ∈ ℤ+, 𝑏 − 𝑏′ ∉ ℤ+. 

Proof. If 𝑎𝑏 = 𝑎𝑏′,  𝑎𝑏 + (−(𝑎𝑏′)) = 𝑎(𝑏 + (−𝑏′)) = 0  using Lemma 1.13. If 𝑏 − 𝑏′ ∈ ℤ+,  we 

would have 0 ∈ ℤ+  by multiplicative closure, as 𝑎 ∈ ℤ+.  This contradicts non-triviality, so our 

assumption that 𝑏 − 𝑏′ ∈ ℤ+ must be false.  

 Lemma 1.22. For any nonzero 𝑎, if 𝑎𝑏 = 𝑎𝑏′, 𝑏 − 𝑏′ ∉ ℤ+. 

Proof. This problem will be solved in two cases. Case 1: 𝑎 ∈ ℤ+. This then is proved by Lemma 1.21；
Case 2: 𝑎 ∉ ℤ+. Then, we have −𝑎 ∈ ℤ+ by nontriviality, as 𝑎 ≠ 0 is given. Since 𝑎𝑏 = 𝑎𝑏′, −(𝑎𝑏) =
−(𝑎𝑏′), so (−𝑎)𝑏 = (−𝑎)𝑏′ by Lemma 1.13. This gives 𝑏 − 𝑏′ ∉ ℤ+ by Lemma 1.21.  

 Lemma 1.23. For any nonzero 𝑎, if 𝑎𝑏 = 𝑎𝑏′, 𝑏′ − 𝑏 ∉ ℤ+. 

Proof. If 𝑎𝑏 = 𝑎𝑏′, 𝑎𝑏′ = 𝑎𝑏, so 𝑏′ − 𝑏 ∉ ℤ+, by Lemma 1.22.  

Lemma 1.24. For any nonzero 𝑎, if 𝑎𝑏 = 𝑎𝑏′, 𝑏′ = 𝑏. 

Proof. By Lemma 1.22, 𝑏 − 𝑏′ ∉ ℤ𝑝. By Lemma 1.23, 𝑏′ − 𝑏 ∉ ℤ+, so −(𝑏 − 𝑏′) ∉ ℤ𝑝 by Lemma 

1.20. By Trichotomy, 𝑏 − 𝑏′ = 0, so 𝑏 = 𝑏′.  

Definition 1.25.  𝑎 < 𝑏 if 𝑏 − 𝑎 ∈ ℤ+. 

Definition 1.26. 𝑎 ≤ 𝑏 if 𝑏 − 𝑎 ∈ ℤ+ ∪ {0}. 

Definition 1.27. ≮ means "not <." 

Theorem 1.28.  If 𝑏 < 𝑎, 𝑎 ≮ 𝑏. 

Proof. If 𝑏 < 𝑎, then 𝑎 − 𝑏 ∈ ℤ+. Thus, by trichotomy, −(𝑎 − 𝑏) = 𝑏 − 𝑎 ∉ ℤ+ by Lemma 1.20, so 

𝑎 ≮ 𝑏.  

Lemma 1.29. If 𝑥 ∉ ℤ+, −𝑥 ∈ ℤ+ ∪ {0}. 

Proof. We will do this in cases. 

Case 1: 𝑥 = 0. Since 0 + (−0) = 0 + 0, 0 = −0 by Theorem 1.8. Then, if 𝑥 = 0, −𝑥 = −0 = 0, so 

−𝑥 ∈ {0}, which implies that 𝑥 ∈ ℤ+ ∪ {0}. 

Case 2: 𝑥 ≠ 0. If 𝑥 ≠ 0, then −𝑥 ∈ ℤ+ by trichotomy, so −𝑥 ∈ ℤ+ ∪ {0}.  

 Theorem 1.30. If 𝑎 ≮ 𝑏 and 𝑏 ≮ 𝑎, then 𝑎 = 𝑏. 

Proof. If 𝑎 ≮ 𝑏, 𝑏 − 𝑎 ∉ ℤ+, so −(𝑏 − 𝑎) = 𝑎 − 𝑏 ∈ ℤ+ ∪ {0} by Lemma 1.20 and Lemma 1.29. 

Similarly, 𝑏 − 𝑎 ∈ ℤ+ ∪ {0}. 

If 𝑎 − 𝑏 = 0, 𝑎 = 𝑏. 

Otherwise, 𝑎 − 𝑏 ∈ ℤ+, which means 𝑏 − 𝑎 ∉ ℤ+ by trichotomy. Thus, 𝑏 − 𝑎 = 0, so 𝑏 = 𝑎.  

Theorem 1.31.  If 𝑎 = 𝑏, then 𝑎 ≮ 𝑏 and 𝑏 ≮ 𝑎. 

Proof. If 𝑎 = 𝑏, 𝑎 − 𝑏 = 0 ∉ ℤ+ and 𝑏 − 𝑎 = 0 ∉ ℤ+ by trichotomy, so 𝑎 ≮ 𝑏, 𝑏 ≮ 𝑎.  

Theorem 1.32.  For 𝑎, 𝑏 ∈ ℤ, exactly one of 𝑎 < 𝑏, 𝑏 < 𝑎, and 𝑎 = 𝑏 is true. 

Proof. If 𝑎 = 𝑏 , then 𝑎 ≮ 𝑏  and 𝑏 ≮ 𝑎  by Theorem 1.31. Otherwise, by the contrapositive of 

Theorem 1.30, at least one of 𝑎 < 𝑏 or 𝑏 < 𝑎 is true. If 𝑎 < 𝑏, then 𝑏 ≮ 𝑎, and if 𝑏 < 𝑎, then 𝑎 ≮ 𝑏 by 

Theorem 1.28.  

Lemma 1.33. If 𝑎, 𝑏 ∈ ℤ+ ∪ {0}, 𝑎𝑏 ∈ ℤ+ ∪ {0}. 

Proof. We will do this in multiple cases. 

Case 1: 𝑎 = 0 or 𝑏 = 0. If 𝑎 = 0, then 𝑎𝑏 = 0 by Lemma 1.3, which is in ℤ+ ∪ {0}. By symmetry, 

𝑎𝑏 ∈ ℤ+ ∪ {0} when 𝑏 = 0. 

Case 2: 𝑎, 𝑏 ≠ 0. If 𝑎, 𝑏 ≠ 0, 𝑎, 𝑏 ∈ ℤ+, so 𝑎𝑏 ∈ ℤ+ ⊆ ℤ+ ∪ {0}.  
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Lemma 1.34. If for all 𝑠 ∈ 𝑆 𝑎 ≤ 𝑠, then 𝑎 < 𝑠 for all 𝑠 such that 𝑠 ≠ 𝑎. 

Proof. Lets assume for the sake of contradiction that there exists 𝑏 ∈ 𝑆 such that 𝑏 ≠ 𝑎, 𝑎 ≤ 𝑏, but 

𝑎 ≮ 𝑏. We have then that 𝑏 − 𝑎 ∈ ℤ+ ∪ {0}, but 𝑏 − 𝑎 ∉ ℤ+, so 𝑏 − 𝑎 ∈ {0}. Thus, 𝑏 − 𝑎 = 0, so 𝑏 =
𝑎. This contradicts our assumption that 𝑏 ≠ 𝑎, so we must have that 𝑎 < 𝑠 for all 𝑠 ≠ 𝑎.  

Definition 1.35. 𝑎 is the smallest element of set 𝑆 if 𝑎 ∈ 𝑆 and ∀𝑠 ∈ 𝑆 𝑎 ≤ 𝑠. 

Lemma 1.36.  If 𝑠 is the smallest element of 𝑆 and 𝑎 < 𝑠, 𝑎 ∉ 𝑆. 

Proof. Assume for the sake of contradiction that 𝑎 ∈ 𝑆. Then, we have that 𝑠 ≤ 𝑎 by definition, so 

𝑎 − 𝑠 ∈ ℤ+ ∪ {0}, and we are given that 𝑎 < 𝑠, so 𝑠 − 𝑎 ∈ ℤ+. If 𝑎 − 𝑠 = 0, then 𝑎 = 𝑠, which means 

that 𝑎 ≮ 𝑠  by Theorem 1.32, contradicting 𝑎 < 𝑠.  Thus, 𝑎 − 𝑠 ∈ ℤ+.  Since −(𝑎 − 𝑠) = 𝑠 − 𝑎  by 

Lemma 1.20, 𝑠 − 𝑎 ∉ ℤ+ by trichotomy, so 𝑠 − 𝑎 ∈ {0}, which means that 𝑠 = 𝑎, so 𝑎 ≮ 𝑠 by Theorem 

1.32. However, this again contradicts 𝑎 < 𝑠, so this cannot happen either. Since both cases lead to 

contradiction, we must conclude that 𝑎 ∉ 𝑆.  

 Theorem 1.37. 1 is the smallest element of ℤ+. 

Proof. Let us assume for the sake of contradiction that 1 is not the smallest element, which means we 

can define 𝑎 ∈ ℤ+ as the smallest element by WOP. Thus, 𝑎 ≤ 1, and since 𝑎 ≠ 1, 𝑎 < 1 according to 

Lemma 1.34. Thus, 1 − 𝑎 ∈ ℤ+.  This means that 𝑎(1 − 𝑎) ∈ ℤ+  by multiplicative closure, so 𝑎 −
(𝑎)(𝑎) ∈ ℤ+, so 𝑎 ⋅ 𝑎 < 𝑎. By Theorem 1.32, 𝑎 ⋅ 𝑎 ≠ 𝑎, but 𝑎 ⋅ 𝑎 ∈ ℤ+ by multiplicative closure. By the 

definition of the smallest element, 𝑎 ≤ 𝑎 ⋅ 𝑎, so 𝑎 < 𝑎 ⋅ 𝑎 by Lemma 1.34. However, by Theorem 1.32, 

we cannot have 𝑎 < 𝑎 ⋅ 𝑎 and 𝑎 ⋅ 𝑎 < 𝑎, which means that our assumption that 𝑎 exists must be false.  

Definition 1.38. 𝑎 ∣ 𝑏 if 𝑏 = 𝑖𝑎 for some 𝑖 ∈ ℤ. 

Theorem 1.39. If 𝑎, 𝑏 ∈ ℤ+, and 𝑎 ∣ 𝑏, 𝑎 ≤ 𝑏. 

Proof. By definition, 𝑏 = 𝑘𝑎 for some 𝑘 ∈ ℤ. Thus, 𝑏 + (−𝑎) = 𝑘𝑎 + (−𝑎) = 𝑘𝑎 + (−1)𝑎 = (𝑘 −
1)𝑎. Since 1 ≤ 𝑘 by Theorem 1.37, 𝑘 − 1 ∈ ℤ+ ∪ {0}. Since 𝑎 ∈ ℤ+, we also have that 𝑎 ∈ ℤ+ ∪ {0}. 
Thus, 𝑎(𝑘 − 1) ∈ ℤ+ ∪ {0} by Lemma 1.33, so 𝑏 − 𝑎 ∈ ℤ+ ∪ {0}. This means that 𝑎 ≤ 𝑏.  

Lemma 1.40.   ℤ+ ∪ {0} follows the WOP. 

Proof. Let 𝑆 be a subset of ℤ+ ∪ {0}. We will prove this in two cases. 

Case 1: 0 ∈ 𝑆. For all 𝑠 ∈ 𝑆, 𝑠 = 𝑠 + 0 = 𝑠 + (−0) + 0 = 𝑠 + (−0) = 𝑠 − 0 ∈ ℤ+ ∪ {0}, so 0 ≤ 𝑠, 
making it a smallest element. 

Case 2: 0 ∉ 𝑆. If 0 ∉ 𝑆, then 𝑆 ⊆ ℤ+, so 𝑆 has a smallest element.  

Definition 1.41. For 𝑎, 𝑛 ∈ ℤ, 0 ≥ 𝑛, exponentiation is defined as 𝑎𝑛  where 𝑎0 = 1, and 𝑎𝑛+1 =
𝑎𝑛 ⋅ 𝑎. 

Lemma 1.42. 𝑎𝑛 is defined for all 𝑛 ≥ 0. 

Proof. Let 𝑀 be the set of all 𝑛 ≥ 0 such that 𝑎𝑛 is not defined by the definition of exponentiation. 

Assume for the sake of contradiction that 𝑀 is nonempty. Then, we can define 𝑚 as the smallest element 

of 𝑆. 

We know that 𝑚 ≠ 0, as 𝑎0 is defined as 1. Thus, 𝑚 > 0, so 𝑚 − 1 ≥ 0. Since 𝑚 − 1 < 𝑚, 𝑚 −
1 ∉ 𝑀 by Lemma 1.36. Thus, 𝑎𝑚−1 is defined. We can then define 𝑎𝑚 as 𝑎𝑚−1 ⋅ 𝑎, which means that 

𝑚 ∉ 𝑀. However, this contradicts our definition of 𝑚 as the smallest element of 𝑀, so our assumption 

that 𝑀 is nonempty must be false. Thus, 𝑎𝑚 is always defined for 𝑚 ≥ 0.  

Theorem 1.43. If 𝑏 = 𝑖𝑎 for some 𝑖 ∈ ℤ and 𝑎, 𝑏 ∈ ℤ+, 𝑖 ∈ ℤ+. 

Proof. We will assume for the sake of contradiction that 𝑖 ∉ ℤ+, and contradict it in two cases. 

Case 1: 𝑖 = 0. Here, 𝑏 = 𝑖𝑎 = 0𝑎 = 0 ∉ ℤ+ by Lemma 1.3 and Nontriviality, which contradicts that 

𝑏 ∈ ℤ+. Thus, this case cannot happen. 

Case 2: 𝑖 ≠ 0.  By Trichotomy, we have that −𝑖 ∈ ℤ+,  so −𝑏 = −(𝑖𝑎) = (−𝑖)𝑎 ∈ ℤ+  by 

multiplicative closure. However, this contradicts trichotomy, as we can’t have both 𝑏, −𝑏 ∈ ℤ+, so this 

case can’t happen either. Since both cases fail, we can only conclude that 𝑖 ∈ ℤ+ must be true.  

Lemma 1.44. If 𝑞𝑖 are defined on 1 ≤ 𝑖 ≤ 𝑛 where 𝑞𝑖 < 𝑞𝑖+1, For 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝑞𝑖 < 𝑞𝑗 . 
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Proof. Let 𝑆 be the set of 𝑖 < 𝑘 ≤ 𝑗 such that 𝑞𝑖 ≮ 𝑞𝑘. Lets assume for the sake of contradiction that 

𝑆 is nonempty. Then, we can define 𝑠 as the smallest element of 𝑆 by WOP. We know that 𝑠 ≠ 𝑖 + 1, as 

we are given that 𝑞𝑖 < 𝑞𝑖+1. Thus, 𝑠 − 1 > 𝑖. Since 𝑠 − 1 < 𝑠, 𝑠 − 1 ∉ 𝑆, so 𝑞𝑖 < 𝑞𝑠−1. Since 𝑞𝑠−1 <
𝑞𝑠, 𝑞𝑖 < 𝑞𝑠, making 𝑠 not in 𝑆. However, this contradicts our definition of 𝑠 as the smallest element of 𝑆, 
so we can only conclude that our assumption that 𝑆 was nonempty was false, so 𝑗 ∉ 𝑆, so 𝑞𝑖 < 𝑞𝑗 .  

2.2 Prime Divisors 

From here, we will begin by proving that every positive integer greater than 1 has a positive prime 

divisor, which will be essential in proving our main result. We will begin, of course, by defining primes, 

and use their properties to prove the theorem. 

Definition 2.1. 𝑝 ≠ 0 is prime if 𝑝 is not a unit and for all 𝑏, 𝑐 ∈ ℤ, if 𝑏𝑐 = 𝑝, then either 𝑏 or 𝑐 is a 

unit. 

Lemma 2.2. If 𝑝 ∈ ℤ+, then if 𝑝 is not a unit, and if for all 𝑏, 𝑐 ∈ ℤ+ such that 𝑏𝑐 = 𝑝 have that either 

𝑏 or 𝑐 is 1, then 𝑝 is prime. 

Proof. Let 𝑞𝑟 = 𝑝  for some 𝑞, 𝑟 ∈ ℤ.  Now, none of 𝑞, 𝑟 = 0,  as then 𝑞𝑟 = 0 ≠ 𝑝.  Thus, by 

trichotomy, either 𝑞 ∈ ℤ𝑝 or −𝑞 ∈ ℤ+, and similarly for 𝑟. 

If 𝑞 ∈ ℤ+, then 𝑟 ∈ ℤ+, as if −𝑟 ∈ ℤ+, then −𝑞𝑟 ∈ ℤ+ by multiplicative closure, so −𝑝 ∈ ℤ+, which 

means 𝑝 ∉ ℤ+ by trichotomy, which is a contradiction. Thus, since 𝑞𝑟 = 𝑝, either 𝑞 or 𝑟 is 1 and thus a 

unit, which is given. 

On the other hand, if 𝑞 ∉ ℤ+, then 𝑟 ∉ ℤ+, as otherwise, if 𝑟 ∈ ℤ+, since −𝑞 ∈ ℤ+, then −𝑞𝑟 = −𝑝 ∈
ℤ+ by multiplicative closure, so 𝑝 ∉ ℤ+ by trichotomy, which is again a contradiction. Thus, 𝑞, 𝑟 ∉ ℤ+ ∪
{0}, so |𝑞| = −𝑞, |𝑟| = −𝑟, so |𝑞||𝑟| = (−𝑞)(−𝑟) = 𝑞𝑟 = 𝑝. Since |𝑞|, |𝑟| ∈ ℤ+, it is given that either 
|𝑞| or |𝑟| is 1, so either 𝑞 or 𝑟 is -1, a unit. 

Since either 𝑞 or 𝑟 is always a unit, 𝑝 is prime. Now we want to prove the existence of prime divisors 

for every positive integer. 

Theorem 2.3.  For all 𝑎 > 1, there exists a prime 𝑝 ∈ ℤ+ such that 𝑝 ∣ 𝑎. 

Proof. Since 𝑝 is not a unit by definition, 𝑝 ≠ 1, so 𝑝 > 1. 

Let 𝑆 be the set of all 𝑎 > 1 that don’t have a positive prime 𝑝 that divides it, and lets assume for the 

sake of contradiction that it is nonempty. By WOP, it must have a smallest element, which we’ll define 

as 𝑠. There cannot exist any 𝑥 ∈ ℤ+ such that 𝑥 ≠ 1, 𝑥 ≠ 𝑠, and 𝑥 ∣ 𝑠, as since by Theorem 1.39, 𝑥 ≤ 𝑠, 
so 𝑥 < 𝑠, so 𝑥 ∉ 𝑆. Since 𝑥 ≠ 1 and 𝑥 ∈ ℤ+, there would be a positive prime 𝑞 such that 𝑞 ∣ 𝑥, which 

would mean 𝑞 ∣ 𝑠, meaning 𝑠 ∉ 𝑆, a contradiction. Thus, the only elements of ℤ+ that divide 𝑠 are 1 and 

𝑠 by Lemma 2.2. This, however, makes 𝑠 a positive prime by definition. Since 𝑠 ∣ 𝑠, 𝑠 has a positive 

prime divisor, making it again not in 𝑆. Thus, we get a contradiction again, and we can only conclude 

that our assumption that 𝑆 is nonempty, so all 𝑎 > 1 must have a positive prime divisor.  

2.3 Equivalence Classes 

We will now set up and prove some things about equivalence classes, which are the classes of integers 

 (mod 𝑝). This will allow us to reduce integers to better see the divisor relationships between them and 

a prime 𝑝, which will help us prove The Fundamental Lemma. 

Theorem 3.1. For any 𝑎, 𝑏 ∈ ℤ where 𝑏 ≠ 0, 𝑎 can be expressed as 𝑖𝑏 + 𝑐 for some 𝑐 ∈ ℤ+ ∪ {0}. 

Proof. Lets assume for the sake of contradiction that 𝑎 can’t be represented as 𝑖𝑏 + 𝑐. If this is the 

case, then there can be no 𝑖 such that 𝑖𝑏 < 𝑎. This is because if there was, then 𝑎 − 𝑖𝑏 ∈ ℤ+, which means 

we could define 𝑐 as this value. We also can’t have that 𝑖𝑏 = 𝑎, as then 𝑖𝑏 + 0 = 𝑎 allowing us to set 𝑐 

to 0. Thus, we must have that for all 𝑖 ∈ ℤ, 𝑎 < 𝑖𝑏. This means that for all 𝑖 𝑖𝑏 − 𝑎 ∈ ℤ+. Now, let 𝐵 be 

the set of all 𝑖𝑏 − 𝑎 where 𝑖 ∈ ℤ. Since 𝑖𝑏 − 𝑎 ∈ ℤ+, 𝐵 ⊆ ℤ+, so by WOP 𝐵 has a smallest element, 

which we’ll define as 𝑥 = 𝑗𝑏 − 𝑎 for some 𝑗 ∈ ℤ. 

Now, if 𝑏 ∈ ℤ+, then 𝑥 − ((𝑗 − 1)𝑏 − 𝑎) = 𝑏 ∈ ℤ+, so (𝑗 − 1)𝑏 − 𝑎 < 𝑥. Since (𝑗 − 1)𝑏 − 𝑎 ∈ 𝐵, 

this creates a contradiction, as it is smaller than the smallest element. Thus, our assumption that 𝑎 can’t 

be represented as 𝑖𝑏 + 𝑐 is false. 
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Otherwise, if 𝑏 ∉ ℤ+, −𝑏 ∈ ℤ+  by Trichotomy, so 𝑥 − ((𝑗 + 1)𝑏 − 𝑎) = −𝑏 ∈ ℤ+, so (𝑗 + 1)𝑏 −

𝑎 < 𝑥. Since (𝑗 + 1)𝑏 − 𝑎 ∈ 𝐵, this similarly creates a contradiction as it is smaller than the smallest 

element, again disproving our assumption that 𝑎 can’t be represented as 𝑖𝑏 + 𝑐.  

Definition 3.2. The equivalence class of 𝑎 ∈ ℤ with respect to 𝑏 ∈ ℤ where 𝑏 ≠ 0 is the smallest 

element of the set 𝑆 of 𝑠 ∈ ℤ+ ∪ {0} such that 𝑠 ≡ 𝑎 (mod 𝑏). 

Theorem 3.3. For any 𝑎, 𝑏 ∈ ℤ where 𝑏 ≠ 0, the equivalence class of 𝑎 with respect to 𝑏 exists. 

Proof. Any 𝑠 ∈ ℤ+ ∪ {0} that has 𝑎 = 𝑖𝑏 + 𝑠 for some 𝑖 ∈ ℤ is in the set 𝑆 defined in the definition 

of equivalence classes by definition. By Theorem 3.1, 𝑎 can be represented as 𝑖𝑏 + 𝑐 for some 𝑖 ∈ ℤ and 

𝑐 ∈ ℤ+ ∪ {0}. This means that 𝑐 ∈ 𝑆, so 𝑆 is nonempty, which means it has a least element 𝑠 by WOP. 

This 𝑠 is the equivalence class, which proves that it exists.  

Theorem 3.4. The equivalence class 𝑠 of 𝑎 ∈ ℤ with respect to 𝑝 > 0 is less than 𝑝. 

Proof. Assume for the sake of contradiction that 𝑠 ≮ 𝑝, so 𝑠 ≥ 𝑝. Then, 𝑠 − 𝑝 ∈ ℤ+ ∪ {0}. Since 𝑠 ≡
𝑎 (mod 𝑝) by definition, 𝑎 = 𝑖𝑝 + 𝑠 for some 𝑖 ∈ ℤ. However, we find that also 𝑠 − 𝑝 ≡ 𝑎 (mod 𝑝), as 

𝑎 = (𝑖 + 1)𝑝 + 𝑠 − 𝑝 = 𝑖𝑝 + 𝑠. The equivalence class is the least 𝑘 in ℤ+ ∪ {0} with the property that 

𝑘 ≡ 𝑎, so since 𝑠 − 𝑝 < 𝑠, 𝑠 − 𝑝 is the equivalence class of 𝑎 and not 𝑠. This is a contradiction, as we 

assumed that 𝑠 was the equivalence class of 𝑎. Thus, our assumption that 𝑠 ≮ 𝑝 is false, so 𝑠 < 𝑝.  

2.4 The Fundamental Lemma 

Now, we will begin proving The Fundamental Lemma, which states that if 𝑝 prime divides 𝑎𝑏, then 

𝑝 divides 𝑎 or 𝑏. We will start by proving it for positive primes. 

Lemma 4.1.  If 𝑝 ∈ ℤ+ is prime then for all 𝑎, 𝑏 ∈ ℤ if 𝑝 ∣ 𝑎𝑏 then 𝑝 ∣ 𝑎 or 𝑝 ∣ 𝑏. 

Proof. Since 𝑝 is not a unit by definition, 𝑝 ≠ 1, so 𝑝 > 1. 

Let 𝑆 be the the set of all positive prime 𝑝 such that 𝑝 does not satisfy this property. We will assume 

for the sake of contradiction that it is nonempty. 

By WOP, we can define 𝑠 to be the smallest element of that set. Since 𝑠 does not satisfy the property, 

for some 𝑏, 𝑐 ∈ ℤ, 𝑠 ∣ 𝑏𝑐 but 𝑠 ∤ 𝑏 and 𝑠 ∤ 𝑐. 

By Theorem 3.3, we can define an equivalence class of 𝑏 with respect to 𝑠 as 𝑢 and an equivalence 

class of 𝑐 as 𝑣. By definition, 𝑢 ≡ 𝑏 (mod 𝑠) and 𝑣 ≡ 𝑐 (mod 𝑠), so for some 𝑖, 𝑗 ∈ ℤ, 𝑏 = 𝑖𝑠 + 𝑢, and 

𝑐 = 𝑗𝑠 + 𝑣. This means that 𝑢, 𝑣 ≠ 0, as otherwise 𝑏 = 𝑖𝑠 and 𝑐 = 𝑗𝑠 so 𝑠 ∣ 𝑏 and 𝑠 ∣ 𝑐, both of which 

we defined as untrue. By Theorem 3.4, 𝑢 < 𝑠  and 𝑣 < 𝑠.  Thus, we have 𝑏𝑐 = (𝑖𝑠 + 𝑢)(𝑗𝑠 + 𝑣) =
(𝑖𝑗𝑠 + 𝑖𝑣 + 𝑢𝑗)𝑠 + 𝑢𝑣. For 𝑠 ∣ 𝑏𝑐, we need 𝑏𝑐 = 𝑟𝑠 for some ∈ ℤ. This means (𝑖𝑗𝑠 + 𝑖𝑣 + 𝑢𝑗)𝑠 + 𝑢𝑣 =

𝑟𝑠, so 𝑢𝑣 = (𝑟 − (𝑖𝑗𝑠 + 𝑖𝑣 + 𝑢𝑗))𝑠. Thus, 𝑠 ∣ 𝑢𝑣. Since 𝑢, 𝑣 < 𝑠, 𝑠 ∤ 𝑢, 𝑣, as if 𝑠 ∣ 𝑢, 𝑣, we would have 

that 𝑠 ≤ 𝑢, 𝑣, which is not true. Since 𝑢, 𝑣 < 𝑠, and 𝑢, 𝑣, 𝑠 ∈ ℤ𝑝, 𝑢𝑣 < 𝑠2. Since 𝑠 ∣ 𝑢𝑣, 𝑢𝑣 = 𝑘𝑠  for 

some 𝑘 ∈ ℤ.  Since 𝑢𝑣 < 𝑠2,  𝑘 < 𝑠.  Since 𝑢, 𝑣 ∈ ℤ𝑝,  𝑢𝑣 ∈ ℤ𝑝  by additive closure, so 𝑘𝑠 ∈ ℤ𝑝.  This 

means that 𝑘 ∈ ℤ𝑝 by Theorem 1.43. 

If 𝑘 = 1, then we get 𝑢𝑣 = 𝑠. Since 𝑢, 𝑣 < 𝑠, we can’t have that one of 𝑢 or 𝑣 is one. If we assumed 

that without loss of generality 𝑢 = 1, 𝑢𝑣 = 1𝑣 = 𝑣 < 𝑠, which contradicts 𝑢𝑣 = 𝑠. However, this means 

that 𝑠 is not prime by Lemma 2.2, which is a contradiction to the fact we were given. Thus, we must 

conclude that 𝑘 =≠ 1. Since 𝑘 ∈ ℤ+, 𝑘 > 1. 

Define 𝐾 as the set of all 𝑘 generated by some 𝑏, 𝑐 ∈ ℤ such that 𝑠 ∣ 𝑏𝑐 but 𝑠 ∤ 𝑏 and 𝑠 ∤ 𝑐, by way of 

equivalence classes 𝑢 and 𝑣 of 𝑏 and 𝑐 respectively having 𝑢𝑣 = 𝑘𝑠. Since we assumed that at least one 

instance of 𝑏, 𝑐 exists, 𝐾 is nonempty, since each 𝑏, 𝑐 generates at least one 𝑘. Since 𝐾 ⊆ ℤ+, we can 

define 𝑚 as the smallest element of 𝐾 by WOP. 

For 𝑚, there exists 𝑏, 𝑐 ∈ ℤ such that the 𝑢, 𝑣 generated by 𝑏, 𝑐 has the property that 𝑢𝑣 = 𝑚𝑠. Since 

𝑚 > 1, there exists positive prime 𝑞 > 1 such that 𝑞 ∣ 𝑚. Since 𝑞 ≤ 𝑚 by Theorem 1.39, and 𝑚 < 𝑠, 
𝑞 < 𝑠. Since 𝑠 is the smallest element in 𝑆, 𝑞 ∉ 𝑆, so since 𝑞 is a positive prime, 𝑞 satisfies the property. 

Thus, either 𝑞 ∣ 𝑢 or 𝑞 ∣ 𝑣. Without loss of generality, lets assume that 𝑞 ∣ 𝑢, so 𝑢 = 𝑙𝑞 for some 𝑙 ∈ ℤ+ 

by Theorem 1.43, as 𝑢 ∈ ℤ+ and 𝑞 ∈ ℤ+. We also have that 𝑞 ∣ 𝑚, so 𝑚 = 𝑛𝑞 for 𝑛 ∈ ℤ+ by Theorem 

1.39, as 𝑚, 𝑞 ∈ ℤ+. Thus, we have 𝑙𝑞𝑣 = 𝑛𝑞𝑠. By Theorem 1.24, 𝑙𝑣 = 𝑛𝑠. Since 𝑞 ≠ 1, 𝑚 ≠ 𝑛 by the 

contrapositive of Theorem 1.24, as it gives that 𝑛𝑞 ≠ 𝑛 ⋅ 1. Since 𝑛 ∣ 𝑚, 𝑛 ≤ 𝑚 by Theorem 1.39, so we 

get 𝑛 < 𝑚. 
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Now, since 𝑙𝑣 = 𝑛𝑠, 𝑠 ∣ 𝑙𝑣, and we still have that 𝑠 ∤ 𝑣. We also have that 𝑠 ∤ 𝑙, as if 𝑠 ∣ 𝑙, then since 

𝑙 ∣ 𝑢, 𝑠 ∣ 𝑢. Thus, 𝑙, 𝑣 generates some 𝑛 in 𝐾. 𝑣 remains is its own equivalence class. 𝑙 is also its own 

equivalence class, as its the smallest element of the set of 𝑔 ∈ ℤ+ ∪ {0} such that 𝑙 = 𝑑𝑠 + 𝑔 for some 

𝑑 ∈ ℤ, as 𝑙 = 0𝑝 + 𝑙. If we assume that there is a smaller 𝑔, then for some 𝑑 ∈ ℤ, 𝑙 = 𝑑𝑠 + 𝑔, so 𝑙 −
𝑑𝑠 = 𝑔. Since 𝑔 ∈ ℤ+, 𝑙 − 𝑑𝑠 ∈ ℤ+, so 𝑙 > 𝑑𝑠. We also have 𝑙 − 𝑔 = 𝑑𝑠. Since 𝑔 < 𝑙, 𝑑𝑠 ∈ ℤ𝑝, so by 

Theorem 1.43, since 𝑠 ∈ ℤ𝑝, 𝑑 ∈ ℤ+. This means that 𝑑 ≥ 1, as 1 is the smallest element in ℤ+. This 

means that 𝑑𝑠 ≥ 1𝑠 = 𝑠,  as 𝑠 ≥ 𝑠.  Since 𝑙 > 𝑑𝑠,  𝑙 ≥ 𝑑𝑠,  so 𝑙 ≥ 𝑠,  which is not true. Thus, our 

assumption that 𝑙 is not an equivalence class is false. 

Since 𝑙 and 𝑣 are equivalent classes, 𝑛 ∈ 𝐾, as 𝑛 is generated as 𝑙𝑣 = 𝑛𝑠 by equivalence classes 𝑙 
and 𝑣 of 𝑙 and 𝑣 respectively. Since 𝑚 is the smallest element in 𝐾, we get that 𝑚 ≤ 𝑛. However, we 

found earlier that 𝑛 < 𝑚.  This is a contradiction, which means we can only conclude our original 

assumption, that 𝑆, the set of positive primes that does not have the property, is nonempty, is false. Thus, 

we find that all positive primes have the property.  

In order to extend this to the negative primes as well, we will need to prove that primes and the 

property we’re trying to prove of primes carry into the negatives. 

Lemma 4.2. If 𝑝 is prime, −𝑝 is prime. 

Proof. If −𝑝 is not prime, then there exists some 𝑏, 𝑐 ∈ ℤ such that 𝑏𝑐 = −𝑝, but none of 𝑏, 𝑐 are 

units. Since, (−𝑏)𝑐 = 𝑝, one of (−𝑏), 𝑐 is a unit. 𝑐 is not a unit, so we must have −𝑏 be a unit. However, 

if −𝑏 is 1, 𝑏 = −1, which is a unit, and if −𝑏 = −1, 𝑏 = 1, which is also a unit, both contradicting our 

finding of 𝑏 as not a unit. Since 1 and −1 are the only units, both cases for the value of −𝑏 lead to 

contradiction, so we can only conclude that our assumption that −𝑝 is not prime is false. Thus, −𝑝 is 

prime.  

Theorem 4.3. If some 𝑝 ∈ ℤ has that if 𝑝 ∣ 𝑎𝑏 then 𝑝 ∣ 𝑎 or 𝑝 ∣ 𝑏, −𝑝 also has this property. 

Proof. For any 𝑏, 𝑐 ∈ ℤ,  if −𝑝 ∣ 𝑏𝑐,  𝑏𝑐 = 𝑖(−𝑝)  for some 𝑖 ∈ ℤ,  so 𝑏𝑐 = (−𝑖)𝑝,  so 𝑝 ∣ 𝑏𝑐.  By 

definition, 𝑝 ∣ 𝑐  or 𝑝 ∣ 𝑏;  without loss of generality let 𝑝 ∣ 𝑏.  Then, 𝑏 = 𝑗𝑝  for some 𝑗 ∈ ℤ,  so 𝑏 =
(−𝑗)(−𝑝), so (−𝑝) ∣ 𝑏. Thus, −𝑝 has this property.  

Combining the previous results, we can extend our the property for positive primes into the negatives 

as well, proving The Fundamental Lemma. 

Lemma 4.4. [Fundamental Lemma] If 𝑝 is prime, then if 𝑝 ∣ 𝑎𝑏, 𝑝 ∣ 𝑎 or 𝑝 ∣ 𝑏 for 𝑎, 𝑏 ∈ ℤ. 

Proof. If 𝑝 ∈ ℤ+, this is true by Lemma 4.1. Otherwise, since 𝑝 ≠ 0, −𝑝 ∈ ℤ+ by trichotomy. By 

Lemma 4.2, −𝑝 is prime, so −𝑝 satisfies this property by Lemma 4.1. By Theorem 4.3, then, −(−𝑝) =
𝑝 satisfies this property.  

2.5 Products 

To continue, we will need to define and prove some things about products in order to use them to 

extend The Fundamental Lemma and to define factorizations for the Fundamental Theorem of Arithmetic. 

Definition 5.1. ∏ 𝑎𝑖
𝑛
𝑖=𝑏  for some 𝑛 ≥ 𝑏 where 𝑛, 𝑏 ∈ ℤ𝑝 ∪ {0} and 𝑎𝑖  defined for all 𝑏 ≤ 𝑖 ≤ 𝑛 is 

defined where ∏ 𝑎𝑖
𝑏
𝑖=𝑏 = 𝑎𝑏, and ∏ 𝑎𝑖

𝑗
𝑖=𝑏 = 𝑎𝑗 ⋅ ∏ 𝑎𝑖

𝑗−1
𝑖=𝑏 . For 𝑛, ≱ 𝑏, ∏ 𝑎𝑖

𝑛
𝑖=𝑏 = 1. 

Theorem 5.2. ∏ 𝑎𝑖
𝑛
𝑖=𝑏  always is defined for 𝑛 ≥ 𝑏 and 𝑎𝑖 defined for all 𝑏 ≤ 𝑖 ≤ 𝑛. 

Proof. Let 𝑆 be the set of 𝑚 ≥ 𝑏 such that ∏ 𝑎𝑖
𝑚
𝑖=𝑏  is not defined for 𝑎𝑖  such that 𝑏 ≤ 𝑖 ≤ 𝑛. Lets 

assume for the sake of contradiction that 𝑆 is nonempty. Thus, by WOP, we can define a smallest element 

𝑠 of 𝑆. 

We know that 𝑠 ≠ 𝑏, as ∏ 𝑎𝑖
𝑏
𝑖=𝑏  is defined as 𝑎𝑏. Thus, 𝑠 − 1 ≥ 𝑏. Since 𝑠 − 1 < 𝑠, 𝑠 − 1 ∉ 𝑆, so 

∏ 𝑎𝑖
𝑠−1
𝑖=𝑏  is defined. Then, ∏ 𝑎𝑖

𝑠
𝑖=𝑏 = 𝑎𝑠 ∏ 𝑎𝑖

𝑠−1
𝑖=𝑏 ,  so it is defined, so 𝑠 ∉ 𝑆.  However, this creates a 

contradiction, as we defined 𝑠 as the smallest element of 𝑆. Thus, our original assumption that 𝑆 was 

nonempty must be false, so 𝑛 ∉ 𝑆. Thus, ∏ 𝑎𝑖
𝑛
𝑖=𝑏  is defined.  

Lemma 5.3. ∏ 𝑝𝑛
𝑖=1 = 𝑝𝑛. 

Proof. ∏ 𝑝𝑛
𝑖=1  is defined with ∏ 𝑝1

𝑖=1 = 𝑝, and ∏ 𝑝
𝑗
𝑖=1 = 𝑝 ⋅ ∏ 𝑝

𝑗−1
𝑖=1  for 1 < 𝑗 ≤ 𝑛. 𝑝𝑛 is defined with 

𝑝0 = 1, and 𝑝𝑗 = 𝑝 ⋅ 𝑝𝑗−1 for 1 < 𝑗 ≤ 𝑛, which gives that 𝑝1 = 1. Thus, since both are defined in the 
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same way, they have the same value.  

Lemma 5.4. ∏ 𝑎𝑖
𝑛
𝑖=𝑏 = (∏ 𝑎𝑖

𝑘
𝑖=𝑏 ) ⋅ (∏ 𝑎𝑖

𝑛
𝑖=𝑘+1 ) for 𝑏 ≤ 𝑘 ≤ 𝑛. 

Proof. If 𝑘 = 𝑛, then 𝑘 + 1 > 𝑛, so ∏ 𝑎𝑖
𝑛
𝑖=𝑘+1 = 1. Thus, 

(∏ 𝑎𝑖

𝑘

𝑖=𝑏

) ⋅ ( ∏ 𝑎𝑖

𝑛

𝑖=𝑘+1

) = ∏ 𝑎𝑖

𝑛

𝑖=𝑏

⋅ 1 = ∏ 𝑎𝑖

𝑛

𝑖=𝑏

. 

Otherwise, 1 < 𝑘 + 1 ≤ 𝑛. Then, let 𝑆 be the set of 𝑘 + 1 ≤ 𝑐 ≤ 𝑛 such that ∏ 𝑎𝑖
𝑐
𝑖=𝑏 ≠ (∏ 𝑎𝑖

𝑘
𝑖=𝑏 ) ⋅

(∏ 𝑎𝑖
𝑐
𝑖=𝑘+1 ). Lets assume for the sake of contradiction that 𝑆 is nonempty. Then, we can define 𝑠 as the 

smallest element of 𝑆 by WOP. 

We know that 𝑠 ≠ 𝑘 + 1,  as (∏ 𝑎𝑖
𝑘
𝑖=𝑏 ) ⋅ (∏ 𝑎𝑖

𝑘+1
𝑖=𝑘+1 ) = ∏ 𝑎𝑖

𝑘
𝑖=𝑏 ⋅ 𝑎𝑘+1 = ∏ 𝑎𝑖

𝑘+1
𝑖=𝑏 .  Thus, 𝑠 − 1 ≥

𝑘 + 1. Since 𝑠 − 1 < 𝑠, 𝑠 − 1 ∉ 𝑆, so ∏ 𝑎𝑖
𝑠−1
𝑖=𝑏 = ∏ 𝑎𝑖

𝑘
𝑖=𝑏 ⋅ ∏ 𝑎𝑖

𝑠−1
𝑖=𝑘+1 . This means that 

∏ 𝑎𝑖

𝑘

𝑖=𝑏

⋅ ∏ 𝑎𝑖

𝑠−1

𝑖=𝑘+1

⋅ 𝑎𝑠 = ∏ 𝑎𝑖

𝑘

𝑖=𝑏

⋅ ∏ 𝑎𝑖

𝑠

𝑖=𝑘+1

= ∏ 𝑎𝑖

𝑠−1

𝑖=𝑏

⋅ 𝑎𝑠 = ∏ 𝑎𝑖

𝑠

𝑖=𝑏

. 

Thus, 𝑠 ∉ 𝑆. However, this is a contradiction, as we defined 𝑠 as the smallest element of 𝑆. Thus, our 

original assumption that 𝑆 is nonempty is false, so 𝑛 ∉ 𝑆. Therefore, we have that ∏ 𝑎𝑖
𝑛
𝑖=𝑏 ≠ (∏ 𝑎𝑖

𝑘
𝑖=𝑏 ) ⋅

(∏ 𝑎𝑖
𝑛
𝑖=𝑘+1 ).  

2.6 Extension of the Fundamental Lemma 

We will now extend The Fundamental Lemma to work for a finite product of integers, instead of a 

product of just two. 

Theorem 6.1. If 𝑝 is prime and 𝑝 ∣ ∏ 𝑎𝑖
𝑛
𝑖=1  for 𝑎𝑖 defined with 1 ≤ 𝑖 ≤ 𝑛, then for some 1 ≤ 𝑗 ≤ 𝑛, 

𝑝 ∣ 𝑎𝑗 . 

Proof. For some sequence of 𝑎𝑖 defined with 1 ≤ 𝑖 ≤ 𝑛, let 𝑆 be the set of 1 ≤ 𝑚 ≤ 𝑛 where there 

exists some prime 𝑞 such that 𝑞 ∣ ∏ 𝑎𝑖
𝑚
𝑖=1  such that there is no 1 ≤ 𝑗 ≤ 𝑚 such that 𝑞 ∣ 𝑎𝑗 . Lets assume 

for the sake of contradiction that 𝑆 is nonempty. Then, we can define 𝑠 as the smallest element of 𝑆 by 

WOP. 

We know that 𝑠 ≠ 1, as ∏ 𝑎𝑖
1
𝑖=1 = 𝑎1, so if any 𝑝 prime has that 𝑞 ∣ ∏ 𝑎𝑖

1
𝑖=1 , 𝑝 ∣ 𝑎1. Thus, 1 ≤ 𝑠 −

1 ≤ 𝑛. Since 𝑠 − 1 < 𝑠, 𝑠 − 1 ∉ 𝑆, so if any 𝑝 prime has that 𝑞 ∣ ∏ 𝑎𝑖
𝑠−1
𝑖=1 , there exists some 1 ≤ 𝑗 ≤ 𝑚 

such that 𝑞 ∣ 𝑎𝑗 . Now, since 𝑠 ∈ 𝑆, there exists some 𝑞 prime such that 𝑞 ∣ ∏ 𝑎𝑖
𝑠
𝑖=1 , so 𝑞 ∣ (𝑎𝑠 ∏ 𝑎𝑖

𝑠−1
𝑖=1 ), 

but 𝑞 ∤ 𝑎𝑠. By The Fundamental Lemma, then, 𝑞 ∣ ∏ 𝑎𝑖
𝑠−1
𝑖=1 . Thus, there exists 1 ≤ 𝑗 ≤ 𝑠 − 1 such that 

𝑞 ∣ 𝑎𝑗 , which means that 𝑠 ∉ 𝑆. This contradicts our definition of 𝑠 as the smallest element of 𝑆, so our 

assumption that 𝑆 is nonempty must be false, so 𝑛 ∉ 𝑆. Thus, if 𝑝 prime has that 𝑝 ∣ ∏ 𝑎𝑖
𝑛
𝑖=1  for 1 ≤ 𝑖 ≤

𝑛, then there exists 1 ≤ 𝑗 ≤ 𝑛 such that 𝑝 ∣ 𝑎𝑗 .  

2.7 The Main Proof 

Using all of this, we will now prove the Fundamental Theorem of Arithmetic. We will first define a 

canonical factorization, and then begin by proving that a factorization exists for positive integers greater 

than 1. 

Definition 7.1. For |𝑛| > 1, ± ∏ 𝑝𝑖
𝑒𝑖𝑟

𝑖=1 = 𝑛 for 𝑒𝑖 ∈ ℤ𝑝 and positive primes 𝑝𝑖 such that 𝑝𝑖 < 𝑝𝑖+1 

for 1 ≤ 𝑖 < 𝑟 is a canonical factorization of 𝑛. 

Lemma 7.2.  For every 𝑛 ∈ ℤ+ such that 𝑛 > 1, there exists a canonical factorization. 

Proof. Let 𝐾 be the set of 𝑛 > 1 that do not have a canonical representation, and thus cannot be 

represented as ∏ 𝑝𝑖
𝑒𝑖𝑟

𝑖=1 . Lets assume for the sake of contradiction that 𝐾 is nonempty. Then, we can 

define 𝑘 as the smallest element of 𝐾 by WOP. 

Now, if 𝑘 is prime, then for 𝑝1 = 𝑘, 𝑒1 = 1, 𝑘 = ∏ 𝑝1
𝑒11

𝑖=1 = 𝑝1
𝑒1 = 𝑘1 = 𝑘. This means that 𝑘 ∉ 𝐾, 

which contradicts our definition of 𝑘 as the smallest element of 𝐾. Thus, we find that 𝑘 can’t be prime. 

If 𝑘 is not prime, then there exists a positive prime 𝑝 by Theorem 2.3 such that 𝑝 ∣ 𝑘, so that 𝑘 = 𝑗𝑝 
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for 𝑗 > 1, as if 𝑗 = 1, then 𝑘 = 𝑝 which we proved can’t happen. Thus, since 𝑝 > 1, 𝑗 < 𝑘, so we must 

have that 𝑗 ∉ 𝐾. This means that 𝑗 = ∏ 𝑝𝑖
𝑒𝑖𝑟

𝑖=1  for some 𝑒𝑖 ∈ ℤ+ and distinct positive prime 𝑝𝑖 such that 

𝑝𝑖 < 𝑝𝑖+1. 

If 𝑝 = 𝑝𝑚 for some 1 ≤ 𝑚 ≤ 𝑟, then we have that 

𝑘 = 𝑗𝑝𝑚

= 𝑝𝑚 ∏ 𝑝𝑖
𝑒𝑖

𝑟

𝑖=1

= 𝑝𝑚 ∏ 𝑝𝑖
𝑒𝑖

𝑚−1

𝑖=1

⋅ ∏ 𝑝𝑖
𝑒𝑖

𝑚

𝑖=𝑚

⋅ ∏ 𝑝𝑖
𝑒𝑖

𝑟

𝑖=𝑚+1

= 𝑝𝑚 ∏ 𝑝𝑖
𝑒𝑖

𝑚−1

𝑖=1

⋅ 𝑝𝑚
𝑒𝑚 ⋅ ∏ 𝑝𝑖

𝑒𝑖

𝑟

𝑖=𝑚+1

= ∏ 𝑝𝑖
𝑒𝑖

𝑚−1

𝑖=1

⋅ ∏ 𝑝𝑖
𝑒𝑖

𝑟

𝑖=𝑚+1

.

 

Then, we can define 𝑓𝑖 as 

𝑓𝑖 = {
𝑒𝑖 + 1 𝑖 = 𝑚
𝑒𝑖 otherwise

. 

Thus, we have 

k = ∏ pi
ei

m−1

i=1

⋅ pm
em+1

⋅ ∏ pi
ei

r

i=m+1

= ∏ pi
fi

m−1

i=1

⋅ pm
fm ⋅ ∏ pi

fi

r

i=m+1

= ∏ pi
fi

m−1

i=1

⋅ ∏ pi
fi

m

i=m

⋅ ∏ pi
fi

r

i=m+1

= ∏ pi
fi

r

i=1

.

 

On the other hand, if 𝑝 ≠ 𝑝𝑚 for any 1 ≤ 𝑚 ≤ 𝑟, we can find the set 𝐼 of 1 ≤ 𝑖 ≤ 𝑟 such that 𝑝𝑖 >
𝑝𝑚. 

If 𝐼 is nonempty, we can find a smallest element 𝑗 by WOP. Thus, we have that 

𝑘 = 𝑗𝑝 = 𝑝 ∏ 𝑝𝑖
𝑒𝑖

𝑟

𝑖=1

= ∏ 𝑝𝑖
𝑒𝑖

𝑗−1

𝑖=1

⋅ 𝑝1 ⋅ ∏ 𝑝𝑖
𝑒𝑖

𝑟

𝑖=𝑗

. 

We can then define 𝑓𝑖 , 𝑞𝑖 as 

𝑓𝑖 = {

1 𝑖 = 𝑗
𝑒𝑖 𝑖 < 𝑗
𝑒𝑖−1 otherwise

. 

and 

𝑞𝑖 = {

𝑝 𝑖 = 𝑗
𝑝𝑖 𝑖 < 𝑗
𝑝𝑖−1 otherwise.

 

This means that 

𝑘 = ∏ 𝑝𝑖
𝑒𝑖

𝑗−1

𝑖=1

⋅ 𝑝1 ⋅ ∏ 𝑝𝑖
𝑒𝑖

𝑟

𝑖=𝑗

= ∏ 𝑞𝑖
𝑓𝑖

𝑗−1

𝑖=1

⋅ 𝑞
𝑗

𝑓𝑗 ⋅ ∏ 𝑞𝑖
𝑓𝑖

𝑟+1

𝑖=𝑗+1

= ∏ 𝑞𝑖
𝑓𝑖

𝑗−1

𝑖=1

⋅ ∏ 𝑞𝑖
𝑓𝑖

𝑗

𝑖=𝑗

⋅ ∏ 𝑞𝑖
𝑓𝑖

𝑟+1

𝑖=𝑗+1

= ∏ 𝑞𝑖
𝑓𝑖

𝑟+1

𝑖=0

. 
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This maintains the property that 𝑞𝑖 < 𝑞𝑖+1. If 𝑖 < 𝑗 − 1, 𝑞𝑖 , 𝑞𝑖+1 = 𝑝𝑖 , 𝑝𝑖+1, so this property carries 

over. If 𝑖 = 𝑗 − 1, 𝑖 ∉ 𝐼, as 𝑖 < 𝑗, the smallest element, so 𝑝𝑖 ≤ 𝑝, and we assumed that 𝑖 ≠ 𝑝𝑗 = 𝑝, so 

𝑝𝑖 < 𝑝, so 𝑞𝑖 = 𝑞𝑗−1 < 𝑝 = 𝑞𝑗 . If 𝑖 = 𝑗, then since 𝑗 ∈ 𝐼, 𝑝 < 𝑝𝑗 , so 𝑞𝑖 = 𝑞𝑗 < 𝑐𝑗 = 𝑞𝑗+1. Finally, if 𝑖 >

𝑗, then 𝑝𝑖−1 < 𝑝𝑖 carries over, so 𝑞𝑖 < 𝑞𝑖+1. 

Now, if 𝐼 is empty, 𝑝 ≥ 𝑝𝑖 for all 1 ≤ 𝑖 ≤ 𝑟. Define 

𝑓𝑖 = {
1 𝑖 = 𝑟 + 1
𝑒𝑖 otherwise

. 

and 

𝑞𝑖 = {
𝑝 𝑖 = 𝑟 + 1
𝑝𝑖 otherwise.

 

Thus, we have 

𝑘 = 𝑗𝑝 = ∏ 𝑝𝑖
𝑒𝑖

𝑟

𝑖=1

⋅ 𝑝 = ∏ 𝑞𝑖
𝑓𝑖

𝑟

𝑖=1

⋅ 𝑞𝑟+1
𝑓𝑟+1 = ∏ 𝑞𝑖

𝑓𝑖

𝑟+1

𝑖=1

. 

The 𝑞𝑖 have the property that 𝑞𝑖 < 𝑞𝑖+1, as if 𝑖 < 𝑟, then 𝑞𝑖 = 𝑝𝑖 < 𝑝𝑖+1 = 𝑞𝑖+1. Otherwise, if 𝑖 = 𝑟, 
𝑝𝑖 ∉ 𝐼 as 𝐼 is empty, so 𝑝𝑖 ≥ 𝑝, and 𝑝𝑖 ≠ 𝑝, so 𝑝𝑖 = 𝑞𝑖 = 𝑞𝑟 < 𝑝 = 𝑞𝑟+1 = 𝑞𝑖+1. 

Thus, we find that we always get a canonical factorization of 𝑘, so 𝑘 ∉ 𝐾. However, this contradicts 

our definition of 𝑘 as the smallest element of 𝐾, so we can only conclude that our assumption that 𝐾 is 

nonempty is false. Thus, all 𝑛 > 1 have a canonical factorization.  

We will now extend the previous lemma to all nonunit nonzero integers. 

 Lemma 7.3. For every 𝑛 ∈ ℤ such that |𝑛| > 1, there exists a canonical factorization. 

Proof. If |𝑛| > 1, 𝑛 ≠ 0,1, −1, so either 𝑛 > 1 or −𝑛 > 1. If 𝑛 > 1, then by Lemma 7.2, 𝑛 has a 

canonical factorization by definition. Otherwise, if −𝑛 > 1, then by Lemma 7.2, −𝑛 has a canonical 

factorization, so −𝑛 = ∏ 𝑝𝑖
𝑒𝑖𝑟

𝑖=1 . Thus, 𝑛 = − ∏ 𝑝𝑖
𝑒𝑖𝑟

𝑖=1 , so 𝑛 has a canonical factorization.  

We will now prove that these canonical factorizations are unique for positive integers. We will begin 

by proving that the canonical factorizations follow a certain form, and then prove they are all the same 

for any given positive integer greater than 1. 

Lemma 7.4. If 𝑛 > 1, then any canonical factorization of 𝑛 is in the form ∏ 𝑝𝑖
𝑒𝑖𝑟

𝑖=1 . 

Proof. By definition, any canonical factorization of 𝑛 is in the form ± ∏ 𝑝𝑖
𝑒𝑖𝑟

𝑖=1 . 

Now, we will attempt to prove that ∏ 𝑝𝑖
𝑒𝑖𝑟

𝑖=1 ∈ ℤ+. 

Let 𝑆 be the set of 1 ≤ 𝑗 ≤ 𝑟 such that ∏ 𝑝𝑖
𝑒𝑖𝑗

𝑖=1 ∉ ℤ+, and lets assume for the sake of contradiction 

that 𝑆 is nonempty. Then, by WOP, we can choose 𝑠 as the smallest element of 𝑆. 

We have that 𝑠 ≠ 1, as ∏ 𝑝𝑖
𝑒𝑖1

𝑖=1 = 𝑝1
𝑒1 ∈ ℤ+, as 𝑝1 is a positive prime. Thus, 𝑠 − 1 ≥ 1. Since 𝑠 −

1 < 𝑠, 𝑠 − 1 ∉ 𝑠, so ∏ 𝑝𝑖
𝑒𝑖𝑠−1

𝑖=1 ∈ ℤ𝑝. Thus, ∏ 𝑝𝑖
𝑒𝑖𝑠

𝑖=1 = 𝑝𝑠
𝑒𝑠 ∏ 𝑝𝑖

𝑒𝑖𝑠−1
𝑖=1 ∈ ℤ+ by multiplicative closure, as 𝑝𝑠 

is a positive prime. Thus, 𝑠 ∉ 𝑆, which contradicts our definition of 𝑠 as the smallest element of 𝑆. Thus, 

our original assumption that 𝑆 is nonempty is false, so 𝑟 ∉ 𝑆. Thus, ∏ 𝑝𝑖
𝑒𝑖𝑟

𝑖=1 ∈ ℤ+. 

This means that − ∏ 𝑝𝑖
𝑒𝑖𝑟

𝑖=1 ∉ ℤ+. However, 𝑛 ∈ ℤ+, so 𝑛 ≠ − ∏ 𝑝𝑖
𝑒𝑖𝑟

𝑖=1 , so 𝑛 = ∏ 𝑝𝑖
𝑒𝑖𝑟

𝑖=1 .  

Theorem 7.5. For 𝑛 > 1, any two canonical factorizations are the same. 

Proof. Using Lemma 7.4, let ∏ 𝑝𝑖
𝑒𝑖𝑟

𝑖=1  and ∏ 𝑞
𝑗

𝑓𝑗𝑡
𝑗=1  be canonical factorizations of 𝑛, which we will 

prove are the same. 

To prove this, we will have to prove that 𝑟 = 𝑡, and 𝑝𝑖 = 𝑞𝑗 , 𝑒𝑖 = 𝑓𝑗  for 1 ≤ 𝑖 ≤ 𝑟 and 1 ≤ 𝑗 ≤ 𝑡 

when 𝑖 = 𝑗. We will first prove that 𝑝𝑖 = 𝑞𝑗 when 𝑖 = 𝑗. Lets assume without loss of generality that 𝑟 ≤

𝑡. First, let 𝑆 be the set of 1 ≤ 𝑖 ≤ 𝑟 such that 𝑝𝑖 ≠ 𝑞𝑖 . Lets assume for the sake of contradiction that 𝑆 is 

nonempty. We can then define 𝑥 as the smallest element of 𝑆 by WOP. Using Lemma 5.4, we have that 



Academic Journal of Mathematical Sciences 

ISSN 2616-5805 Vol. 6, Issue 1: 15-26, DOI: 10.25236/AJMS.2025.060103 

Published by Francis Academic Press, UK 

-25- 

𝑛 = ∏ 𝑝𝑖
𝑒𝑖

𝑟

𝑖=1

= ∏ 𝑝𝑖
𝑒𝑖

𝑠−1

𝑖=1

⋅ 𝑝𝑠
𝑒𝑠 ⋅ ∏ 𝑝𝑖

𝑒𝑖

𝑟

𝑖=𝑠+1

. 

Similarly, 

𝑛 = ∏ 𝑞
𝑗

𝑓𝑗

𝑡

𝑗=1

= ∏ 𝑞
𝑗

𝑓𝑗

𝑠−1

𝑗=1

⋅ 𝑞𝑠
𝑓𝑠 ⋅ ∏ 𝑞

𝑗

𝑓𝑗

𝑡

𝑗=𝑠+1

. 

Thus, 𝑝𝑠 , 𝑞𝑠 ∣ 𝑛. We have 𝑝𝑠 ≠ 𝑞𝑠. Lets assume without loss of generality that 𝑞𝑠 > 𝑝𝑠. For all 𝑗 > 𝑠, 
𝑞𝑗 > 𝑞𝑠 > 𝑝𝑠, and for 𝑗 < 𝑠, 𝑞𝑗 = 𝑝𝑗 < 𝑝𝑠  by Lemma 1.44. Thus, there exists no 𝑗 such that 𝑞𝑗 = 𝑝𝑠. 

Since 𝑝𝑠 ∣ 𝑛 = ∏ 𝑞
𝑗

𝑓𝑗𝑡
𝑗=1 , by Theorem 6.1, 𝑝𝑠 ∣ 𝑞

𝑗

𝑓𝑗
 for some 1 ≤ 𝑗 ≤ 𝑟. By Lemma 5.3, 𝑞

𝑗

𝑓𝑗 = ∏ 𝑞𝑗
𝑓𝑗

𝑖=1
. 

Thus, again by Theorem 6.1, 𝑝𝑠 ∣ 𝑞𝑗 . Thus, 𝑑𝑝𝑠 = 𝑞𝑗  for some 𝑑 ∈ ℤ+, as 𝑝𝑠, 𝑞𝑗 ∈ ℤ+. Since 𝑝𝑠  is a 

positive prime, 𝑝𝑠 > 1, and is thus not a unit, so 𝑑 must be a unit and thus is 1. This gives that 1 ⋅ 𝑝𝑠 =
𝑝𝑠 = 𝑞𝑗 . However, this contradicts what we found that 𝑞𝑗 ≠ 𝑝𝑠. Thus, our original assumption that 𝑆 was 

nonempty must be false, so 𝑝𝑖 = 𝑞𝑖 for all 1 ≤ 𝑖 ≤ 𝑟. Now, lets assume for the sake of contradiction that 

𝑟 ≠ 𝑡, so 𝑟 < 𝑡, as we assumed that 𝑟 ≤ 𝑡. Thus, 𝑞𝑟+1 exists, but 𝑝𝑟+1 doesn’t. Now, we found that 𝑝𝑟 =
𝑞𝑟 , so for all 1 ≤ 𝑖 ≤ 𝑟, 𝑝𝑖 ≤ 𝑝𝑟 = 𝑞𝑟 < 𝑞𝑟+1. This means that there exists no 𝑝𝑖 such that 𝑝𝑖 = 𝑞𝑟+1. We 

have that 𝑞𝑟+1 ∣ 𝑛, as 

𝑛 = ∏ 𝑞
𝑗

𝑓𝑗

𝑡

𝑗=1

= ∏ 𝑞𝑗
𝑓𝑗

𝑟

𝑗=1

⋅ 𝑞𝑟+1
𝑓𝑟+1 ⋅ ∏ 𝑞

𝑗

𝑓𝑗

𝑡

𝑗=𝑟+2

. 

Then, by Theorem 6.1, since 𝑞𝑟+1 ∣ 𝑛 = ∏ 𝑝𝑖
𝑒𝑖𝑟

𝑖=1 , 𝑞𝑟+1 ∣ 𝑝𝑖
𝑒𝑖 for some 𝑖. This is equal to ∏ 𝑝𝑖

𝑒𝑖
𝑖=1 , so 

again by Theorem  6.1, 𝑞𝑟+1 ∣ 𝑝𝑖 . Thus, 𝑝𝑖 = 𝑑𝑞𝑟+1 for some 𝑑 ∈ ℤ𝑝. Since 𝑞𝑟+1 is not a unit, 𝑑 must be 

by the definition of prime, so 𝑑 = 1. Thus, 𝑝𝑖 = 1 ⋅ 𝑝𝑖 = 𝑞𝑟+1. We found that this is not true, so our 

assumption that 𝑟 ≠ 𝑡 is false, so 𝑟 = 𝑡. Finally, we will attempt to prove that 𝑒𝑘 = 𝑓𝑘 for all 1 ≤ 𝑘 ≤
𝑟 = 𝑡. Lets assume that there exists 1 ≤ 𝑘 ≤ 𝑟 such that 𝑒𝑘 ≠ 𝑓𝑘. Then, we have that by Lemma 5.4, 

𝑛 = ∏ 𝑝𝑖
𝑒𝑖

𝑟

𝑖=1

= ∏ 𝑝𝑖
𝑒𝑖

𝑘−1

𝑖=1

⋅ 𝑝𝑘
𝑒𝑘 ⋅ ∏ 𝑝𝑖

𝑒𝑖

𝑟

𝑖=𝑘+1

, 

𝑛 = ∏ 𝑞
𝑗

𝑓𝑗

𝑟

𝑗=1

= ∏ 𝑝𝑖
𝑓𝑖

𝑟

𝑖=1

= ∏ 𝑝𝑖
𝑓𝑖

𝑘−1

𝑖=1

⋅ 𝑝𝑘
𝑓𝑘 ⋅ ∏ 𝑝𝑖

𝑓𝑖

𝑟

𝑖=𝑘+1

. 

Now, lets assume without loss of generality that 𝑒𝑘 ≤ 𝑓𝑘, so 𝑒𝑘 < 𝑓𝑘 as we assumed that 𝑒𝑘 ≠ 𝑓𝑘. 
Then,  

𝑛/(𝑝𝑒𝑘) = ∏ 𝑝𝑖
𝑒𝑖

𝑘−1

𝑖=1

⋅ ∏ 𝑝𝑖
𝑒𝑖

𝑟

𝑖=𝑘+1

= ∏ 𝑝𝑖
𝑓𝑖

𝑘−1

𝑖=1

⋅ 𝑝𝑘
𝑓𝑘−𝑒𝑘 ⋅ ∏ 𝑝𝑖

𝑓𝑖

𝑡

𝑖=𝑘+1

. 

Thus, 𝑝𝑘
𝑓𝑘−𝑒𝑘 ∣ 𝑛/(𝑝𝑒𝑘), so 𝑝𝑘 ∣ 𝑛/(𝑝𝑒𝑘). 

For any other 1 ≤ 𝑖 ≤ 𝑛  where 𝑖 ≠ 𝑘,  𝑝𝑘 ≠ 𝑝𝑖 ,  as either 𝑖 < 𝑘  or 𝑖 > 𝑘,  so 𝑝𝑖 < 𝑝𝑘  or 𝑝𝑖 > 𝑝𝑘 

respectively. Now, define 𝑐𝑖 as 

𝑐𝑖 = {
𝑝𝑖 𝑖 < 𝑘
𝑝𝑖+1 otherwise

 

and 𝑔𝑖 as 

𝑔𝑖 = {
𝑒𝑖 𝑖 < 𝑘
𝑒𝑖+1 otherwise.

 

This gives us that 

𝑛 = ∏ 𝑐𝑖
𝑔𝑖

𝑟−1

𝑖=1

. 

Since no 𝑝𝑖 has that 𝑝𝑖 = 𝑝𝑘 where 𝑖 ≠ 𝑘 no 𝑐𝑖 has that 𝑐𝑖 = 𝑝𝑘, as 𝑐𝑖 = 𝑝𝑗 for some 𝑗 ≠ 𝑘. 
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By Theorem 6.1, 𝑝𝑘 ∣ 𝑐𝑖
𝑔𝑖  for some 1 ≤ 𝑖 ≤ 𝑟 − 1. Since 𝑐𝑖

𝑔𝑖 = ∏ 𝑐𝑖
𝑔𝑖
𝑗=1  by Lemma 5.3, 𝑝𝑘 ∣ 𝑐𝑖  by 

Theorem 6.1. This means that 𝑐𝑖 = 𝑑𝑝𝑘 for some 𝑑 ∈ ℤ+. Since 𝑝𝑘 is not a unit, 𝑑 must be, so 𝑑 = 1. 
Then, 𝑐𝑖 = 1 ⋅ 𝑝𝑘 = 𝑝𝑘. However, this is not possible, as 𝑐𝑖 = 𝑝𝑗 for some 𝑗, but we found that 𝑝𝑗 ≠ 𝑝𝑘. 

Thus, our original assumption that 𝑓𝑘 ≠ 𝑒𝑘 must be false, so for all 1 ≤ 𝑖 ≤ 𝑟, 𝑒𝑖 = 𝑓𝑖 . Since we have 

𝑟 = 𝑡,  𝑝𝑖 = 𝑞𝑖 ,  and 𝑒𝑖 = 𝑓𝑖 ,  both canonical factorizations are the same.  We can now extend the 

uniqueness of the canonical factorization to all integers and then bring our results together to prove the 

Fundamental Theorem of Arithmetic. 

Theorem 7.6 (Fundamental Theorem of Arithmetic). For all 𝑛 ∈ ℤ such that |𝑛| > 1, 𝑛 has a unique 

canonical factorization. 

Proof. We have that 𝑛 ≠ 0,  as |0| = 0 ≯ 1.  Thus, either 𝑛 ∈ ℤ+  or −𝑛 ∈ ℤ+,  so either 𝑛 > 1  or 

−𝑛 > 1. If 𝑛 > 1, then we have by Theorem 7.5 that any two canonical factorizations of 𝑛 are the same, 

so there is only one unique one. If −𝑛 > 1, − ∏ 𝑝𝑖
𝑒𝑖𝑟

𝑖=1  and − ∏ 𝑝
𝑗

𝑒𝑗𝑡
𝑗=1  are canonical factorizations of 𝑛, 

then ∏ 𝑝𝑖
𝑒𝑖𝑟

𝑖=1  and ∏ 𝑝
𝑗

𝑒𝑗𝑡
𝑗=1  are canonical factorizations for −𝑛  according to Lemma 7.4. Since 

∏ 𝑝𝑖
𝑒𝑖𝑟

𝑖=1 = ∏ 𝑝
𝑗

𝑒𝑗𝑡
𝑗=1  by Theorem 7.5, − ∏ 𝑝𝑖

𝑒𝑖𝑟
𝑖=1 = − ∏ 𝑝

𝑗

𝑒𝑗𝑡
𝑗=1 , and since all canonical factorizations of 

𝑛 are the same, it has a single unique one.  

3. Conclusion 

Using the Fundamental Theorem of Arithmetic, relations between integers can be found much more 

easily by representing them as their canonical factorizations. For example, noting that 463050 = 2 ⋅ 33 ⋅

52 ⋅ 73  and 129360 = 24 ⋅ 3 ⋅ 5 ⋅ 72 ⋅ 11,  we can find gcd(463050,43120)  as 2min(1,4) ⋅ 3min(3,1) ⋅

5min(2,1) ⋅ 7min(3,2) = 21 ⋅ 31 ⋅ 51 ⋅ 72 = 1470. As such, it is a theorem that shows up in many places in 

the field of Number Theory, from simple observations like 0 and 1 are the only consecutive perfect 

squares, finding greatest common divisors, and thus to complex theorems including Quadratic 

Reciprocity Law, Chinese remainder theorem, and Minkowski’s theorem. 
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