
Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 8: 59-66, DOI: 10.25236/AJCIS.2025.080809

Published by Francis Academic Press, UK

-59-

OceanBase Database Health Status Prediction System

Based on the HPSA-LSTM Model

Kai Yana,*, Jingyu Jiab, Lei Lvc, Wanglong Hand, Haitong Wue, Junpeng Anf

PipeChina Digital Co., Ltd., Beijing, 100020, China
akidyan2012@gmail.com, bjia_de163@163.com, clvlei01@pipechina.com.cn, dmator_007@163.com,

ewuht01@pipechina.com.cn, f569982258@qq.com
*Corresponding author

Abstract: Databases serve as the core of enterprise data management, and their stable and efficient

operation is directly tied to business continuity. Any failure or performance bottleneck can severely

impact operations and decision-making. Therefore, ensuring database health is crucial for enterprise

digitalization. To accurately and comprehensively evaluate database health, this paper proposes HPSA-

LSTM (Host, Performance, SQL, Alert-based LSTM), a predictive framework for database health metrics

based on four dimensions: host, performance, SQL, and alerts. The framework integrates multi-

dimensional data such as performance indicators, security status, and resource utilization to compute a

comprehensive score that reflects the current health state of the database. With this approach, operators

can quickly grasp the overall health condition without delving into individual monitoring metrics,

enabling timely identification and resolution of potential issues. Experiments on multiple database

instances demonstrate that the proposed model achieves excellent performance in predicting overall

database health.

Keywords: Intelligent Operation and Maintenance; Health Scoring; Status Prediction; Database

Performance Monitoring

1. Introduction

Against the backdrop of rapid global digital economic development, database health management has

become a critical technology for ensuring data integrity, system stability, and operational security.

According to IDC research, the global datasphere is projected to exceed 200ZB within the next five

years[1]. Amid explosive data growth and the widespread adoption of emerging technologies such as

cloud-native architectures and edge computing, establishing a database health management system

powered by deep learning is essential for enhancing enterprises' digital competitiveness and driving high-

quality economic growth.

However, current database health assessment faces two major challenges. First, most database

systems lack a unified, standardized framework for quantifying health metrics, making it difficult to

conduct systematic evaluations of performance degradation, resource utilization efficiency, and potential

security risks[2]. Second, existing management practices are largely reactive—relying on manual, point-

in-time interventions after failures occur—lacking both holistic analysis of end-to-end performance

deterioration and the ability to establish cross-component preventive optimization mechanisms.

To address these challenges, this study proposes HPSA-LSTM, a database health prediction

framework based on four dimensions—Host, Performance, SQL, and Alert—leveraging the LSTM

neural network[3] to model and forecast database health trends. The framework first predicts various

monitoring metrics collected from OceanBase databases[4], then converts them into health scores using

a dedicated transformation algorithm. These score sequences are fused through a sequence fusion module,

and finally, a comprehensive health score reflecting the system’s overall state is generated by the health

aggregation module. Experimental results on multiple database instances demonstrate that the proposed

model achieves excellent performance in predicting overall database health.

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 8: 59-66, DOI: 10.25236/AJCIS.2025.080809

Published by Francis Academic Press, UK

-60-

2. Methods

2.1 Overall Model Architecture

Figure 1 illustrates the proposed HPSA-LSTM (Host, Performance, SQL, Alert-based LSTM)

framework for database health indicator trend prediction, which is based on host, performance, SQL,

alert, and LSTM. The framework first collects multiple monitoring indicators from the OceanBase,

including CPU usage, disk usage, and QPS. These raw data are then preprocessed using an algorithm.

Secondly, the preprocessed indicator sequences are input into the LSTM prediction module and the

indicator conversion module respectively for sequence prediction and conversion operations.

Subsequently, the sequence fusion module performs feature fusion on these sequences. Finally, the health

aggregation module integrates the various results and outputs the comprehensive health score of the

database.

OceanBase

Data preprocessing

Metric

Transformation

Metric

Transformation

Metric

Transformation

Metric

Transformation

Health Summary

Sequence

Fusion

Host Performance SQL Alarm

Sequence

Fusion

Sequence

Fusion

Metric

Transformation

LSTM

Prediction

LSTM

Prediction

LSTM

Prediction

LSTM

Prediction

Metric

Transformation

Metric

Transformation

Metric

Transformation

Output

Figure 1: The framework of HPSA-LSTM.

2.2 Data Preprocessing

2.2.1 Data Acquisition

After multiple version iterations, OceanBase has accumulated a rich set of monitoring indicators in

terms of performance and resources. However, to date, there remains a lack of a unified evaluation

method that can comprehensively reflect the overall operational status.

Based on existing monitoring data and combined with our long-term practical experience in database

operation and maintenance, we have designed a new database health assessment strategy. As shown in

Table 1, this strategy collects multiple key monitoring indicators—including CPU utilization and disk

utilization—from four dimensions (host, performance, SQL, and alerts) for two resource types: clusters

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 8: 59-66, DOI: 10.25236/AJCIS.2025.080809

Published by Francis Academic Press, UK

-61-

and tenants.

In addition, we have configured performance and resource monitoring in the database monitoring

platform, setting the sampling frequency of the key indicators mentioned in the table to once per minute.

The system automatically synchronizes the collected data to the monitoring storage module to support

subsequent analysis and evaluation.

Table 1: OceanBase indicator collection items.

Scoring categories Resource type Indicator

Host score Cluster
CPU utilization

Disk utilization

Performance score

Cluster
Data disk utilization

Log disk utilization

Tenant Memory utilization

Cluster / Tenant

Queries Per Second

SQL response time

Transactions Per Second

Transaction response time

Number of active sessions

SQL score Cluster / Tenant

Number of slow SQL statements

Number of suspicious SQL statements

Number of high-risk SQL statements

Alert score Cluster Alert level

2.2.2 Outlier Detection and Treatment

Outliers tend to significantly alter the overall pattern of time series, thereby adversely affecting the

accuracy of trend prediction. This paper adopts the classic box plot method to identify outliers in the data.

Let the original time series be {𝑥𝑡}𝑡=1
𝑇 ，where the sequence 𝑥𝑡 ∈ R represents the value at time 𝑡. We

define the set of normal values as:

 𝒪 = {𝑥𝑡 ∣ 𝑥𝑡 ∈ [𝑄1 − 1.5 ⋅ 𝐼𝑄𝑅, 𝑄3 + 1.5 ⋅ 𝐼𝑄𝑅]} (1)

Where 𝑄1 and 𝑄3 are the first and third quartiles of the data, respectively, and 𝐼𝑄𝑅 = 𝑄3 − 𝑄1 is

the interquartile range. If a sequence value falls outside this interval, it is considered an outlier.

After detecting outliers, these values are set as missing values, which are then interpolated to ensure

data integrity and continuity. To address the issue of consecutive missing values in time series, this paper

employs a segmented Lagrange interpolation method based on a sliding window for interpolating such

missing values. Let the half-width of the window be 𝑤; for a missing segment[𝑎, 𝑏], valid data from 𝑤

time points each in the forward and backward directions are selected to form a support set:

 𝑆 = {(𝑡𝑗 , 𝑥𝑡𝑗) ∣ 𝑡𝑗 ∈ [[𝑎 − 𝑤, 𝑎) ∪ (𝑏, 𝑏 + 𝑤], 𝑥𝑡𝑗 ∈ R} (2)

Then, a unified interpolation polynomial 𝑃(𝑡) is constructed over the entire missing interval [𝑎, 𝑏]
to fit the overall trend of this interval. This interpolation process can be expressed as:

 𝑃𝑖(𝑡) =∑ 𝑥𝑡𝑗

𝑛

𝑗=1
∏

𝑡−𝑡𝑘

𝑡𝑗−𝑡𝑘
1≤𝑘≤𝑛,𝑘≠𝑗

 , 𝑡 ∈ [𝑎, 𝑏] (3)

2.3 LSTM Prediction

Figure 2 illustrates the structure of an N-layer LSTM. Compared with traditional RNNs [5], LSTM,

by introducing a gating mechanism, largely alleviates the problems of gradient vanishing and gradient

exploding that may occur during training [6]. This enables the model to retain and transmit key

information over a longer time horizon while remaining sensitive to temporal changes.

Although the hidden state finally output by the LSTM already contains the temporal information of

the sequence, these features are usually high-dimensional, abstract, and unnormalized representations,

which are not well-suited for the final prediction task. Therefore, we append a dense layer after the LSTM

output to perform non-linear transformations on the outputs of the hidden units, thereby extracting

higher-level feature combinations.

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 8: 59-66, DOI: 10.25236/AJCIS.2025.080809

Published by Francis Academic Press, UK

-62-

×

tanh

+

σ

×

σ

×

σ

tanh
×

tanh

+

σ

×

σ

×

σ

tanh
×

tanh

+

σ

×

σ

×

σ

tanh

×

tanh

+

σ

×

σ

×

σ

tanh
×

tanh

+

σ

×

σ

×

σ

tanh
×

tanh

+

σ

×

σ

×

σ

tanh

×

tanh

+

σ

×

σ

×

σ

tanh
×

tanh

+

σ

×

σ

×

σ

tanh
×

tanh

+

σ

×

σ

×

σ

tanh

1

0h

1x

2

0h

0

nh

1

0C

2

0C

0

nC

2x tx

1

1h 1

2h 1

th

2

nh 2

2h 2

th

Dense Layer Dense Layer Dense Layer

1y 2y ty

}

}

}

nth Layer

2nd Layer

1st Layer

Figure 2: Structure of the K-layer LSTM recurrent neural network.

2.4 Monitoring Metric Transformation

After obtaining all the predicted monitoring metrics, we calculate the host score, performance score,

SQL score, and alarm score respectively according to different rules.

2.4.1 Host Score

We have selected two key indicators: CPU usage and disk usage, which are used to measure the health

status of the host. For the sampled CPU usage and disk usage, denoted as 𝑀𝑐𝑝𝑢 and 𝑀𝑑𝑖𝑠𝑘 respectively,

the scores for CPU usage and disk usage are defined as follows:

 𝑆𝑐𝑝𝑢 = {

100, 𝑖𝑓 𝑀𝑐𝑝𝑢 < 70%

100 − [1 + (𝑀𝑐𝑝𝑢 − 70%) ⋅ 20], 𝑖𝑓 80% ≥ 𝑀𝑐𝑝𝑢 ≥ 70%

100 − [10 + (𝑀𝑐𝑝𝑢 − 80%) ⋅ 30], 𝑖𝑓 𝑀𝑐𝑝𝑢 > 80%

 (4)

 𝑆𝑑𝑖𝑠𝑘 = {

100, 𝑖𝑓 𝑀𝑑𝑖𝑠𝑘 < 80%

100 − [1 + (𝑀𝑑𝑖𝑠𝑘 − 80%) ⋅ 30], 𝑖𝑓 90% ≥ 𝑀𝑑𝑖𝑠𝑘 ≥ 80%

100 − [15 + (𝑀𝑑𝑖𝑠𝑘 − 90%) ⋅ 50], 𝑖𝑓 𝑀𝑑𝑖𝑠𝑘 > 90%
 (5)

The final host score can be calculated as follows:

 𝑆𝐻 = 𝑆𝑐𝑝𝑢 × 50% + 𝑆𝑑𝑖𝑠𝑘 × 50% (6)

2.4.2 Performance Score

Table 2: The threshold coefficients and scoring functions of different indicators.

Indicator Normal threshold Abnormal threshold Function

QPS 0.5 0.7 𝑓1

TPS 0.5 0.7 𝑓1

Number of active sessions 0.5 0.7 𝑓1

SQL response time 1.5 2 𝑓2

Transaction response time 1.5 2 𝑓2

The performance score mainly includes 8 indicators: data disk usage, log disk usage, memory usage,

QPS, SQL response time, TPS, transaction response time, and number of active sessions. Among them,

the calculation rules for data disk usage, log disk usage, and memory usage are consistent with Equation

(5). The remaining indicators are calculated for two types of resources: clusters and tenants. Due to

differences in the characteristics of the indicators, for example, a higher QPS often indicates better

performance, while the opposite is true for SQL response time, we define two types of calculation

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 8: 59-66, DOI: 10.25236/AJCIS.2025.080809

Published by Francis Academic Press, UK

-63-

functions:

 𝑓1(𝑥, 𝑥ℎ, 𝑡1, 𝑡2) = {

100, 𝑖𝑓 𝑥 < 𝑥ℎ ⋅ 𝑡1
90, 𝑖𝑓 𝑥ℎ ⋅ 𝑡1 ≤ 𝑥 ≤ 𝑥ℎ ⋅ 𝑡2
80, 𝑖𝑓 𝑥 > 𝑥ℎ ⋅ 𝑡2

 (7)

 𝑓2(𝑥, 𝑥ℎ, 𝑡1, 𝑡2) = {

80, 𝑖𝑓 𝑥 < 𝑥ℎ ⋅ 𝑡1
90, 𝑖𝑓 𝑥ℎ ⋅ 𝑡1 ≤ 𝑥 ≤ 𝑥ℎ ⋅ 𝑡2
100, 𝑖𝑓 𝑥 > 𝑥ℎ ⋅ 𝑡2

 (8)

Where 𝑥 represents the current sampled value of the current indicator, 𝑥ℎ represents the mean

value of the historical values of the current indicator, and 𝑡1 and 𝑡2 represent the normal threshold

coefficient and abnormal threshold coefficient respectively. The threshold coefficients of each indicator

are shown in Table 2.

According to the above evaluation scheme, the scores of various performance evaluation indicators

listed in Table 1 can be calculated. Finally, the arithmetic mean of all indicator scores is taken as the

overall system performance score 𝑆𝑝, which will be used in the subsequent model training process.

2.4.3 SQL Score

We collect three monitoring indicators, namely the number of slow SQLs, the number of suspicious

SQLs, and the number of high-risk SQLs, on two resource types: clusters and tenants. Assuming the

number of a certain type of SQL is 𝑆𝑐, the score value of a single monitoring item is defined as:

 𝑆𝑠𝑞𝑙 = {

50, 𝑖𝑓 𝑆𝑐 > 100
70, 𝑖𝑓 100 ≥ 𝑆𝑐 ≥ 50
90, 𝑖𝑓 𝑆𝑐 < 50

 (9)

According to Equation (9), the slow SQL score 𝑆𝑠𝑙𝑜𝑤, suspicious SQL score 𝑆𝑠𝑢𝑠𝑝, and high-risk

SQL score 𝑆ℎ𝑖𝑔ℎ can be calculated. Finally, the comprehensive SQL score is calculated as follows:

 𝑆𝑆 =
𝑆𝑠𝑙𝑜𝑤
𝑐𝑢𝑙𝑠𝑡𝑒𝑟+𝑆𝑠𝑢𝑠𝑝

𝑐𝑢𝑙𝑠𝑡𝑒𝑟+𝑆𝑠𝑙𝑜𝑤
𝑐𝑢𝑙𝑠𝑡𝑒𝑟

3
× 50% +

𝑆𝑠𝑙𝑜𝑤
𝑡𝑒𝑛𝑎𝑛𝑡+𝑆𝑠𝑢𝑠𝑝

𝑡𝑒𝑛𝑎𝑛𝑡+𝑆𝑠𝑙𝑜𝑤
𝑡𝑒𝑛𝑎𝑛𝑡

3
× 50% (10)

2.4.4 Alarm Score

In our database system, alarm information is divided into five levels: Critical, Severe, Warning, Low,

and Hint, represented by C, S, W, L, and H respectively. Suppose there are 𝑛 alarm items in the system,

and each alarm item 𝑖 ∈ {1,2, … , 𝑛} has a corresponding alarm level 𝑟𝑖. The deduction weights

corresponding to each alarm level are defined as follows:

 𝑆𝑟𝑖 =

{

1, 𝑖𝑓 𝑟𝑖 = 𝐻
2, 𝑖𝑓 𝑟𝑖 = 𝐿
4, 𝑖𝑓 𝑟𝑖 = 𝑊
8, 𝑖𝑓 𝑟𝑖 = 𝑆
10, 𝑖𝑓 𝑟𝑖 = 𝐶

 (11)

Next, define the total risk level:

 𝑅𝑡𝑜𝑡𝑎𝑙 = max (𝑟1, 𝑟2, … , 𝑟𝑛) (12)

Where the priority relationship among the risk levels of each alarm in the max operation is:

 𝐶 > 𝑆 > 𝑊 > 𝐿 > 𝐻 (13)

The score range to which the score belongs can be determined according to the total risk level 𝑅𝑡𝑜𝑡𝑎𝑙
. The score ranges corresponding to the 5 risk levels are defined as shown in Table 3. The calculation of

the alarm score must meet the minimum score limit, that is, it shall not be lower than the lower limit of

the score range corresponding to the current total risk level.

Let [𝐿𝑅 , 𝑈𝑅] denote the score range corresponding to the total risk level 𝑅, where 𝐿𝑅 is the lower

limit and 𝑈𝑅 is the upper limit. The final alarm score can be calculated as follows:

 𝑆𝐴 = max (𝐿𝑅, 𝑈𝑅 −∑ 𝑤(𝑟𝑖 , 𝑅) ⋅ 𝑆𝑟𝑖
𝑛
𝑖=1) (14)

Where 𝑤(𝑟𝑖 , 𝑅) represents the deduction of the i-th alarm under the condition of risk level R:

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 8: 59-66, DOI: 10.25236/AJCIS.2025.080809

Published by Francis Academic Press, UK

-64-

 𝑤(𝑟𝑖 , 𝑅) = {
𝑆𝑟𝑖 , 𝑖𝑓 𝑟𝑖 = 𝑅

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (15)

2.5 Sequence Fusion

We evaluate database health through various indicators involved in four types of scores: host,

performance, SQL, and alarm. Considering that the host score sequence contains two key pieces of

information in the OceanBase database, namely CPU and disk, which may affect other score sequences,

we propose a sequence fusion module to fuse the host score sequence with other sequences.

For input time sequences 𝑆1 = {𝛼1, 𝛼2, … 𝛼𝑇 , } and 𝑆2 = {𝛽1, 𝛽2, … 𝛽𝑇 , } with length T, we design a

dynamic fusion module based on learnable weights. This module can adaptively extract useful

information from the two input sequences and perform weighted combination at each time step. For each

time step 𝑡 ∈ [1, 𝑇], the normalized weights of 𝑆1 and 𝑆2 are calculated respectively:

 𝑊𝑡
1 = 𝜎(𝑊 ⋅ [𝑆1||𝑆2] + 𝑏) (16)

 𝑊𝑡
2 = 1 −𝑊𝑡

1 (17)

Where 𝜎 is the sigmoid activation function, 𝑊 ∈ R2T and 𝑏 ∈ R are learnable parameters. The

symbol ‖ represents the vector concatenation operation. The computed 𝑊𝑡
1 and 𝑊𝑡

2 are regarded as

the importance assignments to the time sequences 𝑆1 and 𝑆2 at time step 𝑡. According to Equation (16)

and Equation (17), the two time sequence can be fused using 𝑊𝑡
1 and 𝑊𝑡

2 as weights:

 Y = Wt
1⊙S1 +Wt

2⊙S2 (18)

Table 3: Alarm risk levels and corresponding score ranges.

Risk level Score range

Critical [0,40)
Severe [40,60)
Warning [60,80)
Low [80,90)
Hint [90,100]

2.6 Health Summary

After obtaining the four categories of scoring results, we perform a weighted summation to calculate

the final comprehensive score. We define the set of scoring weights as 𝑊 = {𝑊𝐻,𝑊𝑃,𝑊𝑆,𝑊𝐴}, where

𝑊𝐻, 𝑊𝑃, 𝑊𝑆, and 𝑊𝐴 are used to weight the host score 𝑆𝐻, performance score 𝑆𝑃, SQL score 𝑆𝑆, and

availability score 𝑆𝐴, respectively.

It is important to note that the weights defined above are learnable parameters, initialized uniformly

to 0.25. During the training process, these weights are continuously optimized and updated based on

feedback from the loss function, enabling the model to automatically learn the varying impacts of each

score type on the final result.

To ensure that the weighted comprehensive score falls within a reasonable output range, we apply the

Sigmoid function in the final stage to perform a nonlinear mapping on the output. This generates a health

score that aligns with human cognitive habits. This process can be expressed as:

 ℎ𝑒𝑎𝑙𝑡ℎ = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝐻 ∙ 𝑆𝐻 +𝑊𝑃 ∙ 𝑆𝑃 +𝑊𝑆 ∙ 𝑆𝑆 +𝑊𝐴 ∙ 𝑆𝐴) (19)

3. Experimental Results and Analysis

3.1 Experimental Setup

In this study, we designed a three-layer LSTM architecture with 60 recurrent neurons per layer,

incorporating a dense output layer for prediction. Data was collected from five database instances at 1-

minute intervals, preprocessed, and split into 80% training and 20% testing sets. A dense layer appended

to the hidden layer performed nonlinear transformations, while Dropout (0.3 probability) was applied to

mitigate overfitting. The HPSA-LSTM model's performance was evaluated using Mean Squared Error

(MSE), which quantifies prediction accuracy by measuring deviations between predicted and actual

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 8: 59-66, DOI: 10.25236/AJCIS.2025.080809

Published by Francis Academic Press, UK

-65-

values.

During the model training process, we set the number of training epochs to 400 and the initial learning

rate to 1e-3. To enhance training effectiveness, we employed the cosine annealing strategy [7] to

dynamically adjust the learning rate. As for the optimizer, we selected the Adam algorithm [8], proposed

by Kingma et al. This algorithm is an adaptive learning rate optimization method that demonstrates

superior convergence performance and stability compared to traditional stochastic gradient descent in

practical applications.

3.2 Model Prediction Performance

Figure 3: Disk Usage Sequence Prediction.

Figure 4: TPS Sequence Prediction.

Figure 3 and 4 illustrate the model's prediction performance using disk usage rate curves and TPS

curves as examples, respectively. In these figures, the blue curve represents the training data sequence,

the orange curve denotes the prediction target, and the green curve indicates the model's predicted results.

As can be seen from the figures, the model demonstrates a good fit to the overall data trends. However,

it is noteworthy that when predicting TPS, the model produced negative output values. Such a

phenomenon is unreasonable in real-world scenarios. Therefore, in subsequent processing, we truncated

the negative values in the model's predicted results, setting them uniformly to 0 to ensure the normal

operation of subsequent processes and the rationality of the results.

3.3 Comparison of Sampling Intervals and Model Performance

The original data were sampled at 1-minute intervals, but the high sampling frequency obscured the

temporal trends. Therefore, as shown in Figure 5 (a), the data were resampled to construct training sets

with intervals of 15, 30, 45, and 60 minutes, in order to evaluate the impact of different sampling periods

on modeling performance. Experimental results indicate that the HPSA-LSTM model exhibits stable

performance across various database instances; however, when the sampling interval increases to 60

minutes, the prediction error rises significantly, suggesting that excessively long sampling periods may

lead to the loss of critical temporal information. In contrast, the model achieves lower and more stable

errors with a 45-minute interval. Hence, a 45-minute sampling interval is adopted as the standard for

subsequent experiments.

Based on data from five database instances, this paper selects three typical time series forecasting

models—SVR [9], Prophet [10] and ARIMA [11]—for comparative analysis. As illustrated in Figure

5(b), HPSA-LSTM outperforms all three models in prediction accuracy across all datasets, with average

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 8: 59-66, DOI: 10.25236/AJCIS.2025.080809

Published by Francis Academic Press, UK

-66-

MSE reductions of 10.80%, 2.20%, and 9.40% compared to SVR, Prophet, and ARIMA, respectively,

fully demonstrating the effectiveness of HPSA-LSTM.

1 2 3 4 5

0.1

0.2

0.3

0.4

Instance

M
S

E

HPSA-LSTMSVR

ARIMAProphet

1 2 3 4 5

0.1

0.2

0.3

0.4

Instance

M
S

E
60min45min

30min15min

(a) (b)

Figure 5: Comparison of different sampling intervals (a) and performance comparison of different

models (b).

4. Conclusions

This paper proposes an HPSA-LSTM-based method for database health assessment and prediction,

applied to OceanBase. The model integrates historical data with real-time metrics to predict operational

trends, proactively identify performance bottlenecks and risks, and provide timely warnings before

anomalies occur, significantly improving system stability. This approach has promising applications in

database O&M management, enhancing enterprise efficiency and decision-making.

Future work will explore integrating large language models into health management. We aim to

enable automated risk mitigation recommendations through precise risk identification, creating an

intelligent mechanism to advance database O&M toward autonomous operations. This will achieve

higher automation levels and intelligent decision-making capabilities in database systems.

References

[1] P. Fantini, “Memory technology enabling future computing systems,” APL Mach. Learn., vol. 3, no.

2, 2025.

[2] Q. Xu, C. Yang, and A. Zhou, “Native Distributed Databases: Problems, Challenges and

Opportunities,” Proc. VLDB Endow., vol. 17, no. 12, pp. 4217–4220, 2024.

[3] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8, pp.

1735–1780, 1997.

[4] Z. Yang et al., “OceanBase: a 707 million tpmC distributed relational database system,” Proc. VLDB

Endow., vol. 15, no. 12, pp. 3385–3397, 2022.

[5] J. L. Elman, “Finding structure in time,” Cogn. Sci., vol. 14, no. 2, pp. 179–211, 1990.

[6] C. Qin, L. Chen, Z. Cai, M. Liu, and L. Jin, “Long short-term memory with activation on gradient,”

Neural Netw., vol. 164, pp. 135–145, 2023.

[7] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm restarts,” ArXiv Prepr.

ArXiv160803983, 2016.

[8] D. P. Kingma, “Adam: A method for stochastic optimization,” ArXiv Prepr. ArXiv14126980, 2014.

[9] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support vector machines,” IEEE

Intell. Syst. Their Appl., vol. 13, no. 4, pp. 18–28, 1998.

[10] S. J. Taylor and B. Letham, “Forecasting at scale,” Am. Stat., vol. 72, no. 1, pp. 37–45, 2018.

[11] D. K. Yadav, K. Soumya, and L. Goswami, “Autoregressive integrated moving average model for

time series analysis,” in 2024 International Conference on Optimization Computing and Wireless

Communication (ICOCWC), IEEE, 2024, pp. 1–6.

