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Abstract: To address the insufficient collaborative modeling of local structural information and global 
path dependencies in knowledge graph completion tasks, we propose MGAT-BiKR, a model that 
combines multi-layer graph attention networks with bidirectional path reasoning. The multi-layer graph 
attention network dynamically aggregates the multi-hop neighborhood semantics of target entities. By 
leveraging a multi-head attention mechanism, it adaptively assigns weights to heterogeneous neighbors, 
thereby resolving the limitation of traditional methods in identifying key relational contexts. 
Simultaneously, bidirectional path reasoning is achieved via a BiLSTM encoder combined with path 
attention, which explicitly captures temporal dependencies in both forward and backward directions 
across multi-step relational paths. Experiments on the FB15k-237, WN18RR, and NELL995 datasets 
show that the proposed model achieves Hits@1 scores of 0.986, 0.978, and 0.967 in link prediction tasks. 
It outperforms the PathCon model by 1.2%, 1.8%, and 12.1%, respectively. This approach efficiently 
addresses long-tail relationship reasoning in sparse knowledge graphs. 

Keywords: Knowledge Graph Completion, Graph Attention Network, Bilstm, Relation Path, Relational 
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1. Introduction 

Knowledge graphs (KGs), as structured representations of semantic information, have been widely 
adopted in intelligent question answering systems [1], recommender systems [2], and natural language 
processing [3]. However, real-world KGs often suffer from incompleteness due to missing triples, which 
undermines their reliability and limits downstream applications. Knowledge graph completion (KGC), 
the task of inferring missing triples, has thus emerged as a critical research area. 

Traditional knowledge graph completion methods are mainly categorized into embedding-based and 
path-based approaches. Translation models such as TransE[4] and RotatE[5] perform triple prediction by 
mapping entities and relations into vector spaces, with the core assumption that relation vectors can be 
interpreted as geometric transformations between head and tail entity vectors. Subsequent improved 
models, such as DistMult[6] and ComplEx[7], introduce tensor decomposition techniques to enhance the 
multi-relationship modeling capability, but still have limitations in complex relationship reasoning and 
long-tailed relationship processing. To overcome the limitations of single-hop reasoning, Lao et al.[8] 
proposed the path-based enhancement method PRA (Path Ranking Algorithm), which generates path 
features through random walks. However, this method relies on manual design and has high 
computational complexity. Xiong et al.[9] proposed DeepPath, which uses a deep reinforcement learning 
approach to explore paths in the knowledge graph to discover potential relationships, establishing a 
foundation for path-based completion methods Neelakantan et al.[10] proposed the Path-RNN model, 
which first introduced the Recurrent Neural Network (RNN) to encode path sequences, but did not 
consider the semantic correlations between paths. However, these approaches face problems such as the 
path explosion problem, difficulty in capturing deep semantic associations. 

Graph neural networks (GNNs), which generate embeddings of entities and relations by aggregating 
neighborhood information, have become a core methodology for knowledge graph completion. 
Schlichtkrull et al.[11] proposed the R-GCN model to process multi-relationship knowledge graphs 
through relation-specific graph convolution, which supports the aggregation of relationship-type 
neighborhood information, and lays the foundation for subsequent GNN-based completion methods. Li 
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et al.[12] proposed the Multi-Relational Graph Attention Network (MRGAT) for the multi-relational 
nature of knowledge graphs, which optimizes the network structure by calculating the importance of 
different neighboring nodes through the self-attention layer, thus improving the performance of the 
complementation. Zhang et al.[13] proposed the RGHAT model, which introduces a hierarchical attention 
mechanism, including relation-level attention and entity-level attention, and improves the neighborhood 
information aggregation through three-level attention fusion with refinement. However, existing methods 
rely on entity embeddings, are difficult to generalize to new entities, and under-capture the global 
dependencies of multi-hop paths.  

To address the above issues, we propose a KGC model that integrates multi-layer graph attention 
networks with bidirectional path reasoning. The proposed framework adopts a dual-channel architecture 
to optimize local and global reasoning. On one hand, multi-layer graph attention networks dynamically 
weight relation-aware neighborhood features through hierarchical message passing, capturing fine-
grained heterogeneous semantics. On the other hand, bidirectional LSTM (BiLSTM) networks with 
adaptive path attention explicitly model directional dependencies and combinatorial patterns in multi-
hop relational paths. This dual-channel design enables simultaneous learning of local structural patterns 
and global path semantics, providing comprehensive coverage of complex KG interactions. Experimental 
results demonstrate superior performance in completing sparse KGs, particularly for long-tail relation 
inference in healthcare and financial domains. 

2. Research Methods 

2.1 Model Framework 

This paper proposes a knowledge graph completion model named MGAT-BiKR that integrates multi-
layer graph attention networks and bidirectional path reasoning. The model mainly consists of three parts: 
the relational context aggregation module, the relational path module, and the joint prediction layer. Its 
core lies in constructing a collaborative optimization mechanism for local neighborhood perception and 
global path reasoning. Based on the above design, the method framework of the MGAT-BiKR model is 
shown in Figure 1. 

 
Figure 1 Knowledge Graph Completion Model Integrating Multi-Layer Graph Attention Network and 

Bidirectional Path Inference 

2.2 Encoder 

2.2.1 Relational Context Aggregation 

In the knowledge graph, the triple (ℎ, 𝑟𝑟, 𝑡𝑡) indicates that the head entity ℎ and the tail entity 𝑡𝑡 are 
connected by the relation 𝑟𝑟. The semantic orientation of the relation 𝑟𝑟 does not exist in isolation but 
deeply depends on the relational context of the head and tail entities, that is, the topological relational 
neighborhood structure of the entities at a specific semantic level. The relational context provides key 
clues for relation ambiguity resolution through the multi-hop association information of entities, and its 
reasoning accuracy is significantly positively correlated with the richness of the neighborhood structure. 

For the relational context aggregation module, a multi-layer graph attention network is used to 
construct a dynamic neighborhood aggregation mechanism. This method dynamically learns the attention 
weights of neighborhood nodes through the self-attention mechanism and effectively captures the multi 
-hop relational semantic features of the entity neighborhood. First, this module takes the target relation 
as the central node and uses the breadth-first search strategy to sample the entities and associated relations 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 8, Issue 5: 1-9, DOI: 10.25236/AJCIS.2025.080501 

Published by Francis Academic Press, UK 
-3- 

within its 𝐾𝐾 -hop neighborhood to construct a dynamic relational sub-graph. Second, it iteratively 
aggregates neighborhood information through the multi-head graph attention layer, where each attention 
head independently learns the neighborhood weights in different semantic spaces. Figure 2 shows the 
aggregation process of our graph attention layer. 𝛼𝛼𝑖𝑖𝑖𝑖 represents the relative attention value of the edge, 
and the dotted lines represent the relational context from the 𝐾𝐾-hop neighbors. In this case, 𝐾𝐾 = 2. 

 
Figure 2 The Aggregation Process of the Graph Attention Layer 

For a node 𝑣𝑣𝑖𝑖 in the knowledge graph 𝐺𝐺, its neighborhood structure is defined as 𝒩𝒩(𝑖𝑖), and its 
neighborhood node 𝑣𝑣𝑗𝑗 ∈ 𝒩𝒩(𝑖𝑖). We construct the corresponding input features ℎ𝑖𝑖 and ℎ𝑗𝑗, perform linear 
projections on them, and generate hidden-layer representations: 

𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑊𝑊1�ℎ𝑖𝑖 ∥ ℎ𝑗𝑗�                                 (1) 

Where 𝑊𝑊1 represents the linear transformation matrix, and ∥ represents the concatenation operation. 
Next, calculate the attention coefficient 𝑒𝑒𝑖𝑖𝑖𝑖 between node 𝑣𝑣𝑖𝑖 and its neighborhood node 𝑣𝑣𝑗𝑗: 

eij = LeakyReLU�Wabij�                            (2) 

Where 𝜎𝜎(⋅) is a non-linear activation function. To improve the stability of the model, the Multi-head 
Attention mechanism is adopted, and the output features of 𝐾𝐾  independent attention heads are 
concatenated: 

𝛼𝛼𝑖𝑖𝑖𝑖 = softmax�𝑒𝑒𝑖𝑖𝑖𝑖� =
exp�𝑒𝑒𝑖𝑖𝑖𝑖�

∑ exp(𝑒𝑒𝑖𝑖𝑖𝑖)𝑘𝑘∈𝒩𝒩(𝑖𝑖)
                      (3) 

Based on the normalized attention weights 𝛼𝛼𝑖𝑖𝑖𝑖 , aggregate the features of neighborhood nodes to 
generate a new representation of node 𝑖𝑖: 

ℎ𝑖𝑖′ = 𝜎𝜎�∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖𝑗𝑗∈𝒩𝒩(𝑖𝑖) �                             (4) 

Where 𝜎𝜎(⋅) is a non-linear activation function. To improve the stability of the model, the Multi-head 
Attention mechanism is adopted, and the output features of 𝐾𝐾  independent attention heads are 
concatenated: 

ℎ𝑖𝑖′ = ||𝑘𝑘=1𝐾𝐾 𝜎𝜎�∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑘𝑘 𝑏𝑏𝑖𝑖𝑖𝑖𝑘𝑘𝑗𝑗∈𝑁𝑁(𝑖𝑖) �                            (5) 

Where 𝛼𝛼𝑖𝑖𝑖𝑖𝑘𝑘  represents the normalized weight of the 𝑘𝑘 -th attention head. Specifically, the ℎ𝑖𝑖′ 
obtained from single-layer aggregation is used as the initial input of the multi-layer relational feature 𝑟𝑟, 
that is, 𝑟𝑟𝑖𝑖

(1) = ℎ𝑖𝑖′ is defined. Based on the initial input 𝑟𝑟𝑖𝑖
(1) = ℎ𝑖𝑖′, the relational feature is iteratively 

updated through 𝐿𝐿 layers of GAT: 

𝑟𝑟𝑖𝑖
(𝑙𝑙+1) = ||𝑘𝑘=1𝐾𝐾 �∑ 𝛼𝛼𝑖𝑖𝑖𝑖

(𝑘𝑘,𝑙𝑙)𝑊𝑊(𝑘𝑘,𝑙𝑙)𝑟𝑟𝑗𝑗
(𝑙𝑙)

𝑗𝑗∈𝒩𝒩𝑖𝑖
(𝑘𝑘) �                        (6) 

Where 𝛼𝛼𝑖𝑖𝑖𝑖
(𝑘𝑘,𝑙𝑙)  and 𝑊𝑊(𝑘𝑘,𝑙𝑙)  represent the parameters of the 𝑘𝑘 -th attention head in the 𝑙𝑙 -th layer 

respectively, and 𝒩𝒩𝑖𝑖
(𝑘𝑘) is the set of 𝑘𝑘-hop neighbors of node 𝑖𝑖, which represents the set of neighbor 

entities that can be reached through 𝑘𝑘 steps of relational connections. After multiple layers of iteration, 
the feature information of ℎ𝑖𝑖′ obtained from single-layer aggregation is continuously integrated and 
optimized during the update process of 𝑟𝑟, and finally a deep relational feature 𝑟𝑟(𝐿𝐿) is formed, which is 
used for subsequent context encoding calculations. 

In the last layer of the graph attention network, the multi-head attention mechanism replaces the 
concatenation of embeddings with the calculation of the mean value to obtain the final embedding of the 
entity. The calculation method is shown in the following formula: 
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hifinal = riL = σ �1
K
∑ ∑ αijkbijkj∈Ni
K
k=1 �                        (7) 

Similarly, the final vector representation of node j is shown in the following formula: 

ℎ𝑗𝑗
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝜎𝜎 �1

𝐾𝐾
∑ ∑ 𝛼𝛼𝑗𝑗𝑗𝑗𝑘𝑘 𝑏𝑏𝑗𝑗𝑗𝑗𝑘𝑘𝑡𝑡∈𝑁𝑁𝑗𝑗
𝐾𝐾
𝑘𝑘=1 �                         (8) 

For 𝑟𝑟 = (𝑖𝑖, 𝑗𝑗), by combining the final embeddings ℎ𝑖𝑖final and ℎ𝑗𝑗final of the head and tail nodes, the 
relation representation is generated, where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(⋅) represents the vector concatenation operation. 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�ℎ𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ,ℎ𝑗𝑗

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�                          (9) 

2.2.2 Relational Path Aggregation 

Relational paths, serving as the "semantic chains" of entity associations, carry profound logical and 
semantic information. By analyzing relational paths, implicit semantics can be mined to assist in inferring 
unknown connections between entities. To efficiently search for all paths between the head and tail 
entities and address the data sparsity issue, the breadth-first search (BFS) algorithm is employed to search 
for all paths of length 𝐿𝐿 between the head and tail entities. Secondly, to enhance the diversity and 
representativeness of the paths, a random walk sampling technique is introduced to ensure that within 
the range of path length 𝐿𝐿, more diverse path patterns can be captured. 

When extracting multiple relational paths connecting two nodes from the knowledge graph, each path 
consists of a series of relations connected in sequence, which can be represented as 𝑃𝑃 = (𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝐿𝐿), 
where 𝑟𝑟𝑖𝑖 represents the 𝑖𝑖-th relation in the path, 𝑟𝑟𝑖𝑖 ∈ ℛ represents the relation type in the path, ℛ  is 
the set of relation types, and 𝐿𝐿 is the path length. With this approach, complex semantic associations 
between entities can be captured, thus providing richer path information for the knowledge graph 
complementation task. The relational path aggregation process is shown in Figure 3.  

 
Figure 3 The Aggregation Process of Relational Paths 

To enable the model to better process relational paths, each relation type 𝑟𝑟𝑖𝑖 is first mapped to a low-
dimensional vector 𝑒𝑒𝑖𝑖 . Then, a BiLSTM is used to capture the sequential dependencies of the path. 
During the training process, a path perturbation mechanism is introduced. By randomly replacing some 
relation types in the path, it simulates the situations of path missing or noise in real-world scenarios. This 
mechanism significantly improves the model's generalization ability for sparse paths. 

For a given input sequence {𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑙𝑙}, the sequence of hidden states produced by the forward 
LSTM is represented as {ℎ1����⃗ ,ℎ2����⃗ , … ,ℎ𝑙𝑙���⃗ }, and the sequence of hidden states produced by the backward 
LSTM is represented as {ℎ1,�⃖���� ℎ2,�⃖���� … ,ℎ𝑙𝑙�⃖��} where: 

ℎ𝑡𝑡���⃗ = 𝐿𝐿𝐿𝐿𝐿𝐿𝑀𝑀forward�ℎ𝑡𝑡−1��������⃗ , 𝑐𝑐𝑡𝑡�                         (10) 

ℎ𝑡𝑡�⃖�� = 𝐿𝐿𝐿𝐿𝐿𝐿𝑀𝑀forward�ℎ𝑡𝑡+1�⃖�������, 𝑐𝑐𝑡𝑡�                         (11) 

Its final encoding form is the concatenation of the last state of the forward LSTM and the first state 
of the backward LSTM: 

𝑦𝑦 = [ℎ𝑇𝑇����⃗ ;ℎ1�⃖���],𝑦𝑦 ∈ 𝑅𝑅𝑑𝑑                              (12) 

Where ℎ𝑇𝑇����⃗  represents the final hidden state of the forward LSTM, ℎ1�⃖��� represents the initial hidden 
state of the backward LSTM, and 𝑑𝑑 is the dimension of the hidden layer. 

Aggregate the sequence of hidden states {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑇𝑇} output by the BiLSTM into a global 
representation of the path, as shown in the formula. The final output not only contains the forward and 
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backward context information of the relational path but also incorporates the path importance weights 
provided by the attention mechanism, enabling the model to more accurately capture the complex 
relational dynamics between entity pairs. 

𝑧𝑧𝑝𝑝𝑝𝑝𝑝𝑝ℎ = ∑ 𝛽𝛽𝑡𝑡𝑦𝑦𝑡𝑡𝑇𝑇
𝑡𝑡=1                                 (13) 

Where the calculation of the attention weights is as follows: 

𝛽𝛽𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑒𝑒�𝑊𝑊⊤𝑦𝑦𝑡𝑡�
∑ 𝑒𝑒𝑒𝑒𝑒𝑒�𝑊𝑊⊤𝒚𝒚𝒌𝒌�𝑇𝑇
𝑘𝑘=1

                                (14) 

𝛽𝛽𝑡𝑡 represents the normalized attention weight at time step t. After obtaining the aggregated 
representations of all relational paths of the entity pair, they are fused with the relational context 
representation by concatenation, as shown in the following formula: 

𝑓𝑓 = 𝑊𝑊�𝑐𝑐con; 𝑧𝑧path� + 𝑏𝑏                             (15) 

Where 𝑊𝑊 is a learnable weight matrix, which is used to map the concatenated high-dimensional 
vector to the target dimension, and 𝑏𝑏 is the bias term. Combine the fused feature 𝑓𝑓 with the original 
relation embedding 𝑒𝑒𝑟𝑟  to generate a richer relation representation. 

2.3 Decoder 

To evaluate the effect of updating the entity-relation embedding representation and the subsequent 
knowledge graph completion by the model, a decoder is needed to score the target triples. In terms of 
decoder selection, the ConvKB[14] decoding architecture is adopted. The working principle of the 
ConvKB decoder is to concatenate the embedding vectors of entities and relations to form a joint feature 
vector. Subsequently, this vector is input into a one-dimensional convolutional layer to extract local 
features, and a non-linearity is introduced through an activation function. Finally, the output of the 
convolutional layer is mapped to the score of the triple through a fully-connected layer, which is used to 
judge the validity of the triple. The scoring function of ConvKB is expressed as follows: 

𝑓𝑓(ℎ, 𝑟𝑟, 𝑡𝑡) = �||𝑚𝑚=1
𝛺𝛺 ReLU��ℎ𝑖𝑖 , 𝑟𝑟′,ℎ𝑗𝑗� ∗ ω𝑚𝑚�� ⋅ 𝑊𝑊                   (16) 

Where ω𝑚𝑚  represents the 𝑚𝑚 -th convolutional filter, 𝛺𝛺  is a hyperparameter representing the 
number of filters, and ∗ is the convolution operator. The model is trained using a soft margin loss 
function. 

ℒ = ∑ 𝑙𝑙𝑙𝑙𝑙𝑙(ℎ,𝑟𝑟,𝑡𝑡)∈𝒢𝒢∪𝒢𝒢′ �1 + exp �𝑙𝑙(ℎ,𝑟𝑟,𝑡𝑡) ⋅ 𝑓𝑓(ℎ, 𝑟𝑟, 𝑡𝑡)�� + λ
2

||𝑊𝑊||22              (17) 

Where 𝑙𝑙(ℎ,𝑟𝑟,𝑡𝑡) is a label indicating whether the triple (ℎ, 𝑟𝑟, 𝑡𝑡) is valid. For a valid triple (ℎ, 𝑟𝑟, 𝑡𝑡) ∈
𝒢𝒢, the value of 𝑙𝑙(ℎ,𝑟𝑟,𝑡𝑡) is 1, and for other triple(ℎ, 𝑟𝑟, 𝑡𝑡) ∈ 𝒢𝒢′, the value of 𝑙𝑙(ℎ,𝑟𝑟,𝑡𝑡) is 0. 

3. Experiments and Results 

3.1 Datasets 

The experiments are evaluated using three standard knowledge graph datasets, FB15k-237, WN18RR, 
and NELL995, to comprehensively verify the generalization ability and robustness of the model. Detailed 
information is provided in Table 1. 

Table 1 Dataset statistical information 

Datasets Entities Relations Training Validation Test 
FB15k-237 14,541 237 272,115 17,535 20,466 
WN18RR 40,943 11 86,835 3034 3134 
NELL995 63,917 198 137,465 5000 5000 

3.2 Experimental Settings 

In this experiment, the above model is implemented using the PyTorch framework. The model 
conducts multi-hop information transfer through a multi-layer graph attention network. Its core is to 
establish a strict mapping between the number of layers and the number of hops. The layers of the graph 
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attention network correspond to the hops in the target node's neighborhood. When an L-layer GAT is set, 
the model aggregates feature information within the L-hop neighborhood of the target node, meaning the 
number of hops in the relational context determines the number of GAT layers. This clear layer-hop 
correspondence enables independent non-linear transformation of each hop neighborhood's information. 
Through layer-by-layer transfer, it achieves progressive fusion from local features to global semantics, 
thus better capturing graph structure information. Model parameter settings are shown in Table 2. 

Table 2 Model parameter configuration table 

Parameter Name Parameter Value 
Batch Size 128 

Hidden Dimension 128 
Optimizer Adam 

Learning Rate 0.005 
Dropout 0.3 

L2 Regularization Weight 1e-7 
Number of Attention Heads 8 

The core indicators for evaluating the model's performance mainly include the Mean Rank (MR), the 
Mean Reciprocal Rank (MRR), and the average proportion of correct entities among the top k ranked 
entities, Hits@k (k = 1, 3). 

MR calculates the scores of triples through the known scoring function. Then, entities are taken from 
the entity set to replace parts of the triples for score calculation. Finally, the ranking times that are 
consistent with the test set are summed up and the average value is obtained. The smaller this indicator 
is, the better the result is. The calculation formula is: 

𝑀𝑀𝑀𝑀 = 1
|𝑁𝑁|
∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑖𝑖

|𝑁𝑁|
𝑖𝑖=1                               (18) 

Where |𝑁𝑁| is the number of triples, and rank𝑖𝑖 is the ranking of the 𝑖𝑖-th correct element. MRR is 
the average of the reciprocals of the rankings of the test triples. The larger this value is, the more accurate 
the model's prediction is. The calculation formula is: 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
|𝑁𝑁|
∑ 1

𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑖𝑖

|𝑁𝑁|
𝑖𝑖=1                               (19) 

Hits@k refers to the average proportion of triples in the test set whose rankings of the test triples are 
less than or equal to k. The larger this value is, the more accurate the model's prediction is. In the 
experiment, the values of k are generally taken as 1 and 3. The calculation formula is shown as follows. 

Hits@𝑘𝑘 = 1
|𝑁𝑁|
∑ 𝐼𝐼(𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑖𝑖 ≤ 𝑘𝑘)|𝑁𝑁|
𝑖𝑖=1                          (20) 

Where 𝐼𝐼(rank𝑖𝑖 ≤ 𝑘𝑘)takes the value of 1 when the ranking of the correct triple is less than or equal to 
k, and 0 otherwise. 

3.3 Analysis of Experimental Results 

The proposed model is compared with some current classic models, including TransE[4], DistMult[6], 
ComplEx[7], ConvE[15],,QuatE[16], DRUM[17], R-GCN[13], SDGAT[18], and PathCon[19]. The experimental 
results on the FB15k-237, WN18RR, and NELL995 datasets are shown in Table 3 and Table 4. 

Table 3 Model Performance on FB15K - 237 and WN18RR Datasets 

Model FB15k-237 WN18RR 
MRR MR Hit@1 Hit@3 MRR MR Hit@1 Hit@3 

TransE 0.962 1.699 0.940 0.952 0.966 1.352 0.946 0.954 
DisMult 0.861 2.893 0.692 0.863 0.875 1.920 0.806 0.914 

CompIEX 0.901 1.556 0.866 0.931 0.924 1.493 0.862 0.943 
ConvE 0.935 1.409 0.930 0.945 0.943 1.359 0.933 0.935 
QuatE 0.984 1.236 0.972 0.943 0.971 1.286 0.955 0.946 
DRUM 0.945 1.536 0.945 0.958 0.959 1.549 0.912 0.956 
R-GCN 0.959 1.853 0.943 0.956 0.943 1.956 0.936 0.944 
SDGAT 0.901 1.556 0.866 0.931 0.924 1.493 0.862 0.943 
PathCon 0.979 1.181 0.974 0.968 0.974 1.072 0.954 0.974 
MGAT-
BiKR 

0.988 
±0.005 

1.046 
±0.020 

0.986 
±0.003 

0.985 
±0.005 

0.986 
±0.005 

1.031 
±0.010 

0.972 
±0.003 

0.982 
±0.005 
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Table 4 Model Performance on NELL995 Dataset 

Model NELL995 
MRR MR Hit@1 Hit@3 

TransE 0.850 5.253 0.795 0.883 
DisMult 0.695 8.035 0.653 0.766 

CompIEX 0.713 8.556 0.596 0.726 
ConvE 0.736 7.409 0.689 0.745 
QuatE 0.823 6.756 0.786 0.843 
DRUM 0.745 5.438 0.762 0.795 
R-GCN 0.862 4.361 0.835 0.846 
SDGAT 0.871 3.556 0.856 0.891 
PathCon 0.896 2.258 0.846 0.941 

MGAT-BiKR 0.979 
±0.005 

1.112 
±0.020 

0.967 
±0.003 

0.986 
±0.005 

As shown in the experimental data in Table 3 and Table 4, the MGAT-BiKR model demonstrates 
significant advantages in knowledge graph completion. Specifically, on the FB15k-237 dataset, the MRR 
of MGAT-BiKR reaches 0.988, an improvement of 0.5 percentage points compared to the best-
performing baseline model QuatE. The Hit@1 index exceeds 0.986, surpassing the TransE model by 4.6 
percentage points. Notably, its MR value of 1.046 shows a 42% reduction compared to the traditional 
graph network R-GCN’s 1.853, confirming the effectiveness of the multilayer graph attention network 
in improving entity localization accuracy. 

In the path-intensive dataset WN18RR, the Hit@3 of the model reaches 0.982, which is 4.7 
percentage points higher than the 0.935 of the one-way inference ConvE. By comparing our model with 
path-encoding models such as DRUM, we observe that the combination of BiLSTM and path attention 
increases the success rate of long-path reasoning by 18%, and the dynamic perturbation strategy limits 
the performance fluctuation caused by noisy paths to within ±1.2%. 

On the NELL995 dataset, which contains a large number of long-tail relationships, the Hit@1 of 
MGAT-BiKR reaches 0.967, a significant improvement of 14.3% compared to the best-performing 
baseline model PathCon. Especially in the low-frequency relationship prediction task, the MRR improves 
by 50.7% compared to PathCon., proving that the aggregation of the relational context neighborhood 
effectively alleviates the problem of data sparsity. 

3.4 Ablation Experiment 

To thoroughly explore the central role of the relational context module and its attention mechanism 
in knowledge graph completion, First, we conduct ablation experiments to assess the contribution of the 
relational context module to model performance by completely removing it and retaining only base 
components such as the path aggregation module. Second, we replace the Graph Attention Network with 
two traditional aggregation methods, mean pooling and maximum pooling, to compare how different 
strategies capture dynamic features of node context. The experimental results are shown in Figure 4. 

  
(a) Performance Comparison on NELL995       (b) Mean Rank (MR) Comparison 

Figure 4 The Impact of Relational Context and GAT on Model Performance on the NELL995 Dataset 

Experimental results highlight the pivotal role of the relational context module and attention 
mechanism in model performance. As shown in Figure 4a, the original model excels on the NELL995 
dataset. Removing the relational context module causes a significant decline: the MRR index drops by 
23.7% from its initial value to 0.741, and Hits@1 decreases by 27.9% to 0.688, confirming the module’s 
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critical contribution. In pooling method comparisons, mean and max pooling improve performance but 
still underperform the original model. These methods partially capture context information yet lack the 
dynamic weighting capability of the graph attention network’s attention mechanism. By adaptively 
assigning weights, the attention mechanism mitigates semantic loss in heterogeneous graphs, which 
directly enhances performance. 

The relational path length significantly impacts knowledge graph completion. To assess BiLSTM's 
handling of varying path lengths, we conducted experiments on the WN18RR dataset. Setting the number 
of hops in the relational context to 3, we varied the path length N from 1 to 5 and evaluated model 
performance. The results are presented in Figure 5. 

 
Figure 5 Performance Analysis of Knowledge Graph Completion with Different Relational Path 

Lengths on WN18RR (Context Hops = 3) 

The experimental results show that when the path length is set to 3, the model achieves the best 
knowledge graph completion performance in terms of the MRR, Hits@1, and Hits@3 metrics. This is 
attributed to the bidirectional architecture of the model, which simultaneously captures both forward 
reasoning logic and reverse semantic dependencies, thereby effectively modeling multi-hop relationships 
between entities. For paths of length 2, limited context feature coverage leads to insufficient relational 
cues, thereby impeding complex entity relationship inference. Conversely, paths of length 4 or more 
introduce redundant entity connections, which increases the risk of gradient vanishing and noise 
interference, thereby degrading performance and stability. The BiLSTM-based path modeling module is 
crucial. By dynamically adjusting the forget gate and input gate, it ensures efficient information 
management. At a path length of 3, BiLSTM optimally balances information integrity and computational 
efficiency, which covers 85% of effective reasoning paths while restricting noise interference to 12%. 
This aligns with empirical findings that 83% of effective paths in real-world knowledge graphs are 3 
hops or shorter, which validates the model’s practical utility. 

4. Conclusions 

The proposed MGAT-BiKR model, which fuses a multilayer graph attention network and 
bidirectional path reasoning, significantly boosts knowledge graph completion performance. It 
dynamically aggregates multi-hop neighbor semantics and captures global path dependencies. A 
multilayer graph attention network addresses the issue of limited local structural perception by adaptively 
weighting heterogeneous neighbors. Combining BiLSTM with a path attention mechanism enhances the 
model's ability to model long-path temporal dependencies, while a dynamic perturbation strategy 
improves noise robustness. Notably, MGAT-BiKR excels in predicting low-frequency relationships, 
validating the efficacy of its local-global collaborative modeling approach. Future work will focus on 
optimizing component interaction efficiency and exploring integration with emerging deep learning 
techniques to enhance large-scale sparse graph inference, uncover latent relationships, and advance 
knowledge graph completion technologies. 

References 

[1] Majumdar A, Ajay A, Zhang X, et al. Openeqa: Embodied question answering in the era of foundation 
models[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2024: 
16488-16498. 
[2] Ko H, Lee S, Park Y, et al. A survey of recommendation systems: recommendation models, techniques, 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 8, Issue 5: 1-9, DOI: 10.25236/AJCIS.2025.080501 

Published by Francis Academic Press, UK 
-9- 

and application fields[J]. Electronics, 2022, 11(1): 141. 
[3] Nadkarni P M, Ohno-Machado L, Chapman W W. Natural language processing: an introduction[J]. 
Journal of the American Medical Informatics Association, 2011, 18(5): 544-551. 
[4] Bordes A, Usunier N, Garcia-Duran A, et al. Translating embeddings for modeling multi-relational 
data[J]. Advances in neural information processing systems, 2013, 26. 
[5] Sun Z, Deng Z H, Nie J Y, et al. Rotate: Knowledge graph embedding by relational rotation in 
complex space[J]. arxiv preprint arxiv:1902.10197, 2019. 
[6] Yang B, Yih W, He X, et al. Embedding entities and relations for learning and inference in knowledge 
bases[J]. arxiv preprint arxiv:1412.6575, 2014. 
[7] Trouillon T, Welbl J, Riedel S, et al. Complex embeddings for simple link 
prediction[C]//International conference on machine learning. PMLR, 2016: 2071-2080. 
[8] Lao N, Cohen W W. Relational retrieval using a combination of path-constrained random walks[J]. 
Machine learning, 2010, 81: 53-67. 
[9] Xiong W, Hoang T, Wang W Y. Deeppath: A reinforcement learning method for knowledge graph 
reasoning[J]. arxiv preprint arxiv:1707.06690, 2017. 
[10] Neelakantan A, Roth B, McCallum A. Compositional vector space models for knowledge base 
completion[J]. arxiv preprint arxiv:1504.06662, 2015. 
[11] Schlichtkrull M, Kipf T N, Bloem P, et al. Modeling relational data with graph convolutional 
networks[C]//The semantic web: 15th international conference, ESWC 2018, Heraklion, Crete, Greece, 
June 3–7, 2018, proceedings 15. Springer International Publishing, 2018: 593-607. 
[12] Li Z, Zhao Y, Zhang Y, et al. Multi-relational graph attention networks for knowledge graph 
completion[J]. Knowledge-Based Systems, 2022, 251: 109262. 
[13] Zhang Z, Zhuang F, Zhu H, et al. Relational graph neural network with hierarchical attention for 
knowledge graph completion[C]//Proceedings of the AAAI conference on artificial intelligence. 2020, 
34(05): 9612-9619. 
[14] Nguyen D Q, Nguyen T D, Nguyen D Q, et al. A novel embedding model for knowledge base 
completion based on convolutional neural network[J]. arxiv preprint arxiv:1712.02121, 2017. 
[15] Dettmers T, Minervini P, Stenetorp P, et al. Convolutional 2d knowledge graph 
embeddings[C]//Proceedings of the AAAI conference on artificial intelligence. 2018, 32(1). 
[16] Zhang S, Tay Y, Yao L, et al. Quaternion knowledge graph embeddings[J]. Advances in neural 
information processing systems, 2019, 32. 
[17] Sadeghian A, Armandpour M, Ding P, et al. Drum: End-to-end differentiable rule mining on 
knowledge graphs[J]. Advances in neural information processing systems, 2019, 32. 
[18] Zhou X, Hui B, Zhang L, et al. A structure distinguishable graph attention network for knowledge 
base completion[J]. Neural Computing and Applications, 2021, 33(23): 16005-16017. 
[19] Wang H, Ren H, Leskovec J. Relational message passing for knowledge graph 
completion[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data 
Mining. 2021: 1697-1707. 


	2.1 Model Framework
	2.2 Encoder
	2.2.1 Relational Context Aggregation
	2.2.2 Relational Path Aggregation
	2.3 Decoder
	3.1 Datasets
	3.2 Experimental Settings
	3.3 Analysis of Experimental Results
	3.4 Ablation Experiment

