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Abstract: With the continuous advancement of industrial automation, product quality inspection has 

become increasingly important in the manufacturing process. Traditional inspection methods, which 

often rely on manual checks or simple machine vision techniques, suffer from low efficiency and 

insufficient accuracy. In recent years, deep learning technology, especially the YOLO (You Only Look 

Once) algorithm, has emerged as a prominent solution in the field of product defect detection due to its 

efficient real-time detection capabilities and excellent classification performance. This study aims to 

use the YOLO algorithm to detect and classify defects in product images. By constructing and training 

a YOLO model, we conducted experiments on multiple industrial product datasets. The results 

demonstrate that this method can achieve real-time detection while maintaining high detection 

accuracy, significantly improving the efficiency and accuracy of product quality inspection. This paper 

further analyzes the advantages and limitations of the YOLO algorithm in practical applications and 

explores future research directions. 
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1. Introduction 

In modern manufacturing, product quality control is a critical component in ensuring production 

efficiency and customer satisfaction. With the widespread adoption of industrial automation, traditional 

manual inspection methods can no longer meet the increasing production demands. Manual inspection 

is not only time-consuming and labor-intensive but also prone to subjective factors, leading to 

inconsistent results. To overcome these challenges, computer vision technology has gradually been 

introduced into product quality inspection. However, early computer vision systems primarily relied on 

feature engineering-based methods, which showed clear limitations when dealing with complex 

scenarios and diverse product defects. In recent years, with the rapid development of deep learning 

technology, particularly the widespread application of convolutional neural networks (CNNs), 

significant progress has been made in product defect detection technology. YOLO (You Only Look 

Once), as a deep learning-based object detection algorithm, has gained considerable attention for its 

high speed and accuracy[1]. YOLO can simultaneously perform object detection and classification 

tasks in a single neural network forward pass, making it uniquely advantageous in real-time detection 

scenarios. Therefore, applying the YOLO algorithm to product defect detection can not only improve 

detection efficiency but also effectively enhance accuracy and consistency[2]. The primary objective of 

this study is to explore how to utilize the YOLO algorithm to detect and classify defects in product 

images in industrial production. Through experiments on multiple industrial datasets, we aim to 

validate the effectiveness of the YOLO algorithm in product quality inspection and analyze its 

feasibility and limitations in practical applications[3]. This paper will detail the working principles of 

the YOLO algorithm, the model training process, experimental design, and result analysis, and will 

discuss the practical application prospects and future research directions of this method in industrial 

production lines[4]. 
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2. Concepts and Applications of Product Defect Detection Based on YOLO Algorithm 

The YOLO (You Only Look Once) algorithm, known for its excellent real-time performance and 

efficiency, is widely used in the field of product defect detection. In modern manufacturing, timely and 

accurate detection of defects in products is crucial for maintaining the efficient operation of production 

lines[5]. <Figure 1> illustrates the process of product defect detection based on the YOLO algorithm, 

which can be divided into three main parts: input data acquisition, anomaly detection, and labeling 

strategy[6]. 

 

Figure 1: Product Defect Detection Process Based on YOLO Algorithm 

First, the input data is acquired using data collection equipment such as optical lenses, cameras, and 

lighting devices, resulting in high-quality images containing potential product defects. In this example, 

the research subjects are machine parts[7]. The acquired image data undergo preprocessing and image 

enhancement steps to ensure that the model can extract effective features. Specifically, during 

preprocessing, adjustments are made to the image contrast and brightness to minimize the impact of 

lighting variations on detection results[8]. Next, the image data enters the anomaly detection phase. The 

YOLO algorithm, as the core of deep learning, is employed to extract features from the input images, 

detect, and classify them[9]. To ensure detection accuracy, image augmentation techniques are used to 

expand the dataset's diversity, thereby improving the model's generalization ability. The labeling 

strategy depicted in the figure is a crucial step in the detection process. Different labeling strategies 

during model training can significantly impact the final detection results. The right side of Figure 1 

shows three different labeling methods: intensity-based labeling, type-based labeling, and type labeling 

without Region of Interest (RoI) distinction. These different labeling strategies allow the model to more 

accurately locate and identify various defects.Finally, the trained YOLO model detects defects in the 

input product images and outputs a conclusion on whether anomalies exist[10]. This process can run in 

real-time on the production line, significantly improving detection efficiency and allowing for the early 

identification and correction of potential defects, thereby avoiding quality issues in subsequent 

large-scale production[11]. The concept of product defect detection based on the YOLO algorithm has 

already been applied in many industrial fields. It not only significantly improves detection speed but 

also maintains high accuracy and stability in complex manufacturing environments. However, the 

YOLO algorithm still faces challenges in practical applications, such as its reliance on the diversity of 

datasets and the model's sensitivity to specific defect types[12]. Therefore, future research will focus on 

further optimizing the YOLO algorithm and labeling strategies to meet the detection needs of various 

complex production environments[13]. 

3. Methodology 

3.1. Dataset Preparation 

The image dataset used in this study encompasses various types of defects in different machine 

parts to effectively train and test the YOLO model. As shown in Table 1, the images in the dataset are 

sourced from industrial production lines and laboratory simulations, covering common machine parts 

such as bearings, gears, and bolts. All images were captured in controlled environments using 
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high-resolution cameras and standardized lighting equipment to ensure image quality and 

consistency[14]. 

Table 1: Overview of the Dataset 

ataset Name Number of 

Images 

Resolution Defect Types Notes 

Bearings (Type A) 1200 1280x720 Scratches, 

Cracks, Wear 

Collected from 

production line 

Gears (Type B) 1000 1280x720 Broken Teeth, 

Burrs, Wear 

Collected from 

production line 

Bolts (Type C) 800 1280x720 Deformation, 

Cracks, Rust 

Laboratory simulations 

Mixed Defects Set 700 1280x720 Various Defects Combination of 

different parts and 

defect types 

The image dataset was split into training and testing sets with an 80% to 20% ratio. We ensured an 

even distribution of different parts and their defect types across both sets to prevent any imbalance in 

model performance on certain defect types. The data preprocessing stage included standardization of all 

images, such as resizing and grayscaling. Additionally, to enhance the model’s robustness, various 

augmentation techniques were applied to the images, including rotation, scaling, translation, mirroring, 

and color jittering[15]. These preprocessing steps not only increase data diversity but also enable the 

model to better adapt to varying lighting conditions and environmental changes. For training the YOLO 

model, image annotation is an essential step. We used professional annotation tools to manually mark 

the defect areas in all images, ensuring precision and consistency through a rigorous review 

process[16]. The defect areas in each image were marked with rectangular bounding boxes, along with 

detailed annotations of defect type and location. During annotation, we adopted multiple labeling 

strategies to optimize the model’s detection and classification performance, including: Severity-based 

labeling: Defects were categorized into minor, moderate, and severe based on their intensity. 

Type-based labeling: Different defect types, such as cracks, wear, deformation, etc., were categorized. 

Type labeling without RoI distinction: In cases where the region of interest (RoI) could not be clearly 

distinguished, the entire image was labeled uniformly for defect type. These annotations were 

converted into a format required by the YOLO model, including each defect’s category, bounding box 

coordinates, and normalized values relative to the image size. Through this detailed annotation method, 

the model could better learn the characteristics of each defect during training, thereby improving its 

detection and classification accuracy[17]. 

3.2. Improved YOLO Algorithm Model and Principles 

In the practical application of product defect detection, although the original YOLO algorithm has 

efficient detection speed and high accuracy, it still has certain limitations when facing complex 

backgrounds and multi-scale targets[18]. Therefore, in this study, we improved the YOLO algorithm by 

introducing deeper network structures and optimizing the feature extraction modules, enhancing the 

model’s performance in detecting machine part defects[19]. 

 

Figure 2: Improved YOLO Algorithm Model Architecture 
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<Figure 2> shows the architecture of the improved YOLO algorithm model, which is mainly 

composed of three parts: BackBone (main network), Neck (neck structure), and Output (output layer). 

Throughout the model, we optimized and adjusted various parts of the original YOLO to different 

extents. The BackBone network part adopts an improved ResC2Net structure, with its core idea being 

the enhancement of multi-scale feature expression through the introduction of residual branches. In the 

ResC2Net module, the input image first undergoes convolution, and then the feature map is split into 

multiple sub-feature maps, which are processed separately by multiple residual networks (Res2Net), 

and finally, the processed sub-feature maps are reassembled through concatenation. Mathematically, the 

ResC2Net module can be expressed as shown in Equation 1: 

FResC2Net(x) = Concat(f1(x), f2(x), … , f3(x))                      (1) 

where fi(x) represents the processing result of the i-th sub-feature map, and n is the number of 

sub-feature maps. Through this improvement, the model can effectively capture features of different 

scales, thereby enhancing its detection capability in complex scenarios.In the Neck part, the model 

further improves detection accuracy by introducing a multi-level feature fusion strategy. Specifically, 

we used cross-layer connections and upsampling operations to allow features of different scales to fuse. 

To better retain key information, we also introduced PConv (Partial Convolution) operations, which 

effectively reduce the number of parameters and improve the mode’s computational efficiency. 

Additionally, the SPPF (Spatial Pyramid Pooling-Fast) module was introduced into the Neck part to 

extract global contextual information by pooling features at different scales. The SPPF module can be 

expressed as shown in Equation 2: 

FSPPF(x) = Concat(MaxPool1(x), MaxPool2(x), … , MaxPooln(x))           (2) 

where MaxPooli(x) represents the output of the i-th pooling operation. The SPPF module enriches 

the global context of the features by applying maximum pooling at different scales, thereby improving 

the model’s ability to detect small targets and complex background areas. In the output layer, the 

improved YOLO model adopts a multi-scale prediction strategy. The model performs convolution 

operations on feature maps of different resolutions, generating prediction boxes of different scales to 

accurately detect multi-scale targets. This strategy not only improves the model’s detection accuracy 

but also effectively reduces the miss rate. Through these improvements, the YOLO model’s 

performance in detecting machine part defects has been significantly enhanced. The model can 

accurately detect various types of defects and maintain high detection accuracy in complex 

backgrounds and multi-scale targets. Further experiments have shown that the improved YOLO model 

has great potential for practical application in industrial production environments, providing an 

effective solution for the automated quality inspection of machine parts[20]. 

3.3. Network Training and Optimization 

After preparing the dataset and designing the model architecture, network training and optimization 

are critical steps to achieving efficient machine part defect detection. To ensure that the improved 

YOLO model performs well in complex industrial environments, we meticulously designed the training 

process, including hyperparameter tuning, application of data augmentation techniques, optimizer 

selection, loss function design, and training strategy adjustments. These strategies not only improved 

the model’s detection accuracy but also enhanced its generalization ability[21].Firstly, hyperparameter 

settings directly impact the training outcome. We used grid search methods to fine-tune key 

hyperparameters. The final settings included a learning rate of 0.001, a batch size of 16, and a weight 

decay coefficient of 0.0005. These hyperparameters were adjusted based on the model’s performance 

during the early training stages to ensure fast convergence and avoid local minima. The learning rate 

adjustment strategy adopted a stepwise decay, where the learning rate was gradually reduced when the 

loss on the validation set no longer significantly decreased, helping the model fine-tune better in the 

later stages of training[22]. Data augmentation is an important means of preventing overfitting and 

improving generalization. During training, we applied various augmentation operations to the training 

dataset, such as random rotation, scaling, translation, color jittering, and random cropping. These 

operations aim to increase data diversity, allowing the model to better adapt to different lighting 

conditions and background variations. The data augmentation process significantly enriched the 

diversity of the training samples, thereby enhancing the model’s performance when faced with 

real-world complex scenarios[23]. The choice of optimizer is crucial to the training efficiency and final 

performance of the model. We chose the Adam optimizer, which combines the advantages of 

momentum and adaptive learning rate adjustments, allowing the model to dynamically adjust the 

learning rate under different gradient conditions, thus speeding up convergence and improving stability. 
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The core formula of the Adam optimizer is as shown in Equation 3,4,5: 

mt = β1mt−1 + (1 − β1)gt                             (3) 

vt = β2vt−1 + (1 − β2)gt
2                             (4) 

θt = θt−1 −
αmt̂

√vt̂+ϵ
                                 (5) 

where mt and vt represent the first-order and second-order momentum estimates of the gradient, 

respectively, α is the learning rate, and ϵ is a small constant to prevent division by zero. Through 

these formulas, the Adam optimizer effectively adjusts the update magnitude of each parameter, 

making the model more adaptive during training. The design of the loss function is central to guiding 

model learning. In the YOLO model, the loss function consists of localization loss, classification loss, 

and confidence loss. To improve the model’s detection accuracy, we introduced Intersection over Union 

(IoU) as a metric in the localization loss, as shown in Equation 6: 

IoU =
Area of Overlap

Area of Union
                                  (6) 

By introducing IoU, we can more precisely measure the overlap between the predicted bounding 

box and the actual bounding box, thereby optimizing the model’s localization capability. Additionally, 

to balance the influence of positive and negative samples during training, we applied weighted 

handling in the confidence loss section, ensuring that the model is not distracted by negative samples 

when detecting rare defect types. The model was trained on an NVIDIA Tesla V100 GPU to accelerate 

computation. The entire training process lasted for 200 epochs, with testing on the validation set 

conducted at the end of each epoch to monitor loss changes and adjust the learning rate as needed. We 

also employed an early stopping strategy, terminating training early when the validation set 

performance no longer improved to avoid overfitting[24]. After the training and optimization process, 

the model exhibited excellent performance on the test set. The test results indicated that the improved 

YOLO model not only accurately identifies various types of machine part defects but also maintains 

high detection accuracy and efficiency in complex backgrounds and multi-scale targets[25].  

4. Experiments and Results Analysis 

To validate the performance of the improved YOLO model in detecting defects in machine parts, 

we designed and conducted a series of rigorous experiments. These experiments not only evaluated the 

model's detection precision, recall, and mean average precision (mAP) but also examined its robustness 

and real-time performance in different complex scenarios. The experimental data were derived from the 

previously prepared datasets, including various types of machine parts and their common defects. The 

experiments were divided into three main steps: model training, performance evaluation, and result 

analysis. The dataset used in the experiments covers multiple categories of machine parts, such as 

bearings, gears, and bolts. The quantity of images and types of defects for each category were detailed 

in the dataset preparation section[27]. To comprehensively evaluate the model's performance, we split 

the dataset into 80% for training and 20% for testing, ensuring that the distribution of defect types 

within each subset was balanced. In the experiments, all model training was conducted on an NVIDIA 

Tesla V100 GPU. During training, the Adam optimizer was used, with an initial learning rate of 0.001, 

dynamically adjusted based on the loss curve. The model was trained for a total of 200 epochs, with 

performance evaluations conducted on the validation set at the end of each epoch to monitor the 

model's convergence and avoid overfitting[28]. The model's performance was assessed using precision, 

recall, F1 score, and mean average precision (mAP) metrics. <Table 2> shows the detection results for 

different defect types on the test set. All metrics were calculated at a standard threshold of 0.5. 

Table 2: Performance Evaluation of the Model on the Test Set 

Defect Type Precision Recall F1 Score mAP 

Bearing - Scratch 0.95 0.93 0.94 0.92 

Bearing - Crack 0.94 0.91 0.92 0.91 

Gear - Broken Teeth 0.96 0.94 0.95 0.93 

Bolt - Deformation 0.92 0.89 0.91 0.89 

Bolt - Rust 0.93 0.90 0.91 0.90 

Overall Defect 

Detection 

0.94 0.92 0.93 0.91 

The experimental results indicate that the improved YOLO model demonstrates high precision and 
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recall across various defect detection tasks. Among them, the scratch detection accuracy for bearings 

was the highest, reaching 0.95, while the performance for detecting bolt deformations was relatively 

weaker but still maintained a high level at 0.92. The overall mean average precision (mAP) remained 

stable above 0.91, indicating that the model's detection capabilities were fairly balanced across 

different defect types. 

Table 3: Real-Time Performance Analysis of the Model in Different Scenarios 

Scenario Type Input Image Size Average Detection Time 

(ms) 

Frame Rate (FPS) 

Simple Background 1280x720 25 40 

Complex Background 1280x720 30 33 

Multi-Target Detection 1280x720 32 31 

High-Resolution Image 1920x1080 50 20 

<Table 3> shows the detection speed of the model in scenarios of varying complexity. The results 

indicate that the model handles simple backgrounds and multi-target detection tasks with average 

detection times of 25ms and 32ms, respectively, and frame rates (FPS) between 31 and 40, which meets 

the requirements for real-time detection. However, when processing high-resolution images, the 

average detection time increased to 50ms, and the frame rate decreased to 20 FPS, suggesting that 

while the model consumes more computational resources when handling high-resolution images, it still 

maintains relatively smooth detection performance. Through the analysis of the experimental results, it 

is evident that the improved YOLO model performs well in detecting defects in machine parts[29]. The 

model consistently maintains high detection precision and recall across various defect types, 

particularly in complex backgrounds where it accurately detects even minor defects[30]. This success 

can be attributed to the enhanced multi-scale feature capture capabilities of the improved ResC2Net 

structure and SPPF module. Additionally, the model shows excellent real-time performance, achieving 

fast detection in various scenarios, especially in production line settings where real-time detection is 

critical[31]. This provides technical support for practical industrial applications, ensuring efficient 

defect detection without compromising production efficiency. However, the experimental results also 

highlight that the model's computational resource consumption increases significantly when processing 

high-resolution images, leading to a decrease in detection speed. Therefore, in practical applications, 

there is a need to balance detection precision and real-time performance by adjusting the input image 

resolution and detection strategy according to specific needs to ensure optimal model performance in 

particular scenarios[32].  

5. Applications and Discussion 

The improved YOLO model developed in this study has demonstrated exceptional performance in 

detecting defects in machine parts, excelling in both detection precision and recall. Moreover, it 

maintains high real-time performance even in complex scenarios, making it highly suitable for practical 

industrial applications, particularly in quality control and automated inspection in manufacturing. By 

accurately detecting defects in various types of machine parts, the model can promptly identify 

potential issues during production, reducing the incidence of defective products and enhancing overall 

production quality[33]. In practical applications, the improved YOLO model can be integrated into 

real-time detection systems on production lines, serving as a core component of quality control[34]. Its 

rapid detection capabilities can help manufacturing enterprises quickly identify and label defective 

parts as products pass through the production line, enabling subsequent processes to address these 

issues more efficiently. Additionally, the model's multi-scale feature detection capability allows it to 

handle a wide range of complex industrial scenarios, whether it is detecting single defects in simple 

backgrounds or multiple defects in complex backgrounds, the model exhibits high robustness[35]. 

However, despite the significant improvements in the model's performance, there are still some 

challenges and limitations in practical applications[36]. First, while the model performs well in 

detecting defects in complex backgrounds and high-resolution images, this comes at the cost of 

significantly increased computational resource consumption. The decrease in detection speed when 

processing high-resolution images may impact scenarios that demand extremely high real-time 

performance. Therefore, when deploying the model in practice, it is essential for companies to find the 

optimal balance between detection precision and speed or alleviate this issue through hardware 

acceleration and distributed computing[37]. Additionally, the diversity and quality of the dataset are 

crucial to the model's performance. The image dataset used in this study covers many common machine 

parts and defects, but in actual industrial environments, a wider variety of parts and defect patterns may 
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emerge[38].  

6. Conclusion 

This study successfully improved the YOLO model for efficient detection of defects in machine 

parts. Experimental results demonstrated that the enhanced model maintains high accuracy and good 

real-time performance even in complex scenarios, showing strong potential for application in industrial 

production environments. Although there is some performance trade-off when handling high-resolution 

images, the model can effectively balance detection precision and speed through appropriate 

configuration and optimization. Future research could further optimize the model structure and expand 

the dataset to meet broader industrial detection needs. Overall, the improved YOLO model offers a 

viable technical pathway for enhancing quality control in manufacturing.[39] 
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