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Abstract: It is of great significance to accurately determine the health status of lithium-ion batteries. To 
address the problem that the prediction of a single limit learning machine algorithm is prone to jumping, 
the method of using artificial fish swarm optimization to optimize the limit learning machine is proposed 
to try its best to predict the model of the remaining life of lithium-ion batteries. Firstly, the isovoltage 
discharge time is extracted as an indirect health factor, then the limit learning machine is optimised 
using the artificial fish swarm algorithm to build an indirect prediction model for the remaining life of 
Li-ion batteries, and finally a validation evaluation is carried out based on the NASA dataset B0005-
B0006. The experimental results show that the proposed model predicts stable prediction results with 
high accuracy and small error in prediction results. 

Keywords: Lithium-ion batteries; Artificial fish swarming algorithms; Extreme learning machines; 
Remaining useful life. 

1. Introduction  

Lithium-ion batteries because of the advantages of high specific energy, stable discharge performance, 
good environmental adaptation performance, is widely used in the military as well as with aspects, at 
present, lithium-ion batteries gradually replaced the lead battery, based on lithium batteries, the 
development of new energy vehicles, electric vehicles also changed to lithium batteries[1-3]. Widely 
used lithium batteries will bring safety problems, according to the previous generation of relevant 
research, lithium battery capacity decay to 80% of the initial capacity, it has a greater possibility of failure 
such as bursting into flames, resulting in the loss of personnel and property. 

In order to reduce risk and provide early warning, scholars at home and abroad have conducted 
research on the remaining life of lithium-ion batteries, and the main research methods are data-driven 
and physical modeling approaches[4]. The physical model-based approach requires researchers to fully 
understand the chemical discharge mechanism of the battery, and the model needs to be reconstructed 
for different lithium batteries, so the applicable performance is poor. For this reason, the data-driven 
approach has emerged, i.e. constructing predictive health factors through the historical data of battery 
operation, such as voltage, current, capacity, etc., to obtain the battery-related decay status, so as to obtain 
the remaining battery life, mainly including The indirect prediction is suitable for simple health factor 
extraction, while the direct prediction is suitable for complex operating conditions, which is the 
mainstream research direction at present. Tipping M E et al. proposed the use of support vector machines 
for remaining life prediction[5]. Ali J et al. proposed the use of a genetic algorithm improved limit 
learning machine for remaining life prediction of lithium-ion batteries[6]. From the prediction results, 
each prediction method is more advanced and has higher prediction accuracy, but the training time of the 
prediction model is long. Therefore, Jiang Yuanyuan et al. proposed to use the limit learning machine 
method to build an indirect prediction model for the remaining life of the battery for problems such as 
long prediction of the remaining use of the lithium battery directly, but the standard ELM model will 
produce jumps in the prediction results due to its random input weights, so optimization is needed to 
ensure prediction results are reliable. 

The idea of the article is: firstly, to build a Li-ion battery remaining life prediction model through an 
artificial fish swarm algorithm algorithm to optimise the limit learning machine, then, to build an indirect 
health factor for Li-ion battery remaining life prediction by extracting the isovoltage discharge time, and 
finally, to validate and evaluate the model using the NASA battery dataset, and to concludeAs your paper 
will be an important component in the journal, we highly recommend that all the authors follow this 
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2. Indirect Health Factor Construction 

The selection of appropriate lithium-ion battery operating parameters as an indirect health factor will 
directly affect the accuracy of remaining life prediction and the applicability of the prediction model. The 
indirect health factor was determined by calculating the correlation between battery capacity degradation 
and the parameters of battery operation. It was found that the time elapsed from a low voltage to a 
relatively high voltage during the charging process of a Li-ion battery is consistent with the trend of 
capacity degradation of the battery during the cycling process. Therefore, this paper uses the equal 
voltage drop discharge time as an indirect health factor for the prediction of RUL of Li-ion batteries. 
During each discharge cycle, the time when the battery is at low and high voltage is extracted and the 
difference is calculated as the equal voltage drop discharge time. The calculation expression is as follows. 

| |, 1,2,3, ,l h
i i iT T T i n∆ = − = 

                         (1) 

Where, T∆  is the equal voltage drop discharge time, l
iT is the moment corresponding to the 

second cycle low voltage, h
iT is the moment corresponding to the second cycle high voltage and n is 

the maximum number of cycles of the lithium battery. Therefore, the equal voltage drop discharge time 
series can be expressed as: 

{ }1 2 3, , ,HI nt T T T T= ∆ ∆ ∆ ∆                             (2) 

3. Construction of a Residual Life Prediction Model for Lithium-ion Batteries 

3.1. Extreme Learning Machine Overview 

Extreme learning machine is a learning algorithm of single hidden layer feedforward neural network, 
which is widely used in the prediction of health status because of its simple model and strong learning 
ability [7], however, because its input weights and thresholds are given randomly during training and 
prediction, which leads to fluctuations in the output and unreliable prediction results, so, for this problem, 
it is proposed to optimize ELM using gravitational search algorithm to obtain more stable and reliable 
prediction results[7]. 

The structure of ELM algorithm consists of 3 layers, which are input layer, implicit layer and output 
layer, and its structure is shown in Figure1. 
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Fig. 1: Algorithm structure of extreme learning machine 

According to the structure diagram, the ELM algorithm can be described as follows[7]. 
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which are the weights from the input layer to the implied layer. 1 1[ , ,..., ]Ti i i imβ β β β=  is the weight of 
the implied layer to the output layer. ( )g ⋅  is the implicit layer activation function, and ib  is the implicit 
layer bias. Then the output of the ELM network is. 

Y G β= ⋅                                 (4) 
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By determining the input weights with the hidden layer bias and loading the training set, the output 
weights can be determined. 

ˆ=G Tβ +                                (6) 

G+  is the Moore-Penrose generalized inverse matrix of the matrix. After getting β , the training of 
ELM was completed. The ELM model generated from the training set is then used to make predictions for 
the remaining samples. 

3.2. Basic principles of the artificial fish swarming algorithm  

The artificial fish swarming algorithm achieves global optimisation by simulating the foraging 
behaviour of fish, clustering behaviour, tail-chasing behaviour and random behaviour. Assuming that 
there are N artificially farmed fish in a space of N dimensions and the individual state of the artificial 
fish is Q, it is necessary to determine the number of dimensions s of the school, the maximum number of 
attempts T and the crowding factor z in order to carry out the search behaviour of the school based on 
the above parameters [8].  

(1) When food is present, the fish move as far as vision and taste allow, i.e. there exists a state Qj for 
which the objective function is less than the current state Qi.The full text of the article must be typeset 
in single column. 

() rand i iQ Q V= + ×                             (7) 

Move to this state in a set number of steps. 

( )
( 1) ( )
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If no information about the food is obtained, the existing state is kept unchanged and the search is 
carried out within a set field of view, repeated attempts are made, and if still no advance is made, a 
random act is executed[8]. 

(2) Crowding behaviour. The number of artificial fish is counted within the field of view, the central 
position Qc of the artificial fish school is found, and if the value of the objective function of the central 
position in the absence of crowding is less than the value of the objective function of the original state, 
the movement is made according to this step length. 
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where Yc is the objective function for the central position and Yi is the objective function for the 
current position. Otherwise the foraging behaviour continues. 

(3) Tail-chasing behaviour. That is, if the objective function of the current position is greater than the 
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objective function of the collar near the artificial fish, then the fish moves towards the neighbouring 
artificial fish. 
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(4) The random acts are as follows. 

( 1) ( ) ()i t i tQ Q V rand+ = + ×                         (11) 

3.3. Li-ion battery remaining life prediction model method construction  

Since the input weights and thresholds are given randomly during the training and prediction process 
of ELM, resulting in fluctuations in the output and unreliable prediction results, a fusion of AFSA and 
ELM methods is proposed to optimise the selection of input weights and thresholds and optimise the 
ELM network using the algorithm of AFSA, where each fish passing through the path represents a 
candidate ELM network.  

A portion of the equal voltage drop discharge time is loaded into the improved limit learning machine 
model for training to obtain the relevant parameters of the Li-ion battery remaining life prediction model. 
The first 80 sets of data are selected as the training data set, and the remaining data are the test set for 
prediction. The specific process is as follows. 

(1) Acquisition of battery operating data: voltage drop discharge time, capacity. 

(2) Loading the components into the ELM model and training the model to obtain the remaining life 
prediction model for lithium batteries. 

(3) Loading of late equal voltage drop discharge times to obtain trends in lithium battery capacity. 

(4) The mean absolute error (MAE) and root-mean-square error (RMSE) are used as assessment 
criteria. 

' 21 ( )
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i

RMSE x x
n

= −∑                            (12) 
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= −∑                              (13) 

in the formula, ix  is the true value, That is, the actual capacity of the lithium-ion battery. '
ix  is 

the forecast capacity value. n  is the number of cycles. 
When the capacity of a Li-ion battery drops to the failure threshold, the error between the actual and 

predicted values of the number of cycles is defined as follows. 

rE P R= −                                    (14) 

100%r
P R

PE
R
−

= ×                               (15) 

where P is the predicted number of cycles and R is the actual number of cycles.  

4. Experimental Validation and Evaluation of Results 

 

In this section, the proposed EWT-ELM battery remaining life prediction model is validated using 
the NASA Prognosti-cs Center of Excellence (PCoE) B0005 and B0006 battery data sets. The battery 
model parameters were rated capacity 2Ah and rated voltage 4.2 V. The batteries were charged at room 
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temperature in a constant current mode of 1.5A until the battery voltage reached 4.2 V, then continued to 
be charged in a constant voltage mode until the charging current dropped to 20 mA, and discharged at a 
constant current of 2A until the battery voltage dropped to 2.7 V and 2.5 V, respectively, with all three 
batteries being fully charged and discharged. state. The capacity was extracted from the data set and the 
battery capacity decline curve with the number of cycles was obtained as in Figure 2 and 3. The first 80 
sets of run data were selected to train the model, and a residual health factor was loaded on the  

 
Fig 2: B0005 forecast results 

well-trained model to obtain the battery capacity variation trend at a later stage. 

 
Fig3: B0006 forecast results 

During the prediction process, the predictions did not jump from the results, the model was more 
stable and the predictions were intuitively strong in tracking capacity, indicating the validity of the 
proposed model. In order to analyse the experimental data more objectively, the prediction model was 
evaluated using RMSE, MAE, E and Per. The evaluation results are shown in Table 1. 

Table 1: Results of AFSA optimization compared to GA optimization 
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As can be seen from the table, the ELM optimized using AFSA has higher prediction accuracy and 
tracks the capacity change trend better. Taken together, these results show that the proposed method 
constructs a valid model for predicting the remaining life of lithium batteries. 

5. Conclusion 

This paper proposes a method for indirect prediction of RUL of Li-ion batteries based on AFSA-ELM. 
By extracting the equal voltage drop discharge time as the health factor of the prediction model, 
introducing an artificial fish swarm optimization algorithm to optimize the model input parameters, 
constructing a model of the relationship between equal voltage drop discharge time and battery capacity, 
and setting a failure threshold to achieve indirect prediction of remaining life. Using AFSA to optimise 
the ELM model parameters, by comparing the prediction results of the single ELM method, the ability 
to describe the capacity decay trend is improved, the absolute error is reduced to 1, the problem of 
jumping in the prediction process of the single ELM model is solved, the model prediction accuracy and 
stability are improved, and the ability to track the battery capacity decline is stronger. In addition, the 
AFSA-ELM prediction model, compared with the genetic algorithm optimised In addition, the AFSA-
ELM prediction model has lower model complexity and better real-time performance than the GA-ELM 
model compared to the ELM prediction model under genetic algorithm optimisation. 
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NO. Method R P Er PEr MAE RMSE 

B0005 GA-ELM[9] 101 105 5 4.95% 0.0087 0.0124 
AFSA-ELM 100 1 0.99% 0.0065 0.0115 

B0006 GA-ELM[9] 99 103 4 4.04% 0.0049 0.0069 
AFSA-ELM 97 2 2.02% 0.0035 0.0055 
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