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Abstract: In order to realize the requirements of low latency and low power consumption in real-time 
path planning for private vehicles, this paper designs an FPGA accelerator based on real-time road 
information and Dijkstra's shortest path algorithm, which is applied to the path planning system of 
vehicle edge computing. The system is designed using Xilinx High-Level Synthesis (HLS) compiler and 
is implemented in the programming logic of a Xilinx Zynq FPGA. The experiment is carried out on a city 
map, and the results show that the system has lower circuit area and power consumption, and its 
computing performance is 3.8 times that of ARM, which is suitable for edge computing platform. 
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1. Introduction 

Vehicle path planning is an important part of intelligent transportation system [1]. With the 
development of edge computing and the Internet of Things, vehicles become more intelligent and 
personalized. Especially with the rise of automatic driving, vehicles, as intelligent terminals, will rely 
more on real-time traffic information and require more network traffic and bandwidth, which is a 
challenge for traditional cloud computing architecture[2-3]. The vehicle path planning system based on 
cloud computing is difficult to meet the security and privacy requirements of private vehicles, so it is 
necessary to integrate part of the computing into the vehicle itself, so as to relieve the pressure of network 
communication and cloud servers. 

However, vehicle path planning algorithms tend to have high time complexity, especially for large-
scale road networks, which are limited by on-board resources and energy consumption, and the 
calculation of the optimal path often takes a lot of time, which will not be conducive to the real-time 
update of vehicle path planning during driving[4-5].Traditional general-purpose processors such as CPU 
and ARM are suitable for process control, but not for algorithm acceleration; GPU algorithm acceleration 
effect is good, but the cost and power consumption are high; ASICs consume the least power, and because 
they are dedicated chips, their acceleration performance is also very high, but they lack flexibility; 
FPGAs, as programmable devices, can accelerate various algorithms under low-power operating 
conditions[6]. Therefore, this paper uses the heterogeneous platform of ARM+FPGA as the edge 
computing carrier of the algorithm to realize the real-time solution of the vehicle path planning problem. 

2. Methodology 

2.1. Vehicle real-time path planning system architecture 

The system edge computing system refers to the OpenFog architecture and consists of cloud, network 
and edge devices[7]. The system downloads real-time traffic network information from the cloud and 
calculates the optimal vehicle path in FPGA according to the network. The system architecture is shown 
in Figure 1. 

The right side of Figure 1 shows that the equipment in this paper is a Xilinx ZC706 development 
board, which is equipped with Zynq XC7Z045 FPGA, and is divided into PS and PL terminals. The PS 
terminal is ARM Cortex-A9 SoC, which is used for communicate with the cloud, and the PL terminal is 
a programmable logic resource. HLS is used to deploy the algorithm on it for acceleration. 
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Figure 1: System architecture diagram. 

2.2. Vehicle path planning algorithm and acceleration 

The path plaining problem is usually described by graph theory and its related data structure. The 
model is established as (1) 
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Wherein, V  is a node set, E  is a set of edges, ,x y represents the starting and ending points of the 
road section, L  is the set of edge weights. xyl  represents the weighted length of the edge, which is 
affected by the length of the road section, road quality, congestion, cost, etc. For any path, C ，which is 
the weighted path length can be expressed by (2): 

1 1
( (1 ) )

n n

i i i i i
i i

C C D a a L
= =

= = + −∑ ∑                            (2) 

Wherein, i  refers to the number of the road section in the path, iD refers to the road resistance of 
the road section, iL refers to the physical length of the road section, and ia refers to the proportion 
weight of the road resistance factor. 

There are many vehicle path planning algorithms. For the system architecture proposed in this paper 
for testing, Dijkstra algorithm is selected for FPGA acceleration. Because this algorithm can obtain an 
accurate optimal path rather than an approximate solution, it can eliminate random interference, and it 
has the advantages of both width search algorithm and greedy algorithm, so the efficiency is higher. 

Figure 2 shows the C/C++code fragment of Dijkstra algorithm implemented in Vivado HLS compiler. 
The HLS compiler can expand the loop part of C/C++code, accelerate the algorithm execution efficiency 
through pipeline or space for time strategy, and finally convert it to RTL level description that can run in 
FPGA. 

 
Figure 2: Core code fragment. 
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At the beginning of the algorithm, the input road network diagram is mapped to the FPGA block ram 
for call at any time, thus reducing the transmission delay; Other intermediate variables are mapped to 
distributed ram, which makes changes more flexible. Figure 3 is the architecture diagram of PL. 
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Figure 3: Architecture diagram of PL. 

2.3. Interface design 

For PS-PL communication interface, two different AXI interfaces are used to maximize the use of 
FPGA resources. Figure 4 shows the implementation details of the PS-PL side of the FPGA. 
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Figure 4: Implementation details of PS-PL terminal. 

The AXI4 Lite transmission rate is slow, and it is only suitable for simple, low throughput memory 
mapping communication, but it takes less resources. Therefore, the system uses AXI4 Lite to transmit 
control and status signals, and is connected to the general purpose (GP) port on the PS side; AXI4 Full 
provides high-performance memory mapped PS-PL data transmission, allowing up to 256 bytes of burst 
mode data transmission, so it is suitable for the transmission of graph nodes, adjacency matrices, and 
path results, and is connected to the high-performance interface (HP) on the PS side. 

3. Experiment and results 

3.1. Experimental setup and dataset 

The experiment evaluates the performance, power consumption and circuit area of the system in the 
Xilinx ZC706 development toolbox. The selected data are part of the maps of Beijing obtained from 
OpenStreeMaps and simplified into directed maps. The nodes include road intersections and passing 
points of key lines, as shown in Figure 5. The right side of Figure 5 shows the traffic thermodynamic 
diagram at a certain time.  



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 5, Issue 14: 147-152, DOI: 10.25236/AJCIS.2022.051420 

Published by Francis Academic Press, UK 
-150- 

 
Figure 5: Part of the maps of Beijing. 

3.2. System performance 

This experiment executes Dijkstra algorithm on FPGA and ARM respectively, and records the 
number of clock cycles consumed by path planning under different distance conditions, as shown in 
Table 1. 

Table 1: Execution cycles counts of FPGA and ARM. 

Cost ARM FPGA 
5896 22,974,322 6,045,874 
5125 19,965,768 5,523,258 
3952 12,956,456 4,181,566 
2726 5,639,220 2,655,688 
1627 2,054,956 1,456,432 
969 652,114 934,590 
254 325,246 712,566 

It can be seen that when the start and finish are close, for example, below 1km, ARM microprocessors 
can execute Dijkstra algorithm faster than FPGAs. The reason is that the computing scale is small, and 
the performance is reduced due to additional communication with ARM; However, as the distance 
between start and finish gradually increases, the computational performance of FPGA gradually 
highlights. When the distance between the request start and finish is 5896m, the computational 
performance of FPGA is improved to 3.8 times that of ARM, and the acceleration effect is significant. 
In addition, since in reality the vehicle path planning is carried out when the starting and ending points 
are greater than 5km, the acceleration effect of FPGA will be better.  

3.3. System power consumption analysis 

The power consumption of PS side and PL side during the system operation is measured in the 
experiment, and each module is subdivided, as shown in Figure 6. 

 
Figure 6: Pie chart of power ratio of each module. 

It can be seen that FPGA only takes up a small part of the system power, while the arm side takes up 
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nearly half. Figure 7 shows the architecture of this paper and the energy consumption change diagram 
calculated by ARM only when starting and ending points are different. It can be seen that with the 
increasing difficulty of planning problems, The energy consumption of ARM also increases rapidly; 
However, the increase of energy consumption on the FPGA side is very small, especially for planning 
requests that are far from the start and end points, the energy consumption of this architecture can be 
reduced by more than 10 times compared with ARM processors. 

 
Figure 7: Relationship between request distance and power consumption of ARM and FPGA. 

3.4. System circuit area 

Table 2 shows the resource occupation of this system. It can be seen that the overall resource 
consumption of the chip is small, but the utilization rate of BRAM is high. On the one hand, it is necessary 
to store a large amount of road network data. On the other hand, as an EDA tool, the HLS compiler is 
difficult to maximize the use of resources on the chip. At the same time, in order to take into account the 
computing performance and energy consumption, the compiler will make some trade-offs on the 
consumption of resources on the chip, which leads to the high utilization rate of BRAM in the system, 
However, it still meets the hardware resource requirements of vehicle edge computing as a whole, which 
can accelerate the algorithm of vehicle path planning. 

Table 2: FPGA resource utilisation. 

Resourse Utilisation Available Utilisation(%) 
LUT 3954 218600 1.81 

LUT RAM 326 70400 0.46 
BRAM 4527 437200 1.04 

FF 265 545 48.62 
DSP 8 900 0.88 

4. Conclusion 

In this paper, a edge computing method based on FPGA is proposed for real-time path planning of 
vehicles. By accelerating Dijkstra algorithm on FPGA and using ARM to receive real-time map and 
information transmission control, real-time update of vehicle path planning is realized. The computing 
performance is significantly improved, and it has low power consumption and resource consumption, 
which is suitable for personalized path recommendation of automatic driving in the future. Later, it will 
be verified on FPGA chips with more resources to play a role in more complex urban road networks. 

References 

[1] Ming, Y., Li, Y.Q., Zhang, Z.H. and Yan, W.Q. (2022) A survey of path planning algorithms for 
autonomous vehicles. Sae International Journal of Commercial Vehicles, 14, 97-109. 
[2] Boeing, G. (2016) Osmnx: new methods for acquiring, constructing, analyzing, and visualizing 
complex street. Clinical Orthopaedics and Related Research, 65, 126–139. 
[3] Ai, Y., Peng, M. and Zhang, K. (2017) Edge cloud computing technologies for internet of things: a 
primer. Digital Communications and Networks, 4, 77–86. 
[4] Liu, Y., Li, Y., Niu, Y. and Jin, D.P. (2020) Joint optimization of path planning and resource 
allocation in mobile edge computing. IEEE Transactions on Mobile Computing, 19, 2129-2144. 
[5] Ning, Z.L., Zhang, K.Y. and Wang, X.J. (2021) Intelligent edge computing in internet of vehicles: a 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 5, Issue 14: 147-152, DOI: 10.25236/AJCIS.2022.051420 

Published by Francis Academic Press, UK 
-152- 

joint computation offloading and caching solution. IEEE Transactions on Intelligent Transportation 
Systems, 22, 2212-2225. 
[6] Issa, H.H. and Ahmed, S.M.E. (2019) FPGA implementation of floating point based cuckoo search 
algorithm. IEEE Access, 7, 134434-134447. 
[7] Gebremichael, T., Ledwaba, L.P.I. and Eldefrawy, M.H. (2020) Security and privacy in the industrial 
internet of things: current standards and future challenges. IEEE Access, 8, 152351-152366. 


	2.1. Vehicle real-time path planning system architecture
	2.2. Vehicle path planning algorithm and acceleration
	2.3. Interface design
	3.1. Experimental setup and dataset
	3.2. System performance
	3.3. System power consumption analysis
	3.4. System circuit area

