
Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 5, Issue 14: 147-152, DOI: 10.25236/AJCIS.2022.051420

Published by Francis Academic Press, UK
-147-

FPGA-based vehicle real-time path planning system

Kai Yuan*, Guangming Li, Xiaojuan Liang

School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and
Technology, Xi’an, Shaanxi, 710021, China
*Corresponding author

Abstract: In order to realize the requirements of low latency and low power consumption in real-time
path planning for private vehicles, this paper designs an FPGA accelerator based on real-time road
information and Dijkstra's shortest path algorithm, which is applied to the path planning system of
vehicle edge computing. The system is designed using Xilinx High-Level Synthesis (HLS) compiler and
is implemented in the programming logic of a Xilinx Zynq FPGA. The experiment is carried out on a city
map, and the results show that the system has lower circuit area and power consumption, and its
computing performance is 3.8 times that of ARM, which is suitable for edge computing platform.

Keywords: intelligent transportation, edge computing, FPGA, path planning

1. Introduction

Vehicle path planning is an important part of intelligent transportation system [1]. With the
development of edge computing and the Internet of Things, vehicles become more intelligent and
personalized. Especially with the rise of automatic driving, vehicles, as intelligent terminals, will rely
more on real-time traffic information and require more network traffic and bandwidth, which is a
challenge for traditional cloud computing architecture[2-3]. The vehicle path planning system based on
cloud computing is difficult to meet the security and privacy requirements of private vehicles, so it is
necessary to integrate part of the computing into the vehicle itself, so as to relieve the pressure of network
communication and cloud servers.

However, vehicle path planning algorithms tend to have high time complexity, especially for large-
scale road networks, which are limited by on-board resources and energy consumption, and the
calculation of the optimal path often takes a lot of time, which will not be conducive to the real-time
update of vehicle path planning during driving[4-5].Traditional general-purpose processors such as CPU
and ARM are suitable for process control, but not for algorithm acceleration; GPU algorithm acceleration
effect is good, but the cost and power consumption are high; ASICs consume the least power, and because
they are dedicated chips, their acceleration performance is also very high, but they lack flexibility;
FPGAs, as programmable devices, can accelerate various algorithms under low-power operating
conditions[6]. Therefore, this paper uses the heterogeneous platform of ARM+FPGA as the edge
computing carrier of the algorithm to realize the real-time solution of the vehicle path planning problem.

2. Methodology

2.1. Vehicle real-time path planning system architecture

The system edge computing system refers to the OpenFog architecture and consists of cloud, network
and edge devices[7]. The system downloads real-time traffic network information from the cloud and
calculates the optimal vehicle path in FPGA according to the network. The system architecture is shown
in Figure 1.

The right side of Figure 1 shows that the equipment in this paper is a Xilinx ZC706 development
board, which is equipped with Zynq XC7Z045 FPGA, and is divided into PS and PL terminals. The PS
terminal is ARM Cortex-A9 SoC, which is used for communicate with the cloud, and the PL terminal is
a programmable logic resource. HLS is used to deploy the algorithm on it for acceleration.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 5, Issue 14: 147-152, DOI: 10.25236/AJCIS.2022.051420

Published by Francis Academic Press, UK
-148-

Cloud

Edge Edge Edge

Xilinx ZC706

Zynq XC7Z045

PS PL
AXI

······

Figure 1: System architecture diagram.

2.2. Vehicle path planning algorithm and acceleration

The path plaining problem is usually described by graph theory and its related data structure. The
model is established as (1)

{ }
{ }

(, ,)
, | ,

| ,xy

G V E L
E x y x y V

L l x y R

 = = 〈 〉 ∈


= 〈 〉 ∈

 (1)

Wherein, V is a node set, E is a set of edges, ,x y represents the starting and ending points of the
road section, L is the set of edge weights. xyl represents the weighted length of the edge, which is
affected by the length of the road section, road quality, congestion, cost, etc. For any path, C ，which is
the weighted path length can be expressed by (2):

1 1
((1))

n n

i i i i i
i i

C C D a a L
= =

= = + −∑ ∑ (2)

Wherein, i refers to the number of the road section in the path, iD refers to the road resistance of
the road section, iL refers to the physical length of the road section, and ia refers to the proportion
weight of the road resistance factor.

There are many vehicle path planning algorithms. For the system architecture proposed in this paper
for testing, Dijkstra algorithm is selected for FPGA acceleration. Because this algorithm can obtain an
accurate optimal path rather than an approximate solution, it can eliminate random interference, and it
has the advantages of both width search algorithm and greedy algorithm, so the efficiency is higher.

Figure 2 shows the C/C++code fragment of Dijkstra algorithm implemented in Vivado HLS compiler.
The HLS compiler can expand the loop part of C/C++code, accelerate the algorithm execution efficiency
through pipeline or space for time strategy, and finally convert it to RTL level description that can run in
FPGA.

Figure 2: Core code fragment.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 5, Issue 14: 147-152, DOI: 10.25236/AJCIS.2022.051420

Published by Francis Academic Press, UK
-149-

At the beginning of the algorithm, the input road network diagram is mapped to the FPGA block ram
for call at any time, thus reducing the transmission delay; Other intermediate variables are mapped to
distributed ram, which makes changes more flexible. Figure 3 is the architecture diagram of PL.

Datapath

FSM Control Logic

Path Planning Accelerator Architecture (PL)

Memory

Block RAM

Distributed RAM

Intermediate variables

map and result array

HLS
code

Full
M_AXI

Lite
S_AXI

reset

clk

Figure 3: Architecture diagram of PL.

2.3. Interface design

For PS-PL communication interface, two different AXI interfaces are used to maximize the use of
FPGA resources. Figure 4 shows the implementation details of the PS-PL side of the FPGA.

1

2

3

4

7

5

6

Path Planning Accelerator

Full
M_AXI

Lite
S_AXI

AXI Smart Connect

AXI Interconnect

PS

（ARM）

S_HP

M_GP

PL（FPGA）

Figure 4: Implementation details of PS-PL terminal.

The AXI4 Lite transmission rate is slow, and it is only suitable for simple, low throughput memory
mapping communication, but it takes less resources. Therefore, the system uses AXI4 Lite to transmit
control and status signals, and is connected to the general purpose (GP) port on the PS side; AXI4 Full
provides high-performance memory mapped PS-PL data transmission, allowing up to 256 bytes of burst
mode data transmission, so it is suitable for the transmission of graph nodes, adjacency matrices, and
path results, and is connected to the high-performance interface (HP) on the PS side.

3. Experiment and results

3.1. Experimental setup and dataset

The experiment evaluates the performance, power consumption and circuit area of the system in the
Xilinx ZC706 development toolbox. The selected data are part of the maps of Beijing obtained from
OpenStreeMaps and simplified into directed maps. The nodes include road intersections and passing
points of key lines, as shown in Figure 5. The right side of Figure 5 shows the traffic thermodynamic
diagram at a certain time.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 5, Issue 14: 147-152, DOI: 10.25236/AJCIS.2022.051420

Published by Francis Academic Press, UK
-150-

Figure 5: Part of the maps of Beijing.

3.2. System performance

This experiment executes Dijkstra algorithm on FPGA and ARM respectively, and records the
number of clock cycles consumed by path planning under different distance conditions, as shown in
Table 1.

Table 1: Execution cycles counts of FPGA and ARM.

Cost ARM FPGA
5896 22,974,322 6,045,874
5125 19,965,768 5,523,258
3952 12,956,456 4,181,566
2726 5,639,220 2,655,688
1627 2,054,956 1,456,432
969 652,114 934,590
254 325,246 712,566

It can be seen that when the start and finish are close, for example, below 1km, ARM microprocessors
can execute Dijkstra algorithm faster than FPGAs. The reason is that the computing scale is small, and
the performance is reduced due to additional communication with ARM; However, as the distance
between start and finish gradually increases, the computational performance of FPGA gradually
highlights. When the distance between the request start and finish is 5896m, the computational
performance of FPGA is improved to 3.8 times that of ARM, and the acceleration effect is significant.
In addition, since in reality the vehicle path planning is carried out when the starting and ending points
are greater than 5km, the acceleration effect of FPGA will be better.

3.3. System power consumption analysis

The power consumption of PS side and PL side during the system operation is measured in the
experiment, and each module is subdivided, as shown in Figure 6.

Figure 6: Pie chart of power ratio of each module.

It can be seen that FPGA only takes up a small part of the system power, while the arm side takes up

DSP

Clock

Logic

Signals

Static

BRAM

PS

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 5, Issue 14: 147-152, DOI: 10.25236/AJCIS.2022.051420

Published by Francis Academic Press, UK
-151-

nearly half. Figure 7 shows the architecture of this paper and the energy consumption change diagram
calculated by ARM only when starting and ending points are different. It can be seen that with the
increasing difficulty of planning problems, The energy consumption of ARM also increases rapidly;
However, the increase of energy consumption on the FPGA side is very small, especially for planning
requests that are far from the start and end points, the energy consumption of this architecture can be
reduced by more than 10 times compared with ARM processors.

Figure 7: Relationship between request distance and power consumption of ARM and FPGA.

3.4. System circuit area

Table 2 shows the resource occupation of this system. It can be seen that the overall resource
consumption of the chip is small, but the utilization rate of BRAM is high. On the one hand, it is necessary
to store a large amount of road network data. On the other hand, as an EDA tool, the HLS compiler is
difficult to maximize the use of resources on the chip. At the same time, in order to take into account the
computing performance and energy consumption, the compiler will make some trade-offs on the
consumption of resources on the chip, which leads to the high utilization rate of BRAM in the system,
However, it still meets the hardware resource requirements of vehicle edge computing as a whole, which
can accelerate the algorithm of vehicle path planning.

Table 2: FPGA resource utilisation.

Resourse Utilisation Available Utilisation(%)
LUT 3954 218600 1.81

LUT RAM 326 70400 0.46
BRAM 4527 437200 1.04

FF 265 545 48.62
DSP 8 900 0.88

4. Conclusion

In this paper, a edge computing method based on FPGA is proposed for real-time path planning of
vehicles. By accelerating Dijkstra algorithm on FPGA and using ARM to receive real-time map and
information transmission control, real-time update of vehicle path planning is realized. The computing
performance is significantly improved, and it has low power consumption and resource consumption,
which is suitable for personalized path recommendation of automatic driving in the future. Later, it will
be verified on FPGA chips with more resources to play a role in more complex urban road networks.

References

[1] Ming, Y., Li, Y.Q., Zhang, Z.H. and Yan, W.Q. (2022) A survey of path planning algorithms for
autonomous vehicles. Sae International Journal of Commercial Vehicles, 14, 97-109.
[2] Boeing, G. (2016) Osmnx: new methods for acquiring, constructing, analyzing, and visualizing
complex street. Clinical Orthopaedics and Related Research, 65, 126–139.
[3] Ai, Y., Peng, M. and Zhang, K. (2017) Edge cloud computing technologies for internet of things: a
primer. Digital Communications and Networks, 4, 77–86.
[4] Liu, Y., Li, Y., Niu, Y. and Jin, D.P. (2020) Joint optimization of path planning and resource
allocation in mobile edge computing. IEEE Transactions on Mobile Computing, 19, 2129-2144.
[5] Ning, Z.L., Zhang, K.Y. and Wang, X.J. (2021) Intelligent edge computing in internet of vehicles: a

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 5, Issue 14: 147-152, DOI: 10.25236/AJCIS.2022.051420

Published by Francis Academic Press, UK
-152-

joint computation offloading and caching solution. IEEE Transactions on Intelligent Transportation
Systems, 22, 2212-2225.
[6] Issa, H.H. and Ahmed, S.M.E. (2019) FPGA implementation of floating point based cuckoo search
algorithm. IEEE Access, 7, 134434-134447.
[7] Gebremichael, T., Ledwaba, L.P.I. and Eldefrawy, M.H. (2020) Security and privacy in the industrial
internet of things: current standards and future challenges. IEEE Access, 8, 152351-152366.

	2.1. Vehicle real-time path planning system architecture
	2.2. Vehicle path planning algorithm and acceleration
	2.3. Interface design
	3.1. Experimental setup and dataset
	3.2. System performance
	3.3. System power consumption analysis
	3.4. System circuit area

