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Abstract: This work addresses the scarcity of Cantonese speech emotion datasets by introducing a 

dedicated dataset and employing innovative methodologies. A tailored feature set, specifically designed 

for Cantonese, captures intricate emotional expressions. Enhanced efficiency in Cantonese speech 

emotion recognition is showcased through the utilization of a self-normalization network-based model. 

With an impressive accuracy of 92.3% on the Cantonese dataset, the model demonstrates robust 

generalization capabilities across diverse Chinese and English datasets. The obtained results 

underscore the potential applications of this research in various domains, including Cantonese 

language education, psychological counseling, and voice assistants. Understanding of Cantonese 

emotional expressions is advanced, contributing to the preservation of linguistic and cultural heritage. 

Despite the notable achievements, limitations in dataset coverage and emotion variety are 

acknowledged. Future endeavors will prioritize expanding the dataset's breadth and incorporating a 

wider range of emotional expressions. Additionally, the exploration of more comprehensive Cantonese 

emotion recognition will involve the investigation of multimodal approaches, where audio, visual, and 

textual cues are combined. These efforts are aimed at addressing current limitations and pushing the 

field toward a more nuanced understanding of Cantonese emotional communication. 
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1. Introduction  

With the development of the Great Bay Area, an increasing number of migrants are flocking to 

Guangdong in search of opportunities, leading to the convergence of diverse regional cultures. 

Cantonese, as a representative of the Cantonese culture, has sparked a craze for learning. However, 

compared to Mandarin and English, Cantonese's unique high-spot, rhythm, and pronunciation 

differences can manifest in distinct emotional expressions for the same sentence, leading to potential 

misunderstandings. With its nine tones and six intonations, Cantonese inherently carries multiple 

emotions. It continues the rhythmic characteristics of ancient Chinese, and there is ongoing research on 

the relationship between Tang Dynasty poetry and Cantonese phonology [1]. Moreover, Cantonese 

songs and films have attracted a large following, contributing to the spread of Cantonese culture. 

Cantonese, with its rich emotions, has a large and widespread user base. Research on Cantonese emotion 

recognition not only contributes to the preservation and inheritance of the language but also provides 

more efficient services for Cantonese users. 

However, based on existing research, there is a deficiency in the exploration of Cantonese speech 

emotion recognition due to the uniqueness of Cantonese phonology and a shortage of relevant datasets. 

Therefore, our research is highly practical and provides insights for researchers in Cantonese feature 

extraction and emotion classification. We have established a Cantonese speech emotion dataset with 

performances by 10 actors portraying four emotions (joy, sadness, anger, neutrality), with 200 samples 

for each emotion and gender. We conducted training with three native Cantonese speakers and, with 

their assistance, achieved annotation consistency of 0.76, making the dataset usable. The prevailing trend 

in speech emotion recognition involves the analysis of Mel-Frequency Cepstral Coefficients (MFCC) 

features. For instance, Siba P. M. et al. applied MFCC, mel-spectrogram, approximate entropy (ApEn), 

and permutation entropy (PrEn) for downstream tasks [2]. S Jothimani et al. also incorporated Zero 

Crossing Rate (ZCR) and Root Mean Square (RMS) into their network [3]. Given Cantonese's emphasis 

on tonal patterns and rhyming [4], we conducted manual extraction of various low-level descriptors, 
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including MFCC, ZCR, RMS, fundamental frequency, spectral frequency, mel-frequency, spectral 

contrast, and spectral flatness features. To enhance the feature set, high-level statistical features (HSF) of 

these low-level descriptors (LLD) were computed and used as part of the overall feature set. 

With the advancement of deep learning, more researchers are focusing on acoustic models. In the 

research performed by C. Hema et al. on speech emotion classification, CNN demonstrated stronger 

advantages over traditional machine learning algorithms such as support vector machines, radial basis 

functions, and backpropagation networks, achieving an emotion classification accuracy of 78% on their 

self-constructed dataset [5]. Xinlei Xu et al. designed a three channel model, integrating CNN-extracted 

spectrogram features, DNN-extracted low-level descriptors (LLDs) and high-level spectral features 

(HSFs), and LSTM-extracted MFCC features, achieving scores of 91.25% and 72.02% on EMO-DB and 

IEMOCAP, respectively [6]. However, these algorithm models have the following drawbacks: relatively 

simple structures and relatively weak generalization capabilities. Therefore, our focus will be on using 

convolutional neural networks to construct an algorithm model for Cantonese emotion recognition, 

aiming to achieve higher accuracy and better generalization capabilities. 

2. Dataset Preparation and Feature Selection 

To address the scarcity of the dataset, we collected a Cantonese dataset featuring performances by 10 

actors expressing four emotions (joy, sadness, anger, neutrality), with 200 samples for each emotion 

from both male and female participants. Three native Cantonese speakers were enlisted and underwent 

emotion annotation training, achieving a consistency score of 0.76 with their assistance, validating the 

dataset.  

Comparative experiments were conducted on two English datasets MELD [7], IEMOCAP [8], and a 

Chinese dataset, CH-SIMS [9], for detailed analysis and comparison. Our dataset is illustrated in Fig. 1. 

 

Fig. 1 Emotion categories and gender distribution in the dataset  

2.1. Related Datasets 

For comparing model accuracy and generalization capabilities, the following three datasets were 

employed in the experiments. 

MELD: the Multimodal EmotionLines Dataset (MELD) introduces audio and visual modalities 

alongside text in its comprehensive collection. Derived from dialogues found in the Friends TV series, 

MELD consists of over 1400 dialogues and 13,000 utterances, with participation from multiple speakers. 

Each utterance is meticulously labeled with one of seven emotions: Anger, Disgust, Sadness, Joy, 

Neutral, Surprise, and Fear. 

IEMOCAP: the Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset includes 

performances by 10 actors in 10,039 dialogue instances, encompassing 5,255 scripted sentences and 

4,784 spontaneous samples. The dataset encompasses nine emotions: angry, excited, fear, sad, surprised, 

frustrated, happy, disappointed, and neutral. 

CH-SIMS: the Chinese Single and Multimodal Sentiment Analysis (CH-SIMS) dataset offers a 

comprehensive collection of 2,281 refined video segments. Sourced from movies, TV shows, and variety 
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programs, these segments are curated with frame-level precision using Adobe Premiere Pro. CH-SIMS 

categorizes sentiments into five classes: weakly negative, negative, weakly positive, positive, and 

neutral. 

2.2. Data Augmentation 

As advances in emotion recognition hinge on the development of sophisticated neural networks, the 

scarcity of diverse datasets becomes a bottleneck, hindering the training and generalization capabilities 

of these models. Data augmentation emerges as a pivotal solution, addressing the constraints of limited 

datasets in both training and testing phases [10]. By synthetically expanding the dataset during training, 

augmentation ensures the neural network encounters a more comprehensive array of emotional 

variations. This, in turn, equips the model to better generalize during the testing phase [11]. 

In Fig. 2, we illustrate three key techniques employed in our data augmentation approach: (a) 

represents the original audio, providing a baseline for comparison. Next, (b) introduces noise to simulate 

real-world environmental variations. Moving on to (c), time-stretching alters the temporal dynamics, 

while (d) showcases pitch-shifting, mimicking diverse vocal characteristics. This not only enriches the 

training dataset but also ensures that the model becomes more robust in handling a variety of audio 

inputs during the testing phase. 

 

Fig. 2 Comparison of audio waveforms with three data augmentation methods (a) original audio, (b) 

noisy audio, (c) stretched audio, (d) pitch-shifted audio.  

2.3. Feature Selection 

For a more effective analysis of Cantonese emotions, we chose 8 low-level descriptors. Through 

statistical analysis, we derived 16 high-level descriptors. The following outlines the characteristics of the 

extracted features. 

MFCC: the Mel-Frequency Cepstral Coefficients, are computed through a series of steps. First, the 

audio signal is divided into short frames, and for each frame, the power spectrum is calculated. Then, a 

Mel-filterbank is applied to the power spectrum, and logarithms are taken to obtain the cepstrum. Finally, 

discrete cosine transform (DCT) in (1) is applied to the cepstrum, forming the MFCCs, which represent 

the spectral characteristics of the audio signal. 
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Here, X(m) is the m-th sample point of the input signal, n is the index of the the DCT output 

coefficient, and N is the length of the input signal, indicating there are N sample points. 

Fundamental Frequency (F0): F0 represents the lowest frequency component in a periodic signal, 

often associated with the pitch of the audio. F0 is crucial for pitch-related analysis, offering insights into 

the tonal characteristics of the audio signal. 

Spectral Centroid (SC): SC indicates the “center of mass” of the spectrum, reflecting the average 

frequency of the signal, helps identify the dominant frequency and spectral balance in the audio signal. 
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Root Mean Square (RMS): RMS measures the average energy in an audio signal. Calculated as the 

square root of the mean of the squared amplitude values, it provides information about the overall 

amplitude and energy distribution in the signal, aiding in identifying the signal’s loudness. 

ZCR: Zero Crossing Rate measures the rate at which a signal changes its sign, indicating the number 

of times it crosses zero. This feature is beneficial for identifying aspects of the audio signal related to 

pitch and noisiness. ZCR is defined in (2). Here, N represents the total number of samples in the audio 

signal, s(n) is the signal amplitude at time n, and I is the indicator function. 
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Spectral Flatness (SF): SF quantifies the flatness or peakedness of the spectrum, providing 

information about the tonality of the signal, distinguishes between noise-like and tonal components, 

aiding in the characterization of signal coloration. 

Mel Frequency: Mel Frequency represents the perceived frequency scale, emphasizing the human 

auditory system's sensitivity. It provides a more perceptually relevant frequency representation, 

supporting tasks like speech and audio recognition. 

Spectral Contrast: Spectral Contrast measures the difference in amplitude between peaks and valleys 

across different frequency bands. It highlights spectral texture and is useful for distinguishing between 

harmonic and non-harmonic components. 

In our analysis, we leverage low-level descriptors for statistical examination, extracting high-level 

statistical features such as mean, maximum, and standard deviation. This process culminates in the 

creation of a final feature vector. Table 1 provides pertinent details, with F denoting the number of 

speech frames. Throughout the experiment, we adopt a sampling rate of 22050, a frame length of 2048, a 

frame shift of 512, and a sampling time of 3 seconds. Equation (3) illustrates the calculation of F. 

Through calculation, we obtain the final feature vector dimension as 200×F. 
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Here, sr represents the sampling rate, st stands for sampling time, w is the frame shift, and    

denotes the floor operation. 

Table 1 Audio Feature Summary 

LLDs HSFs Shape 

MFCC mean,max,std (3,20,F) 

F0 mean,max,std (3,F) 

SC mean,max,std (3,F) 

RMS mean,max,std (3,F) 

ZCR mean (1,F) 

SF mean (1,F) 

Mel-frequency mean (128,F) 

Spectral Contrast mean (1,F) 

3. Model Architecture 

In addressing the challenges of Cantonese emotion classification, our research introduces a 

comprehensive solution designed to enhance accuracy and efficiency in emotion analysis. Our modular 

approach is structured with three key components: the Self-Normalization Networks (SNNs) Block, 

Feature Learning Layer, and Classifier, as illustrated in Fig. 3. Each module plays a crucial role in 

extracting relevant features, optimizing normalization, and facilitating accurate emotion classification in 

Cantonese language data. 
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Fig. 3 The flowchart of the proposed model 

3.1. Self-Normalization Networks Block 

Self-Normalization Networks (SNNs), introduced by Klambauer et al., present a novel and effective 

architecture that addresses challenges associated with gradient vanishing and exploding in neural 

networks [12]. Junyi Li achieved successful utilization of Self-Normalization Networks (SNNs) in the 

analysis of copy number variation data, which classified four pan-cancer types. Furthermore, its 

versatility in extracting molecular-level features across diverse contexts is demonstrated by this 

approach [13]. Yao Lu et al. discovered that with ample width in neural networks, the issue of vanishing 

or exploding gradients is likely to vanish under mild conditions [14]. Our SNNs block consist primarily 

of convolutional layers, max pooling, SeLU activation functions, and group normalization. We 

concatenate the features extracted from three SNNs blocks for additional learning purposes. We will 

delve into more details below.  

Convolutional Pooling Layer: three distinct SNNs utilize convolutional kernels with sizes 3, 5, and 7, 

each having a depth of 64 and a stride of 1 for extracting features at different granularities. The pooling 

layer employs max pooling with a size of 2 and a stride of 2. 

SeLU: the Scaled Exponential Linear Unit is an activation function and it is known for its 

self-normalizing properties. It is mathematically defined in (4). 
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Here, λ controlling the scaling for positive values and α determining the rate of exponential decay for 

negative values. λ and α are approximately 1.05 and 1.67, respectively. 

GN: Group Normalization is a normalization technique introduced as an alternative to Batch 

Normalization. It is designed to address challenges related to training deep neural networks by 

normalizing activations within smaller groups instead of the entire batch. GN does not impact 

cross-domain transfer learning and can save memory [15]. The mathematical formulation of Group 

Normalization is given by: 
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Here, γg and βg are learnable scale and shift parameters,  μg and σg are the mean and standard 

deviation computed within the group. 

By individually processing the input feature vector with three different SNNs, the resulting feature 

vectors are concatenated to obtain the output vector Fout. The specific calculation is shown in (6) and (7): 
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Here, Fin represents the input feature vector, ),,( iii sdkK  is the convolutional kernel with parameters ki 

(kernel size), di (depth), and si (stride), M(2,2) refers to max pooling with a pool size of 2 and a stride of 2. 

The symbol  denotes the convolution operation.   

3.2. Feature Learning Layer 

To capture more nuanced features of Cantonese, the Feature Learning Layer employs three layers of 

convolutional operations followed by max-pooling. The convolutional layers have kernel sizes of 3, with 

depths of 128, 64, and 32, respectively. The pooling layers have a size of 2 and a stride of 2. Finally, the 
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features are processed through ReLU and Batch Normalization before being input into the classifier for 

classification. 

ReLU: Rectified Linear Unit is an activation function commonly used in neural networks. ReLU 

speeds up training and effectively mitigates the problem of vanishing gradients [16], as defined in (8). 
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Batch Normalization: Batch normalization (BN) is commonly used to standardize data at the input 

layer for ease of training. It stabilizes the numerical distribution of activation functions and improves 

model performance [17]. To alleviate overfitting, we added a dropout of 0.2 after the BN layer. 

The Equation is given as follows: 
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Here, γb and βb are learnable scale and shift parameters,  μb and σb are the mean and standard 

deviation computed within the batch, ε is a small constant. 

Next, we further obtained feature FLL, with higher granularity, calculated as follows: 
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Here, u and v denote intermediate layers. 

3.3. Emotion Classifier 

The Classifier consists of two fully connected layers. The first layer takes the flattened input feature 

FLL. The ReLU activation and Batch Normalization follow and we applied a dropout of 0.2 to prevent 

overfitting. The second layer outputs the final classification result with N classes. The softmax function 

in (13) is applied to the output for probability normalization. 
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Here, zi represents the input to the softmax function for class i, and the final output is a probability 

distribution over the classes. 

4. Experimental Methodology and Results 

We conducted three groups of experiments. The first group served as a control experiment for 

self-comparison, evaluating the performance of our model on the proposed Cantonese dataset. In the 

second group, various feature sets were employed to compare our model with baseline models such as 

CNN [18], LSTM [19], and CNN-LSTM [20]. The third group of experiments involved comparing our 

model with several baseline models on four different datasets. The evaluation metric used in the 

experiments is accuracy, defined in (14). Our experimental environment consists of the Windows 10 

operating system, a Tesla V100 32GB GPU, a 4-core 32GB CPU, and is implemented using PyTorch.  

FNFPTNTP

TNTP
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


                           (14) 

Here, TP represents the number of true positives, TN represents true negatives, FP is the count of 

false positives, and FN is the count of false negatives. 

In this experiment, we maintained a training set to test set ratio of 7:3. 
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4.1. Control group with self-comparison 

We tested the performance of our model on the proposed Cantonese dataset, which includes four 

emotions (happy, sad, angry, neutral). After 100 rounds of training, the average accuracy reached 92.3%. 

Fig. 4 shows the precision of the training and testing sets changing with epochs, and Fig. 5 displays the 

loss variation, which stabilizes around 0.35. 

4.2. Feature Set & Baseline Model Comparison  

We selected three feature sets: the first is the proposed feature set as set 1, the second consists of 

commonly used features, including MFCC and zero-crossing rate, as set 2 and the third includes MFCC, 

zero-crossing rate, mel-frequency, and RMS as set 3. The test results are shown in Table 2 indicating 

that our model performs best on the proposed feature set and outperforms the baseline models on the 

other two feature sets as well. 

Table 2 Performance Comparison across Feature Sets 

Model Set 1 Set 2 Set 3 

CNN 78.3% 77.4% 78.1% 

LSTM 79.1% 74.6% 76.3% 

CNN-LSTM 82.4% 81.7% 83.2% 

Proposed 92.3% 88.7% 89.3% 

 

Fig. 4 Model accuracy in training vs. testing  

 

Fig. 5 Model loss in training vs. testing  

4.3. Model Evaluation on Diverse Datasets 

In this section, we present the performance of our proposed model compared to baseline models on 

four different datasets. The results in Table 3 demonstrate the model's effectiveness not only on the 
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Cantonese dataset but also its strong generalization capability on English and Chinese datasets. 

Table 3 Model Performance on Four Datasets 

Model Proposed IEMOCAP MELD CH-SIMS 

CNN 78.3% 69.6% 73.2% 77.3% 

LSTM 79.1% 75.1% 73.8% 76.7% 

CNN-LSTM 82.4% 77.3% 78.1% 79.7% 

Proposed 92.3% 84.5% 83.7% 87.6% 

5. Conclusion 

In response to the scarcity of Cantonese speech emotion datasets, this study introduces a dedicated 

Cantonese dataset. Addressing the specific features of Cantonese, a tailored feature set is developed, and 

a model based on self-normalization networks is constructed to enhance the efficiency of Cantonese 

speech emotion recognition. We further improve the model's performance and optimize the training 

process. In the experimental phase, we achieve an impressive accuracy of 92.3% on the Cantonese 

dataset and demonstrate strong generalization capabilities on several Chinese and English datasets. 

Overall, the results are satisfactory, showcasing the potential applications of this research in various 

Cantonese speech emotion recognition domains, such as Cantonese language education, psychological 

counseling, and voice assistants. This not only facilitates Cantonese speakers but also contributes to the 

preservation of linguistic and cultural heritage. 

However, due to limitations in experimental conditions, the collected dataset may not be 

comprehensive, and the range of emotions is relatively limited. Future efforts will focus on expanding 

the dataset in terms of breadth and emotion variety. Additionally, our research will explore the 

integration of multimodal approaches with Cantonese emotion recognition, representing our future 

research direction. 
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