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Abstract: With the changes in environment and lifestyle, the threats of diseases faced by humanity are 
increasingly growing. In this context, early disease prediction has become a critical issue in the medical 
field. However, accurate disease diagnosis based on clinical symptoms remains a highly challenging 
task for healthcare professionals. To address this challenge, data mining technology has demonstrated 
significant application value in the field of disease prediction. Currently, the amount of data generated 
annually in the medical field is growing exponentially, and these vast amounts of medical data provide 
an important foundation for precision medicine. By utilizing advanced data mining techniques, 
researchers can extract valuable disease characteristic patterns from large medical datasets and 
establish reliable predictive models. This study innovatively proposes a Sparse Linear Multi-criteria 
Optimization Classifier (SLMCOC) model for disease prediction. Comparative experiments with 
classical models such as Decision Trees and KNN demonstrate that SLMCOC achieves higher prediction 
accuracy. Moreover, its inherent sparsity enables the identification of critical features for classification, 
thereby enhancing the interpretability of the prediction results. 
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1. Introduction  

In the field of supervised learning methods based on statistical learning theory and optimization 
techniques, Support Vector Machines (SVMs) have undergone rapid research and development over the 
past two decades and have been widely applied to problems such as classification, regression, and 
clustering. Following SVMs, the Multi-criteria Optimization Classifier (MCOC) method has emerged as 
another novel approach based on optimization theory. This classifier method constructs a multi-objective 
mathematical programming model by calculating the overlap between data of different categories and 
the total distance from the data to the decision hyperplane, ultimately generating a corresponding decision 
function to predict the categories of new data. The MCOC has long been regarded as a useful method in 
the field of machine learning duing to its simplicity. In recent years, it has been widely applied to solve 
practical problems across various domains, such as healthcare, finance, and image recognition, 
demonstrating its versatility and effectiveness.  

However, despite its advantages, MCOC exhibits significant limitations in terms of feature reduction, 
particularly when dealing with high-dimensional datasets that contain redundant or irrelevant information. 
This limitation not only affects the model's performance but also weakens its interpretability, making it 
challenging to identify the most influential features in the classification process. Therefore, it leverages 
sparsity methods to improve prediction accuracy and the interpretability of the results. In summary, while 
MCOC has proven to be a powerful and efficient classifier, its limitations in feature reduction and 
interpretability highlight the need for innovative approaches, such as sparsity-based regularization.  

To address these challenges, this paper proposes a Sparse Linear Multi-criteria Optimization 
Classifier (SLMCOC) for disease prediction. The experiment proved that SLMCOC not only improves 
the accuracy of disease prediction, but also provides a more interpretable model by identifying the most 
critical features that contribute to classification decisions. 

The remainder of this paper is organized as follows: Section 2 reviews related work on multi-criteria 
optimization. Section 3 introduces the mathematical formulation of the proposed SLMCOC model. 
Section 4 presents the experimental setup, including datasets and evaluation metrics. Section 5 discusses 
the results, highlighting the performance improvements and interpretability gains achieved by the 
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SLMCOC. Finally, Section 6 concludes the paper and outlines potential directions for future research. 

2. Related Work 

All the text must use the font, Times New Roman. On Macintosh, please choose font, Times. Except 
in special circumstances, such as program code. All the text must use the font, Times New Roman. On 
Macintosh, please choose font, Times. Except in special circumstances, such as program code. 
Researchers have extensively explored Multi-criteria Optimization (MCO) from diverse perspectives 
[1,2,3]. The MCO method has been applied to network intrusion detection and credit card customer 
behavior analysis. A multi-criteria mathematical programming model for multi-class classification has 
been proposed, achieving high classification accuracy and low false positive rates in the classification of 
multi-class network intrusions[4]. The multi-stage multi-criteria fuzzy MCO method, grounded in fuzzy 
set theory and methodology, has been investigated and implemented, demonstrating a notable 
enhancement in the classifier's separability[5]. Nonetheless, the approach is not without its limitations; it 
necessitates the resolution of several distinct linear programming problems and is characterized by the 
instability of the solutions procured. In response to the issue of solution instability in the MCO 
classification model, a Regularized Linear Multi-criteria Optimization classification model (RLMCO) 
has been proposed[6]. The stability of the model's solution is enhanced by incorporating a regularization 
term into the model. Comparative analyses conducted on actual datasets between this method and MCO, 
RLMCO, as well as SVCs, have demonstrated an improvement in performance. Building upon the 
foundation of MCO classifiers, a Multi-criteria Quadratic Optimization (MCQO) classification model 
has been proposed to address the issues of speed and scalability inherent in multi-criteria linear 
programming algorithms. This method has been applied to credit scoring[7]. In order to identify subsets 
of features that significantly contribute to classification, a classification model and algorithm based on 
rough set preprocessing and multi-objective optimization have been developed. This method has been 
applied to practical fields such as medical diagnosis and prediction, as well as the prediction of hot spot 
residues in protein interactions [8,9]. The comprehensive exploration and application of MCO and its 
variants highlight the versatility and effectiveness of MCO techniques in addressing complex 
classification problems across various domains.  The continuous refinement and adaptation of these 
methods underscore their potential for further advancements and applications in both theoretical and 
practical contexts. 

This paper employs a Linear MCO classifier (LMCOC) for disease prediction. To identify important 
attributes, an approximate function of 0 -norm regularization is introduced into the linear MCO model 
to select feature weights, aiming to enhance the interpretability of the model. 

3. Multi-criteria Optimization Classifier (MCOC) 

In recent years, the Multi-criteria Optimization Classifier (MCOC) method based on optimization 
theory has attracted considerable research and practical application. This method obtains a compromise 
solution for classification problems by minimizing the overall overlap between two classes and 
maximizing the total distance of data points from both classes to the decision boundary. By balancing 
these two goals, the method aims to achieve a robust and interpretable classification model that 
generalizes well to unseen data. In classification problem, given a training dataset consisting of a set of 
observation points 1 2{ , ,..., }nX x x x=  and a corresponding set of attributes 1 2{ , ,..., }dF f f f= , each 
observation point ( )d

i ix x R∈  is associated with a label ( { 1,1})i iy y ∈ −  indicating its belonging to one 
of the two classes, where d  represents the number of attributes and n  denotes the size of the 
observation set. The goal is to find a decision function to determine the classes of new observation points. 

Let iα  ( 0iα ≥ ) represent the deviation distance between an observation point ix  and the 
separating hyperplane. The distance vector 1 2( , ,..., )T

nα α α α=  represents the deviation distances for 
all onservation points in the dataset { , }D X Y= . The sum of iα  is calculated by the function 

( ) ( 1)p

p
f pα α= ≥  which should be minimized with respect to α . Similarly, let ( )0i iβ β ≥  denote 

the distance between an observation point ix  and the separating hyperplane. The distance vector 

( )21 ,,, T
nβ β β β=   represents the distances for all points in the dataset D . The sum of iβ  is 
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computed by the function ( ) ( 1)q

q
f qβ β= ≥  which should be maximized with respect to β . Based 

on this, a classifier model based on multi-criteria optimization can be defined as follows: 

min and max ( , 1))

. . ( ) , , 0, 1, , .

p q

p q

T
i i i i i

p q

s t y x b i n
α β

α β

ω β α α β

≥

+ = − ≥ = …                    (1) 

Where ω  ( )dω∈  is the weight vector and b  is the intercept. 

A new MCOC model can be formulated by introducing a penalty factor 1 1 0)C C >（ , and it can be 
rewritten as follows: 

1,
min ( , 1))

. . ( ) , , 0, 1, , .

p q

p q

T
i i i i i

C p q

s t y x b i n
α β

α β

ω β α α β

≥

+ =

−

− ≥ = …                    (2) 

If p=1  and q=1  in model (2), we obtain a Linear Multi-Criteria Optimization Classifier (LMCOC) 
with linear constraints, which can be described as: 

1,
1 1

min

. . ( ) , , 0, 1, , .

n n

i i
i i
T

i i i i i

C

s t y x b i n

α β
α β

ω β α α β
= =

−

+ = − ≥ = …

∑ ∑

                   (3) 

By solving model (3), once the weight vector and intercept are obtained, the separating hyperplane 
can be expressed as: 0T x bω + = . Meanwhile, the label of a new observation point can be determined 
based on the following decision function: ( )Ty sign x bω= + . The observation point x  belongs to the 
positive class when 1y = , this is, when 0T x bω + > . 

4. Sparse Linear Multi-criteria Optimization Classifier (SLMCOC) 

It is essential to incorporate sparsity method into the MCOC models. By introducing sparsity, the 
model can automatically select the most relevant features while discarding redundant ones, thereby 
enhancing its robustness, accuracy, and computational efficiency.  Furthermore, sparsity improves the 
interpretability of the model, as it provides clearer insights into the contribution of each feature to the 
classification outcome.  

In classification problems, regularization techniques are widely used to control model complexity, 
prevent overfitting, and enhance the model's generalization ability. The core idea of regularization is to 
introduce a penalty term into the objective function, which restricts the range of model parameters, 
thereby avoiding excessive fitting to the training data. For linear classifiers, Each element mω  in the 
weight vector represents the contribution of the corresponding attribute to the classification outcome. 
The larger the absolute value of mω , the more significant the influence of that attribute on the 
classification. 

More precisely, the weight vector ω  ( ( )1,
T

dω ω ω= … ) is used to determine the importance of each 
attribute for classification. Specifically, the value of mω  indicates whether the m -th attribute should 
be kept, based on whether mω  is nonzero or zero. The 0 -norm of the augmented weight vector ( )tω  
( ( ) ( ) ( ) ( )

1 1,( ), ,t t t t T
d dω ω ω ω +…= ), where ( )

1
t

dω +  is the intercept of the separating hyperplane at iteration t , is 
defined as an approximate convex function with the initial value (0)ω  as follow: 

( ) ( 1) ( ) ( 1)

0
( ) ( ) ,t t T t tdiagω ω θ ω− −≈

                            (4) 

and the m -th element ( )t
mθ  of the ( 1) ( 1)d d+ × +  martix ( )( )tdiag θ  is defined by 
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According to equations (4) and (5), we can get the 0 -norm of the weight vector ( )tω  at iteration 
t  when t →+∞  with the optimal weight vector *ω . The detailed derivation process is as follows. 
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To identify significant features from the feature set, we introduce 0
ω  into model (3). The Sparse 

Linear Multi-criteria Optimization Classifier (SLMCOC) model can be formulated as: 

, ,
2 10

1 1
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. . ( ) , , 0, 1, , .
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                   (7) 

The parameter 2C  2 0)C >（  controls the sparsity of the model. 

5. Experiment 

In this section, we evaluate the proposed model using several classic datasets. The experimental 
design, along with a detailed analysis of prediction accuracy and feature selection performance, will be 
thoroughly discussed in following subsections. 

5.1. Datasets 

The datasets used in this experiment include heart diease dataset, wisconsin diagnostic breast cancer 
dataset (WDBC) and diabetes dataset, are sourced from the UCI Machine Learning Repository. These 
three datasets have 13, 30 and 16 features, respectively. The HD contains 303 records from the Cleveland 
Clinic, used to predict whether a patient has heart disease. Although the dataset is relatively small, it is 
rich in features, making it suitable for feature selection and model interpretability research. It has 165 
positive samples and 138 negative samples.The WDBC contains 569 samples and is used to predict 
whether a breast tumor is benign or malignant. With a moderate amount of data and high feature 
dimensionality, this dataset is well-suited for feature selection and performance evaluation of 
classification algorithms. It has 212 positive samples and 357 negative samples. The diabetes dataset 
contains medical data from 768 patients and is used to predict whether a patient has diabetes. The dataset 
has a moderate amount of data and a low feature dimensionality. It has 268positive samples and 500 
negative samples. 

The datasets are splited into a training set and a testing set in an 8:2 ratio. And the sampling of positive 
and negative samples should generally adhere to the ratio of the positive and negative classes. In this 
experiment, we randomly select 250, 600, and 450 samples for training to obtain the optimal parameters 
to get the best model, while 50, 150, and 100 observation points were used to generate prediction results, 
respectively. 

5.2. Experiment Design 

Before the experiment begins, all attribute columns of the dataset are standardized using min-max 
normalization. We use 5-fold cross-validation on training set to get optimal model with the parameter 
sets ( 5 5

1 [10 ,...,10 ]C −= and 5 5
2 [10 ,...,10 ]C −= ). And after introducing the regualtion function in section 
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3.1, we set a sparse threshold 4( )eτ τ −=  to select features. It indicates that the m -th attribute is not 
important for calssification if *| |mω τ< . Otherwise, this attribute is considered an important attribute. 

We select several measures to evaluate the performance of models. Total accuracy is the most 
fundamental performance measures of a model, reflecting its overall performance.. And 1F  score also 
important in imbalanced class datasets. In the evaluation of feature selection performance, we set a 
feature weight threshold and count the number of features with non-zero weights to compare the feature 
reduction capabilities of different algorithms. 

5.3. Analysis of Prediction Performance 

We conducted comparative experiments on SVC, Decision Tree, K-Nearest Neighbors (KNN), Naïve 
Bayes, Random Forest, Logistic Regression and SLMCOC models with three datasets. 

Table 1: Predictive performance of models in heart diease dataset. 
Models Accuracy (%) 

1F  score  
SVC 72.58 0.8325 

Decision Tree 81.84 0.8333 
KNN 81.48 0.8500 

Naïve Bayes 83.33 0.9130 
Random Forest 82.09 0.8461 

Logistic Regression 79.26 0.8174 
SLMCOC 86.67 0.9166 

The bold value indicates that the classifier achieves the best performance compared to other models. 

From the results in Table 1, we observe that SLMCOC achieved the highest accuracy of 86.67% and 
the best 1F  score of 0.9166, indicating it is the most effective model for predicting heart disease in this 
dataset.  This performance is notably better than that of other classifiers, marking SLMCOC as the best 
performing model in our experiment. The Naïve Bayes model also showed competitive performance, 
with an accuracy of 83.33% and an 1F  score of 0.9130, which makes it the second-best model in terms 
of 1F  score. It outperforms many of the other traditional models, such as Random Forest (accuracy: 
82.09%, F1 score: 0.8461) and Logistic Regression (accuracy: 79.26%, 1F  score: 0.8174). 

Table 2: Predictive performance of models in wisconsin diagnostic breast cancer dataset. 
Models Accuracy (%) 

1F  score  
SVC 97.82 0.9329 

Decision Tree 95.58 0.9634 
KNN 93.81 0.9417 

Naïve Bayes 94.69 0.9832 
Random Forest 98.57 0.9755 

Logistic Regression 96.33 0.9805 
SLMCOC 99.04 1.0000 

The bold value indicates that the classifier achieves the best performance compared to other models. 

As demonstrated in Table 2, we observe that the SLMCOC model achieved the highest accuracy of 
99.04% and an 1F  score of 1, making it the best-performing classifier in this experiment. The perfect 

1F  score indicates that SLMCOC not only correctly classifies the majority of instances but also handles 
the balance between precision and recall exceptionally well. Following SLMCOC, Random Forest 
showed impressive results with an accuracy of 98.57% and an 1F  score of 0.9755, placing it as the 
second-best classifier. 

Table 3: Predictive performance of models in diabetes dataset. 

Models Accuracy (%) 
1F  score  

SVC 90.15 0.8974 
Decision Tree 93.27 0.9808 

KNN 91.35 0.9836 
Naïve Bayes 88.64 0.9455 

Random Forest 95.19 0.9846 
Logistic Regression 86.28 0.9167 

SLMCOC 96.80 1.0000 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 8, Issue 3: 36-42, DOI: 10.25236/AJCIS.2025.080305 

Published by Francis Academic Press, UK 
-41- 

The bold value indicates that the classifier achieves the best performance compared to other models. 

As the results shown in Table 3, the SLMCOC model achieved the highest performance with an 
accuracy of 96.80% and an 1F  score of 1, marking it as the best performing model for this dataset. 
Random Forest and KNN followed closely, showing the power of ensemble and distance-based methods. 
Decision Tree also performed well, while traditional models like SVC, Naïve Bayes, and Logistic 
Regression provided good results but were outperformed by more advanced models. 

5.4. Feature Importance Analysis 

After a finite number of iterations, the SLMCOC model obtains the optimal weight values. Feature 
weights with absolute values smaller than the feature threshold are set to zero, and the remaining features 
are retained as important ones. The number of feature weights that are not zero can simply be used as an 
indicator of the model's sparsity. To evaluate whether the model effectively enhances interpretability, the 
proportion of each feature's weight value relative to the total weight of all remaining features can be 
calculated. The proportion of important feature weights of the the three datasets is shown in Figure 1, 2. 

 
Figure 1: The important features of heart diease dataset. 

 
Figure 2: The important features of WDBC and diabetes datasets. 

As shown in Figure 1, the original heart disease dataset has 13 features. After feature sparsification, 
6 features remain while achieving a sparsity rate of 53.84% (the proportion of redundant features to the 
total number of features) while maintaining the model's prediction accuracy. Additionally, based on the 
proportion of the feature weight to the total weight, it was found that Feature 5 is crucial to the model, 
contributing to the interpretability of the model's predictions. Similarly, based on the analysis from Figure 
2, the WDBC dataset initially had 30 features. After eliminating redundant features, 7 features remained, 
achieving a sparsity rate of 76.67%. Among these, features 16, 20, 27, and 30 are considered highly 
important for the model. For the diabetes dataset, there were initially 16 features. After sparsification, 6 
features remained, resulting in a sparsity of 62.50%. Additionally, the weight values of features 2, 3, and 
4 represent a significant proportion of the total weight. 

6. Conclusions  

In this paper, we discussed the historical research on multi-criteria optimization classifiers and 
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considered their application in the field of disease prediction. After developing a sparse linear multi-
criteria optimization classifier model and comparing it experimentally with other classical classifiers, we 
found a significant improvement in prediction accuracy. Additionally, the model exhibits strong 
capabilities in feature sparsification, which is expected to aid in disease prevention. In future research, 
we will extend the study of multi-criteria optimization to non-linear models and investigate better 
sparsification functions. 
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