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Abstract: To address the performance degradation in current motorcycle helmet detection models 
caused by factors such as large variations in helmet scale, frequent occlusions, and complex 
backgrounds, this study proposes a motorcycle helmet detection model based on an improved 
YOLOv11n, which has undergone key improvements in the following areas: First, the C3k2 modules in 
the original model are partially replaced with C3k2-SCConv modules, where SCConv helps reduce 
redundant information and enhances the model’s feature extraction capability in complex environments. 
Second, the iAFF module was introduced to replace the conventional concat operation for feature 
fusion, effectively leveraging detailed information from shallow layers and semantic information from 
deep layers, thereby improving the detection performance for small objects. Third, a MultiSEAM 
module is incorporated into the neck of the model to mitigate information loss caused by occlusion by 
learning the relationship between occluded and non-occluded regions, which helps reduce missed and 
false detections owing to occlusion. Finally, ADown modules were used to replace certain 
convolutional layers, reducing both the number of parameters and computational cost, thereby 
improving the detection speed. Experimental results demonstrate that the proposed model achieves a 
3.4 percentage point improvement in mAP@0.5 compared to the baseline model, while maintaining a 
competitive detection speed, and overall outperforms existing mainstream object detection models in 
terms of comprehensive performance. 
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1. Introduction 

Motorcycles, one of the most widely used means of transportation, significantly improve travel 
efficiency but also pose a higher risk of traffic accidents. Compared to drivers of other vehicles, 
motorcyclists are far more likely to suffer traumatic brain injuries in accidents. Wearing a 
standard-compliant safety helmet is one of the most effective measures for reducing the risk of such 
injuries. However, even after the nationwide implementation of the "One Helmet, One Belt" safety 
campaign for over a year, a large number of motorcycle riders and passengers still lack awareness of 
helmet-wearing [1]. 

To reduce the incidence of severe injuries in motorcycle-related traffic accidents, helmet-wearing 
compliance is typically monitored manually by law enforcement officers. However, this approach is 
time-consuming, labor-intensive, and prone to missed detections, making it challenging to ensure 
effective safety supervision. 

With the rapid advancement of artificial intelligence, computer vision, and deep learning, 
researchers have proposed various object detection frameworks, including Fast R-CNN[2], SSD[3], 
RT-DETR[4], and the YOLO series. Leveraging object detection algorithms to monitor motorcycle 
helmet usage in real-world traffic scenarios can significantly reduce the human labor costs. Moreover, 
issuing penalties based on the detection results can enhance public awareness of helmet usage. 
Consequently, various motorcycle helmet detection methods have been developed based on different 
object detection frameworks. 

For instance, Xie et al. enhanced the YOLOv5 model by integrating the Efficient Channel Attention 
(ECA-Net) mechanism to improve detection performance. They also introduced a Bi-FPN bidirectional 
feature pyramid to balance multi-scale features and adopted the Alpha-CIoU loss function to improve 
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the localization accuracy. Although the modified model showed marked improvements in detecting 
small objects, it still exhibited high miss rates in the case of object occlusion[5]. Yuan et al. replaced 
the backbone of YOLOv8s with VanillaNet, incorporated the CARAFE module for upsampling, added 
an extra detection layer for tiny objects, and introduced the MPDIoU loss function. These 
enhancements significantly improved both the accuracy and speed of helmet detection, although there 
remains room for improvement under extreme conditions[6]. Yang et al. improved YOLOv8n by 
incorporating SPDConv and C2f-CGblock modules and replacing standard convolutions in the head 
with group convolutions. These changes enhanced the model’s ability to detect low-resolution images 
collected from real road scenarios and reduced the computational cost. However, detection errors still 
occur under high-glare lighting conditions[7]. Zhou et al. adopted a progressive feature pyramid 
network to enhance detection performance in complex scenes and proposed the PCAHead and 
HelmetIoU loss function to optimise model understanding and data processing capabilities. Although 
these improvements increased the computational efficiency and accuracy, the model continued to suffer 
from missed and false detections for distant small targets[8]. Zhou et al. combined the strengths of 
MAFPN and BiFPN to propose the BIMAFPN structure, which was integrated into YOLOv10n to 
improve performance in complex traffic environments. They also replaced the traditional CIoU loss 
with the Inner-Wise MPDIoU loss to enhance accuracy and convergence speed, and introduced the 
LSCD detection head to reduce the number of parameters while improving performance. However, the 
adaptability of the model to diverse weather conditions remains limited[9]. 

Although the aforementioned improvements have contributed to motorcycle helmet detection, 
several challenges remain: missed and false detections of small targets persist; occlusions among 
multiple objects in dense traffic reduce detection performance; and the limited consideration of 
environmental conditions, along with the constraints on model size, computation, and inference speed, 
make it difficult to meet the requirements of real-time and edge deployment. 

To balance the detection accuracy, parameter size, and computational efficiency, this was selects 
YOLOv11n as the baseline model[10]. As the latest version in the YOLO series, YOLOv11 inherits the 
strengths of its predecessors while offering excellent performance and a lightweight design that 
facilitates deployment. Based on YOLOv11n, this study proposes an improved real-time motorcycle 
helmet detection model to address the aforementioned issues. Specifically, the C3k2 modules were 
partially replaced with C3k2-SCConv modules to enhance feature extraction under complex 
backgrounds. The iAFF module was introduced to replace the simple concatenation of shallow and 
deep features, thereby improving the model's capability to detect small objects. To address 
occlusion-induced errors, the MultiSEAM module was added to the neck of the model to compensate 
for information loss. Finally, the ADown module replaces several convolutional layers to reduce both 
the parameter count and computational cost, enabling real-time detection and deployment on edge 
devices. 

 
Figure 1: Improved YOLOv11 network structure. 
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2. Improved YOLOv11 model 

Although YOLOv11 demonstrated strong detection performance on conventional datasets, it did not 
perform well when applied to the task of motorcycle helmet detection. To address the typical 
challenges associated with this task, this study introduces targeted modifications to the backbone and 
neck of YOLOv11n. The resulting model architecture is illustrated in the following figure. 

Based on these improvements, we propose a model specifically designed for the detection of 
motorcycle helmets. The detailed architecture is shown in Figure 1, and the following sections provide 
an in-depth explanation of the introduced modules and their modifications. 

2.1 C3k2-SCConv module 

In real-world scenarios, motorcycle riders are often surrounded by various sources of interference 
such as traffic, pedestrians, buildings, and trees. Helmet targets are typically small and may share 
colors with the background, making accurate identification challenging. Conventional standard 
convolutions apply the same processing across all spatial locations and channels, and lack the ability to 
dynamically distinguish between critical helmet features and background noise. As a result, the model 
struggles to focus on useful information amidst overwhelming redundancy. 

SCConv[11] enhances feature extraction efficiency through a unique dual reconstruction 
mechanism that operates across both the spatial and channel dimensions. It primarily consists of two 
core components: a Spatial Reconstruction Unit (SRU) and a Channel Reconstruction Unit (CRU). By 
jointly leveraging these two units, the SCConv effectively suppresses redundant information and 
enables the model to focus on salient features. The architecture of the SCConv is illustrated in Figure 2. 

 
Figure 2: SCConv structure. 

The C3k2 module serves as a fundamental building block of the YOLOv11 backbone and is 
responsible for feature extraction and downsampling. To further enhance the model’s ability to extract 
features from complex backgrounds, we integrated SCConv into the C3k2 module, creating a new 
convolutional module named C3k2-SCConv. The C3k2-SCConv module replaces all C3k2 modules 
(C3k2=True) throughout the network.The structure of C3k2-SCConv is shown in Figure 3. 

 
Figure 3: C3k2-SCConv structure. 

2.2 iAFF module 

Although shallow features retain the high-resolution details of small helmets, they lack high-level 
semantic information. In contrast, deep features contain rich semantic representations but often lose the 
spatial details of small objects owing to downsampling. Fusing shallow and deep features enables the 
integration of complementary information captured at different network depths, thereby reducing false 
and missed detections in small-object detection. In YOLOv11, feature fusion across different layers is 
performed by concatenation. However, this approach implicitly assumes equal importance across 
features and simply merges them without considering their semantic hierarchy, resolution sensitivity or 
saliency differences. This indiscriminate fusion may result in critical spatial details in shallow features 
being overwhelmed by strong semantic information in deep features, leading to blurred boundaries and 
texture loss, thereby reducing detection accuracy. 

The iAFF module[12] uses the MS-CAM attention module and iterative optimization mechanism to 
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ensure that the fused features contain advanced semantic information while also considering local 
spatial details, thereby improving the model's ability to detect small targets.The iAFF and MS-CAM 
structures are shown in Figure 4. 

The MS-CAM module performs global and local feature processing on the input linear fusion 
features through two branches. The main difference between them lies in the application of global 
average pooling. The branch that applies global average pooling can capture global feature information, 
whereas the branch that does not apply global average pooling retains local feature information. After 
processing through these two branches, their outputs are combined and passed through a sigmoid 
function to generate weights. These weights are then applied to the original features, and through an 
iterative optimization design, the initial fusion results are subjected to another weighted fusion, 
addressing the bottleneck issues caused by the initial fusion. When fusing small helmet features, the 
weights generated by the MS-CAM module favor shallow-layer features to preserve helmet detail 
information while minimizing the loss of deep-layer semantic information, enabling the model to 
achieve better detection performance when detecting small helmet targets. 

 
Figure 4: MS-CAM and iAFF structure. 

2.3 MultiSEAM module 

During motorcycle operation, vehicles, pedestrians, cyclists, electric bicycles, and obstacles on both 
sides of the road may partially obstruct the motorcycle, riders, or passengers. YOLOv11's fixed 
receptive field-based convolutional operations cannot focus on the local visible features of these 
occluded targets, leading the model to either over-rely on global features and misdetect, or fail to detect 
due to key features being occluded. To address the misdetection and false negatives caused by 
occlusion, the MultiSEAM module was introduced at the neck region. 

 
Figure 5: MultiSEAM structure. 
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The MultiSEAM [13] module is designed to compensate for the information loss caused by 
occlusion by learning the relationships between the occluded and unoccluded regions. It begins by 
capturing both local and global information through three CSMM modules with different patch sizes(3, 
5, and 7 in this study). After the CSMM modules, average pooling was applied to downsample the 
output. Subsequently, a two-layer fully connected network was employed to further integrate 
information across channels, enhancing inter-channel relationships while suppressing irrelevant signals. 
This strengthens the model’s ability to handle fine-grained features in both the occluded and 
unoccluded regions. The outputs from the fully connected layers were then passed through an 
exponential transformation, extending their value range from [0,1] to [1,e]. This exponential 
normalization provides monotonic mapping that facilitates the effective integration of features from 
both the occluded and visible regions. Finally, the resulting values are used as attention weights and 
multiplied by the original features, enabling the model to effectively address occlusion-related 
challenges. The structure of the module is illustrated in Figure 5. 

The MultiSEAM module enhances the detection performance of the model in occluded scenarios by 
integrating spatial attention with feature enhancement mechanisms. This allows the model to focus 
more effectively on the visible regions of the target, thereby optimizing the overall feature 
representation and improving the detection accuracy in the presence of occlusions. 

2.4 ADown module 

To enhance the real-time performance of motorcycle-helmet detection, several convolutional layers 
in the backbone and neck of the YOLOv11 network were replaced with the ADown module from 
YOLOv9[14]. The ADown module reduces model complexity and improves computational efficiency, 
enabling fast and accurate target detection, even in resource-constrained environments. Its structure is 
shown in Figure 6. 

 
Figure 6: ADown structure. 

This design cleverly combines two different feature extraction methods, convolution and pooling, to 
retain diverse and rich spatial information while significantly reducing the number of parameters and 
computational complexity. This is achieved because convolution operates on only half of the input 
channels, pooling operations have no parameters and low computational overhead, and 1×1 
convolution is used to efficiently integrate channel information. Through this asymmetric branch 
structure, the ADown module effectively reduces model complexity and improves inference speed, 
making it highly suitable for achieving efficient and stable feature downsampling on 
resource-constrained edge devices. 
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3. Experimental results and analysis 

3.1 Dataset 

This study utilized the “Osf HELMET” dataset [15] and the dataset provided by the 2024 AI City 
Challenge Track 5 [16]. To ensure dataset completeness, samples were selected from various traffic 
conditions, including sunny, rainy, nighttime, and foggy weather, as well as low-traffic and high-traffic 
road segments, totalling 5,489 images. Three categories were annotated using the LabelImg tool, as 
illustrated in Figure 7: green bounding boxes represent the ‘motorperson’ class, red boxes represent 
‘Helmet’, and blue boxes represent ‘NoHelmet.’ 

 
Figure 7: Data annotation method. 

This annotation scheme offers several advantages: the ‘motorperson’ class treats the rider and 
motorcycle as a single entity, effectively filtering out interference from cyclists and pedestrians, while 
the ‘Helmet’ and ‘NoHelmet’ classes indicate the helmet-wearing status. The dataset was split into 
4,873 images for training and 616 images for testing. 

3.2 Experimental environment 

The experiments were conducted on a platform running the Ubuntu 20.04 operating system, 
equipped with a 12-core Intel(R) Xeon(R) Platinum 8352V CPU @ 2.10GHz, 90GB RAM, and an 
NVIDIA vGPU with 32GB memory. The model was initialized with the pretrained weights of 
YOLOv11n trained on the COCO dataset. The training parameters were set as follows: number of 
epochs = 150, batch size = 32, and number of worker processes = 0. The input images were resized to 
640 × 640 pixels. The AdamW optimizer was employed to optimize the learning rate with an initial 
learning rate of 0.01. 

3.3 Comparative experiment 

To evaluate the performance of the proposed algorithm, comparative experiments were conducted 
against several mainstream object detection algorithms, including YOLOv5s, YOLOv7-tiny, 
YOLOv8n, RT-detr, and NanoDet, as well as classic methods such as Faster R-CNN and SSD. For all 
algorithms used in the experiments, the input images were standardized to a resolution of 640 × 640 
pixels. Each model was initialized with pretrained weights on public datasets and trained for 150 
epochs. The evaluation metrics included the number of parameters, computational complexity (FLOPs), 
precision, recall, and mean average precision at IoU threshold 0.5 (mAP@0.5) to comprehensively 
assess model performance. 

Table 1: Algorithm performance comparison. 

method Params/M FLOPs/G Precision/% Recall/% mAP0.5/% 
Faster-RCNN 136.2 360.0 76.6 74.3 78.8 

SSD 25.4 131.7 74.6 73.4 75.2 
RT-detr 15.5 37.4 84.9 79.0 84.2 
nanodet 2.44 2.97 - 70.2 83.5 
yolov5s 7.02 15.8 85.7 81.0 85.9 

yolov7-tiny 6.01 13.0 83.5 77.5 84.8 
yolov8n 3.01 8.1 82 79.5 85.5 
yolov11n 2.58 6.3 82.9 79.6 84.8 

ours 2.69 5.3 88.9 82.5 88.2 
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As shown in the experimental results in Table 1, all compared algorithms outperform the classical 
Faster R-CNN and SSD methods across various metrics. Regarding the mAP@0.5 metric, the proposed 
model achieved the highest score among the nine evaluated models, surpassing YOLOv5s, 
YOLOv7-tiny, YOLOv8n, and YOLOv11n by 2.3%, 3.4%, 2.7%, and 3.4%, respectively. Compared 
with RT-detr and NanoDet, the proposed model improved by 4.0% and 4.7%, respectively. In terms of 
parameter count and computational cost, the model was only surpassed by NanoDet. Although the 
improved model increases parameters by 4.2% compared with the original YOLOv11n, it achieves the 
highest detection accuracy, demonstrating significant advantages over the baseline and other models 
under limited computational resources. 

3.4 Ablation experiment 

To evaluate the effectiveness of each module incorporated into the YOLOv11n model, a series of 
ablation experiments was conducted with all improvements integrated into the network architecture. 
The results are shown in Table 2. Here, a denotes the C3k2-SCConv module, b the iAFF module, and c 
the MultiSEAM module. 

As shown in Table 2, the baseline YOLOv11n achieves an mAP@0.5 of 0.848 with 2.58 million 
parameters and 6.3 GFLOPs. In experiment group A, the introduction of the C3k2-SCConv module 
enhanced the feature extraction capability of the model under complex backgrounds, resulting in a 0.8% 
increase in mAP@0.5. Group B employed the iAFF module for feature fusion, which improved 
small-object detection, yielding an AP@0.5 increase of 0.8% and 3.3% for the Helmet and NoHelmet 
classes, respectively, and a 1.4% overall mAP@0.5 improvement. Group C integrated the MultiSEAM 
module to enhance detection under occlusion, resulting in a 2.0% increase in mAP@0.5. 

Experiments D and E combined the advantages of groups B and C, respectively, with group A, 
further improving the detection accuracy; mAP@0.5 increased by 1.4% and 1.9% over group A, 
respectively. Group F combined the improvements of groups B and C, achieving a 1.6% mAP@0.5 
increase over that of group B. Finally, group G incorporated all three improvements simultaneously, 
resulting in a 3.8% mAP@0.5 increase compared with the baseline model. 

Table 2: Ablation Experiment. 
model modules AP@0.5 mAP@0.5 Params/M FLOPs/G FPS 

a b c motorperson Helmet NoHelmet 
v11n    0.966 0.888 0.689 0.848 2.58 6.3 119 

A √   0.965 0.892 0.711 0.856 2.46 6.2 88 
B  √  0.967 0.896 0.722 0.862 2.59 6.3 89 
C   √ 0.965 0.898 0.741 0.868 2.95 6.6 95 
D √ √  0.969 0.901 0.739 0.870 2.46 6.2 72 
E √  √ 0.971 0.903 0.752 0.875 2.81 6.5 78 
F  √ √ 0.972 0.901 0.763 0.879 2.95 6.6 79 
G √ √ √ 0.974 0.905 0.778 0.886 2.82 6.5 62 
H G+ADown 0.971 0.904 0.772 0.882 2.69 5.3 71 

Considering the real-time requirements of motorcycle-helmet detection, the frames-per-second 
(FPS) metric was evaluated for each model during the ablation experiments. As shown in Table 2, 
although Group G achieved the highest mAP@0.5, its FPS was only 62 fps. To improve the inference 
speed, Group H replaced some standard convolutional layers in the model with the ADown module. 
The results of Group H demonstrate that, while the mAP@0.5 decreased slightly by 0.4% compared 
with Group G, the parameter count and computational cost were reduced by 4.6% and 15.9%, 
respectively, and the FPS improved by 14.5%. 

3.5 Visualization and Analysis of Detection Results 

To compare the detection performance of the improved algorithm with that of the baseline 
YOLOv11n model, both models were used to perform inference on the test set. Representative images 
were selected from the prediction results for visual analysis (Figure 8). Subfigure (A) shows the 
original image, (B) shows the detection results of YOLOv11n, and (C) presents the results of the 
improved model. Dark blue bounding boxes indicate the ‘motorperson’ class, light blue represents 
‘Helmet’, and white represents ‘NoHelmet.’ 
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Figure 8: Visualization of Detection Performance Before and After Model Improvements. 

From column (a), it can be observed that YOLOv11n fails to detect motorcycles in the distant 
background, which is attributed to its insufficient capability in detecting small objects. In contrast, the 
improved model successfully and accurately identified these distant targets. Columns (b) and (d) show 
that YOLOv11n exhibits both missed detections and false positives under nighttime and foggy 
conditions, indicating its vulnerability in complex environments. However, the improved model 
maintained a robust performance under these challenging scenarios. In column (c), the rear passenger 
without a helmet is occluded by the driver, causing YOLOv11n to miss the detection. The improved 
model correctly detected the occluded target, validating its superior detection capability under 
occlusion. 

In summary, the proposed model effectively addresses the missed and false detection issues 
encountered by the baseline model when handling small or occluded objects and maintains a reliable 
performance under complex environmental conditions. 

4. Conclusion 

To meet the demand for accurate motorcycle-helmet detection under various complex 
environmental conditions, we introduced the following improvements to the YOLOv11n model: first, 
parts of the original C3k2 modules were replaced with C3k2-SCConv modules to enhance the model’s 
feature extraction capability, enabling better adaptation to diverse scenes. Second, an iAFF module was 
employed for feature fusion, improving the model’s ability to detect small objects. Third, the 
MultiSEAM module was integrated into the neck of the network to address the challenges caused by 
occlusion and target overlap, which often result in missed detections. Finally, several standard 
convolutional layers were replaced with ADown modules to reduce the parameter count and 
computational cost while increasing the detection speed, enabling the model to meet the requirements 
of edge deployment and real-time detection. 

Experimental results show that the proposed model outperforms existing mainstream object 
detection models in terms of detection accuracy. Notably, the improved model achieves this 
performance with fewer parameters and lower computational complexity than most counterparts, 
making it particularly advantageous under limited computational resources and increasing its potential 
for deployment on-edge devices. A comparison of the detection results before and after the 
improvements in different environments further validated the superiority of the proposed model. 
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