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Abstract: In the field of computer vision, small target detection is extremely challenging due to the 

small size, low pixel density, and lack of contextual information of targets, making it difficult for 

traditional algorithms to effectively identify small targets because of frequent missed and false 

detections. Therefore, designing efficient and accurate detection algorithms is crucial. This paper 

proposes a novel small target detection method named YOLO_GF, which is based on the YOLOv5s 

framework. It introduces an improved DAMO-YOLO dense association memory mechanism to address 

the insufficient exchange of information between high- and low-level features during feature fusion. 

Furthermore, by integrating the improved efficient multi-scale attention EMA, the method utilizes the 

wide receptive field of parallel subnetworks to collect multi-scale spatial information and establish 

interdependencies among different spatial locations, thereby realizing a cross-spatial learning 

mechanism to enhance model accuracy. Additionally, the method employs a novel convolutional 

CSPStage to construct the feature fusion module, reducing model inference latency while improving 

detection accuracy. YOLO_GF achieves an end-to-end small target detection process and has been 

validated on the VisDrone2019 dataset, with experimental results demonstrating its high detection 

accuracy and good detection performance. 
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1. Introduction 

In the field of computer vision, the detection of small targets stands as an immensely challenging 

issue. Owing to their diminutive size, low pixel density, and insufficiency of contextual information, 

the detection process is highly susceptible to environmental factors and the inherent characteristics of 

the targets themselves. This significantly diminishes the efficiency of target detection. Traditional target 

detection algorithms often fall short in effectively detecting small targets due to issues such as false 

positives and missed detections. Consequently, the design of an efficient and precise algorithm for 

small target detection has become a pressing necessity[1]. 

To address the aforementioned issues, this paper proposes a novel small object detection method 

termed YOLO_GF. This approach builds upon the fundamental framework of YOLOv5s and 

incorporates an enhanced densely-associated memory mechanism from DAMO-YOLO. It effectively 

resolves the insufficient exchange of information between high- and low-level features during the 

feature fusion process. Furthermore, an improved efficient multi-scale attention EMA is integrated, 

enabling cross-spatial learning to mitigate the issue of missing weak and small targets. The feature 

fusion module is constructed based on the novel convolutional CSPStage, which not only reduces the 

model inference latency but also enhances the detection accuracy[2]. This method achieves end-to-end 

small object detection and has been experimentally validated on the VisDrone2019 dataset, 

demonstrating high detection accuracy and satisfactory detection results. 

To summarize, the main contributions of this paper are as follows: 

In response to the issues of false detection and missed detection of small targets, this paper proposes 

an enhanced densely-associated memory mechanism based on DAMO-YOLO. It effectively addresses 

the insufficient exchange of information between high- and low-level features during the feature fusion 

process. Building upon this, an efficient multi-scale attention EMA is incorporated. By leveraging the 

large receptive field of parallel sub-networks, multi-scale spatial information is collected, and 
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interdependencies are established among different spatial locations. This enables a cross-spatial 

learning mechanism, thereby enhancing the accuracy of the model. 

The essence of single-stage object detection algorithms lies in simplifying the object detection task 

into an end-to-end classification and regression problem. These algorithms directly predict the category 

probability values and bounding box offsets in the image to obtain classification and regression 

results.In 2015, Joseph et al. proposed the original version of YOLO (You Only Look Once)[3], which 

achieved object detection by dividing the image into a fixed grid that predicts the probability of 

containing an object, the category, and the position information of the bounding box.In 2016, Liu et al. 

proposed the SSD (Single Shot MultiBox Detector) algorithm.[4] It predicts targets of different scales 

at various positions on the feature map and introduces multi-scale prior boxes to accomplish the object 

detection task.In 2017, Wu et al. proposed RetinaNet[5], which introduced Focal Loss to adjust the 

weights of positive and negative samples. This effectively addressed the issue of being easily affected 

by a large number of background categories during training and improved the performance of object 

detection[6].In 2020, Tan et al. proposed EfficientDet, using EfficientNet as the backbone network and 

presenting a Weighted Bi-directional Features Pyramid Network (BiFPN)[7]. Through composite 

scaling methods, it achieved better detection accuracy and smaller computational cost under 

resource-constrained conditions.In 2021, Chen et al. proposed YOLOF, which adopted an expanded 

encoder and unified matching, significantly enhancing the model's performance[8].In 2022, Alexey et 

al. proposed the YOLOv7 algorithm, which introduced more data augmentation methods, thereby 

improving the robustness of the model to some extent.Although such methods have a relatively fast 

detection speed, their detection accuracy is relatively low[9]. 

2. YOLO_GF Network Model 

2.1. Overview of YOLO_GF 

 

Figure 1: YOLO_GF overall algorithmic structure 



Academic Journal of Computing & Information Science 

ISSN 2616-5775 Vol. 8, Issue 2: 37-44, DOI: 10.25236/AJCIS.2025.080205 

Published by Francis Academic Press, UK 

-39- 

This paper proposes the YOLO_GF object detection algorithm, which addresses issues such as 

indistinct feature extraction due to numerous small target samples, complex backgrounds, false 

detections, and missed detections in object detection tasks. Firstly, this algorithm is based on the basic 

framework of YOLOv5s. On this basis, it incorporates an improved efficient multi-scale attention 

mechanism (EMA) to achieve cross-spatial learning and ameliorate the problem of missed detection of 

weak and small targets.Secondly, YOLO_GF constructs a feature fusion module based on the novel 

convolutional CSPStage and adopts an improved dense associative memory mechanism from 

DAMO-YOLO to resolve the insufficient exchange of information between high-level and low-level 

features during feature fusion in the model.The strategy proposed in this paper, considering multiple 

factors, makes YOLO_GF an efficient algorithm for real-time small object detection in dense images. 

The network model structure of YOLO_GF is mainly divided into four parts: Input, Backbone, Neck, 

and Head[10]. The overall algorithm structure is shown in Figure 1. 

The Backbone section is composed of modules such as Conv, C3, and SPPF, which are responsible 

for extracting multi-scale deep feature representations B2, B3, B4, and B5 from the input image. The 

corresponding feature map sizes are R, 1/2R, 1/4R, and 1/8R respectively, where R is the product of the 

width and height of the feature map. The Neck section takes these as input and performs feature 

alignment and fusion, and then distributes them to the corresponding network levels. The multi-scale 

feature maps from the Backbone are input through C1, C2, C3, and then further fused locally by a 

novel convolution-based feature fusion module (CSPStage). Finally, the Head section regresses the 

position and class information of the target bounding box based on the fused feature representation 

output by the Neck section. 

2.2 Improve the Dense Association Memory Mechanism of DAMO-YOLO 

To address the difficulties associated with small object detection, this paper enhances the dense 

association memory mechanism of DAMO-YOLO, thereby improving issues related to false positives 

and missed detections of small objects. 

Feature pyramid networks aim to aggregate features of different resolutions extracted from the 

backbone. Traditional FPN introduces a top-down pathway to fuse multi-scale features. Considering the 

limitations of unidirectional information flow, PAFPN adds an additional bottom-up pathway 

aggregation network, albeit with higher computational costs. BiFPN removes nodes with only one 

input edge and adds skip links among the original inputs at the same level. Employing 

Generalized-FPN (GFPN) as the neck and achieving SOTA performance enables full exchange of 

high-level semantic information and low-level spatial information. In GFPN, multi-scale feature fusion 

occurs among level features of previous and current layers, with log2(n) skip-layer connections 

providing more efficient information transmission, allowing for extension to deeper networks and thus 

higher accuracy. However, the latency of models based on GFPN is significantly higher than that of 

models based on the improved PANet[11]. 

Based on GFPN, this paper proposes a novel Efficient-RepGFPN to meet the design of real-time 

object detection, mainly including the following contents, the Efficient-RepGFPN architecture diagram 

is shown in Figure 2: 

 

Figure 2: Efficient-RepGFPN architecture diagram 
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Due to the significant differences in FLOPs among feature maps of different scales, it is challenging 

to control the scenario where each scale feature map shares the same dimensionality channel within the 

constraints of limited computational cost. Therefore, in the neck's feature fusion, a setting of different 

scale feature maps with different-sized channels is adopted. A comparison was made between the 

performance of identical and different channels, as well as the accuracy advantages brought by the 

trade-offs in neck depth and width. Experiments show that by flexibly controlling the number of 

channels at different scales, higher accuracy can be obtained than sharing the same channel at all scales. 

The best performance is achieved when the depth equals the width, which are (96, 192, 384). 

GFPN enhances feature interactions through queen-fusion, but it also introduces a large number of 

additional up-sampling and down-sampling operators. A comparison of the advantages of these 

up-sampling and down-sampling operators shows that the additional up-sampling operators result in an 

increase in latency of 0.6ms, while the accuracy improvement is only 0.3mAP, which is far less than 

the benefits brought by the additional down-sampling operators. Therefore, under the constraints of 

real-time detection, the additional up-sampling operations in queen-fusion are removed.[12] 

ZeroHead can maximize the reduction of computational cost in the RepGFPN neck. It is noteworthy 

that ZeroHead can essentially be considered as a coupled head, which is significantly different from the 

decoupled heads in other works. In the loss after the head, following GFocal, Quality Focal Loss (QFL) 

is used for classification supervision, and Distribution Focal Loss (DFL) and GIOU loss are used for 

regression supervision. QFL encourages the learning of a joint representation of classification and 

localization quality. DFL provides a more informative and precise bounding box estimation by 

modeling the bounding box location as a general distribution. The training loss formula for the 

proposed DAMO-YOLO is: 

GIOUDFLQFL losslosslossssL  o
                    (1) 

Apart from the head and loss, label assignment is an important component during the detector's 

training, which is responsible for assigning classification and regression targets to predefined anchor 

points. The misalignment of classification and regression is a common issue in static assignment 

methods. Although dynamic assignment alleviates this problem, it still exists due to the imbalance 

between classification and regression losses, such as CrossEntropy and IoU Loss. To address this issue, 

this paper introduces focal loss into the classification cost and uses the IoU between the predicted and 

ground truth boxes as soft labels. The formula is as follows: 

AssignCost = Creg + Ccls 

∝= IoU(reggt, regpred) 

𝐶𝑟𝑒𝑔 = −𝑙𝑛(∝) 

 𝐶𝑐𝑙𝑠 = (∝ −𝑐𝑙𝑠𝑝𝑟𝑒𝑑)
2

× 𝐶𝐸(𝑐𝑙𝑠𝑝𝑟𝑒𝑑, ∝)                    (2) 

2.3 Highly Efficient Multi-scale Attention Module 

To address the issues of complex background and indistinct feature extraction in small object 

detection, this paper presents an improvement based on the Highly Efficient Multi-scale Attention 

Module (EMA). The Highly Efficient Multi-scale Attention (EMA) mechanism is a parallel attention 

mechanism specifically designed to solve computer vision tasks, aiming to enhance model performance 

and processing speed. Compared with traditional Convolutional Neural Networks (CNN), EMA adopts 

a parallel convolution structure to process input data, thereby accelerating model training speed, 

especially having significant advantages when dealing with large-scale data. Additionally, EMA 

effectively enhances the model's pairwise relationships at the feature pixel level by aggregating 

information from different spatial dimensions and fusing the attention maps of parallel subnetworks. 

This helps to improve the localization and detection accuracy of small objects, thereby enhancing the 

model's perception capability and performance[13]. 

Let the input tensor be represented as, where \(C\) denotes the number of input channels, and \(H\) 

and \(W\) represent the dimensions of the input feature space. After grouping the channel dimension, 

the branch and the branch are composed into parallel subnetworks, which are used to capture the 

dependencies between channels and extract the attention weight descriptors of the grouped feature 
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maps. The branch realizes cross-channel interactive features, and one-dimensional global average 

pooling outputs in both the horizontal and vertical dimensions are achieved through formulas (3) and 

(4). 

𝑧𝑐
𝐻(𝐻) =

1

𝑊
∑ 𝑥𝑐(𝐻, 𝑖) 0≤𝑖≤𝑊                                (3) 

zc
H(W) =

1

H
∑ xc(j, W) 0≤J≤H                             (4)  

In the formula, is the input feature at the \(c\)-th channel, and \(i\) and \(j\) represent the positions of 

the feature in the horizontal and vertical directions of \(H\), and is the output of the global average 

pooling. The branch captures local cross-channel interactions through convolution to expand the feature 

space. It encodes the inter-channel feature information and adjusts the importance between different 

channels, preserving the spatial information in the channels. The parallel subnetwork block helps to 

capture cross-dimensional interactions and establish inter-dimensional dependencies. Using the 

cross-spatial information aggregation method, the features are aggregated under different spatial 

dimensions. At this stage, two-dimensional global average pooling is used for different branches, and 

the formula is: 

𝑍𝑐 =
1

H×W
∑ ∑ xc(i, j) w

i
H
i                                  (5) 

In the formula, is the input feature at the \(c\)-th channel, and \((i,j)\) represents the position where 

the feature is located, and is the output of the two-dimensional global average pooling. The output of 

each group of feature maps is calculated as the aggregation of two generated spatial sub-attentions, and 

finally, the feature is output through the Sigmoid function[14]，The structure diagram of the Efficient 

Multi-scale Attention Module (EMA) is shown in Figure 3： 

 

Figure 3: Structure Diagram of EMA (Efficient Multi-scale Attention Module) 

To validate the effectiveness of the multi-dimensional collaborative attention module, it's necessary 

to show the distribution of attention across different regions when processing input images. Therefore, 
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the distribution of attention information can be visualized. The results are shown in Figure 4: 

 

Figure 4: Attention Information Distribution Map 

3. Experimental Analysis 

3.1. Experimental Dataset and Experimental Details 

This paper conducts experiments on the small object detection dataset to evaluate the YOLO_GF 

method. The VisDrone2019 dataset consists of a total of 8629 images, which are divided into training 

and validation sets and a test set at an 8:2 ratio. Furthermore, 10% of the images are separated from the 

training and validation sets as the validation set. Therefore, the dataset is divided into a training set, a 

validation set, and a test set with 6471, 548, and 1610 images respectively. The dataset is labeled with a 

total of 10 predefined categories including pedestrian, bicycle, car, van, truck, tricycle, awning-tricycle, 

bus, and motor. 

To verify the effectiveness of the algorithm, this paper compares it with several existing popular 

algorithms. The experiments are conducted on a Tesla V100 GPU with 32GB VRAM in the Ubuntu 

16.04 environment. During the model training process, the input image size is set to 640×640, the 

batch size is set to 64, the SGD optimizer is used for training, the initial learning rate is 0.01, the weight 

decay is 0.0005, and the total number of training epochs is set to 100[14]. 

This paper adopts Precision (P), the number of Parameters (Params), and the mean Average 

Precision of all samples (mAP) as evaluation indicators. Precision refers to the proportion of correctly 

predicted positive samples among all samples predicted as positive after predicting all samples, as 

shown in formula 6: 

𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                     (6) 

TP refers to the condition where the predicted value and the true value are both positive samples. FP 

refers to the condition where the predicted value and the true value are different, with the predicted 

value being a positive sample and the true value being a negative sample. The number of parameters 

(Params) refers to the learnable weights and biases in the algorithm. The quantity of parameters can be 

used to assess the complexity and storage requirements of the model. The Average Precision (AP) is 

calculated as the area enclosed by the P-R curve and the coordinate axes. The detection accuracy under 

different categories within the dataset is mainly evaluated using mAP, which is calculated by averaging 

the AP values for each detection category, as shown in formulas (7) and (8). A higher mAP value 

indicates better object detection performance. 

𝐴𝑃 = ∫ 𝑃(𝑅) ⅆ𝑅
1

0
                                  (7)  

𝑚𝐴𝑃 =
1

𝑐𝑙𝑎𝑠𝑠_𝑛𝑢𝑚
∫ 𝑃(𝑅) ⅆ𝑅

1

0
                             (8) 

3.2. Analysis of Experimental Results 

3.2.1. Quantitative Analysis 

This section conducts experiments using the divided VisDrone2019 dataset to evaluate the 

effectiveness of the YOLO_GF method and compare it with several mainstream object detection 

methods in terms of objective evaluation indicators and visualized results. As shown in Table 1, which 

displays the comparison of their mAP values, it can be seen that the YOLO_GF method has higher 
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accuracy. The experimental results indicate that the YOLO_GF method achieves a 10.4% improvement 

in accuracy compared to YOLOv5[15]. 

Table 1: Results of Different Methods on the VisDrone2019 Dataset 

Object Detection 

Model 

Backbone Network P mAP 

Faster R-CNN ResNet-50 - 30.8% 

EfficientDet Efficient-B0 - 32.3% 

YOLOv3 DarkNet-53 - 31.8% 

YOLOv5 DarkNet-53 91.2% 33.6% 

YOLOv7 DarkNet-53 90.9% 35.7% 

SSD VGG-16 - 31.5% 

DAMO-YOLO CSPDarkNet-53 - 36.2% 

YOLO_GF DarkNet-53 91.1% 39.2% 

3.3. Ablation Experiment 

3.3.1. Quantitative comparisons 

By comparing the YOLO_GF algorithm with different improved algorithms, it can be concluded 

that two improvement schemes have enhanced the effect of small object detection. As shown in Table 2, 

compared with the original algorithm, in Experiment 2, from the perspective of the model's average 

precision (mAP), the average precision is increased by 3.65%, but the detection precision (P) is 

decreased by 0.01%. Therefore, Experiment 2 is conducted, and it is found that the novel 

low-light-level detection algorithm YOLO_GF has improved both the average precision (mAP) and the 

detection precision (P) compared to the original YOLOv5s algorithm. Compared with the original 

model, the accuracy and average precision are increased by 0.04% and 5.60% respectively, resulting in 

better detection performance. 

Table 2: Ablation Experiment Results on the VisDrone2019 Dataset 

Algorithm DAMO-YOLO MCA P mAP 

YOLOv5s   91.06% 33.60% 

Experiment 1 √  91.05% 37.25% 

Experiment 2 √ √ 91.10% 39.20% 

4. Conclusion 

Due to the inaccurate detection results, low precision, and easy missed detection of general small 

object detection algorithms, this paper proposes a new small object detection algorithm called 

YOLO_GF, which mainly focuses on the three issues of missed detection of small targets, false 

detection, indistinctive feature extraction, and missed detection of occluded objects in the aerial 

environment. Firstly, the DAMO-YOLO network is used for feature fusion, and an attention module is 

proposed to reduce the computational complexity. Secondly, combined with CSPStage, the network 

Neck part is designed to reduce the influence of interference among dense objects. Compared with the 

mainstream object detection methods on the low-light-level target detection dataset VisDrone2019, the 
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YOLO_GF method has higher detection accuracy in low-light scenes, but the detection speed needs to 

be improved. The next step will be to study the lightweight network structure model, explore the data 

sharing methods among modules, so as to reduce the parameters and computation, and ultimately 

improve the target detection speed. 
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