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Abstract: In prefabricated construction projects, the supply of prefabricated components is closely 
related to the project construction progress. Shortage of inventory will delay construction progress, and 
excessive inventory on the construction site will increase stacking costs. Therefore, on-site inventory 
management of prefabricated components is crucial for prefabricated construction. This paper employs 
computer vision to precisely identify the types and quantities of prefabricated components on 
construction sites. Furthermore, inventory management theory is combined to establish a dynamic 
inventory management optimization model for prefabricated components. Ultimately, the particle swarm 
optimization is utilized to determine and obtain the optimal inventory parameters. A dynamic inventory 
management model for prefabricated components based on real-time monitoring is proposed, and 
demonstrated and validated through case study. The results can facilitate the progress of prefabricated 
construction projects as planned, expanding the integration and application prospects of computer vision 
and inventory management theory in the field of construction management. 
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1. Introduction 

In the context of the digital and intelligent transformation of the global construction industry, 
computer vision technology based on deep learning has been widely used in the field of construction 
engineering, focusing on the identification, monitoring and evaluation of objects, equipment and 
personnel on the construction site through cameras. Relevant studies include identification of workers' 
construction posture and behavior [1,2], estimation of earthwork productivity [3], measurement of 
material quantity [4], restoration and continuation of project schedule [5-7], collision detection and defect 
detection [8-11].  

In terms of inventory management of prefabricated components, ensuring sufficient inventory of 
various prefabricated materials on site is the key factor to promote the steady progress of the construction 
schedule. Unreasonable stacking of prefabricated components may delay the lifting and installation of 
prefabricated components, thus prolonging the construction period of prefabricated construction projects 
and reducing the assembly productivity [12]. The acquisition of material quantities on traditional 
construction sites mainly relies on the inspection and recording of on-site construction workers and safety 
officers, which requires them to timely count and inspect various prefabricated components, and judge 
the actual lifting and use of prefabricated components. This statistical method is no longer able to respond 
promptly to the interference encountered during the actual construction of prefabricated components, and 
the transportation and on-site adjustment of prefabricated components are slow. Therefore, intelligent 
information monitoring methods are needed to meet the demands of dynamic inventory management of 
materials in prefabricated construction sites. 

To address the research gap, this study uses Deep Learning Based Computer Vision technology to 
identify the inventory quantity of two kinds of prefabricated components, prefabricated slabs and 
prefabricated stairs, on the construction site in real time. Combined with the original construction 
schedule, the transportation and inventory quantity of prefabricated components are adjusted in real time 
to strengthen the supply chain coordination ability and ensure the construction progress and cost-
effectiveness of prefabricated building projects. Utilizing computer vision object detection and 
recognition technology, prefabricated components within the material yards of prefabricated construction 
sites are identified and counted, enabling real-time statistics on the number of prefabricated components 
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on site. Special attention is given to abnormal fluctuations in inventory, providing a foundation for 
dynamic adjustments to construction schedules and procurement and transportation plans. By real-time 
analysis of building material inventory data, a building material inventory quantity information sharing 
system is constructed to improve the coordination system of material production, transportation, and 
construction. Based on this, a collaborative plan for material procurement, transportation scheduling, and 
on-site stacking and installation of prefabricated building projects is constructed. This plan needs to 
coordinate the interests and demands of multiple parties such as suppliers, carriers, and construction 
parties, and meet the cooperation requirements of each stage of project construction. 

2. Related Work 

2.1. Computer vision and object detection in construction 

With the iterative breakthroughs of deep learning technology, object detection systems have formed 
two major technical schools based on the differences in network training paradigms: two-stage and one-
stage. This study mainly introduces single-stage object detection technology. 

The single-stage detection paradigm adopts an end-to-end detection framework to achieve efficiency 
breakthroughs. YOLOv1 [13] proposed by Redmon et al. in 2016 synchronously completes feature 
extraction, boundary regression, and category determination through a unified detection network, 
achieving an increase in detection speed compared to Faster R-CNN. The subsequent iteration versions 
YOLOv2 [14]/v3 [15] continuously enhance detection accuracy through technological innovations such 
as anchor optimization strategy and multi-scale prediction mechanism. The YOLOv4 proposed by 
Bochkovskiy et al. in 2020 [16] constructs a CSP-Darknet53 backbone network to enhance feature 
representation capabilities, using PANet structure instead of traditional FPN to achieve multi-level 
feature fusion, significantly improving small object detection performance. It should be noted that the 
SSD algorithm proposed by Liu et al. [17] creatively combines the efficiency of single-stage detection 
with the advantages of multi-scale feature extraction. Its improved R-SSD [18] further enhances detection 
robustness by expanding the feature pyramid dimension and strengthening cross layer feature association. 
Subsequently, algorithms based on SSD improvements continued to emerge, using DensNet's DSOD 
algorithm (Deeply Supervised Object Detectors, the first detection algorithm that does not use image 
classification pre training models for object detection training initialization) [19], as well as FSSD 
(Feature Fusion Single Shot Multi box Detector, FSSD, an improved feature fusion algorithm with 
lightweight features) combined with FPN algorithm [20]. 

With the rapid development of computer hardware and software, the efficiency of machine learning 
has been greatly improved, gradually attracting the attention of practitioners and researchers in the 
construction industry. As an important branch of machine learning, CNN has also been used to solve 
problems related to construction management, such as monitoring construction activities of construction 
workers [21], evaluating worker movements [22], monitoring construction work postures [23-24], 
identifying workers who are not wearing safety helmets [25], conducting structural inspections of 
buildings [26-28], detecting quality problems in pipeline structures [29], detecting quality problems in 
road infrastructure [30-31], and inspecting heavy construction machinery [32-34]. Liu et al. [35] 
proposed an improved YOLOv5 object detection algorithm using an improved convolutional block 
attention mechanism module to calculate the number of dense steel bars. They also developed a relative 
resolution object scale measurement method to measure the scale of objects in images of different 
resolutions; Yan et al. [36] used multi-target tracking technology to monitor the entry of material 
transport trucks and make judgments on possible delays in the arrival of building materials to ensure 
construction progress. It can be seen that computer vision and object detection models can effectively 
solve construction related problems. 

According to this article, target detection and classification of different building materials are required, 
and the quantity of each component needs to be calculated. Therefore, this article proposes an improved 
model for discriminating the quantity of building materials based on the YOLOv8 object detection 
algorithm. 

2.2. Inventory management of prefabricated components 

In terms of inventory management of building materials, ensuring sufficient inventory quantities of 
various materials on site is a key factor in steadily advancing the construction schedule. Empirical 
research has shown that improper layout of building material storage space will significantly increase the 
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complexity of lifting operations and the risk of construction process obstruction, and the resulting delay 
effect will directly weaken the industrial production efficiency of prefabricated construction [37]. In 
dynamic construction scenarios, the Alanjari research team [38] developed a yard layout optimization 
strategy based on schedule constrained material flow analysis, which maximizes on-site logistics 
timeliness by balancing material entry timing and consumption rate.  

However, statistics indicate that research on supply chain management for prefabricated buildings 
can mainly be divided into four parts: prefabricated component production, storage and inventory, 
delivery and transportation, and overall supply chain performance. According to statistical analysis, the 
proportions of each part are 47%, 11%, 17%, and 25% respectively [39], with the least research on storage 
and inventory. The current academic exploration mainly focuses on the planning of building material 
storage locations and dynamic inventory control in the vicinity of production parks, while systematic 
research on real-time inventory monitoring and dynamic control mechanisms for prefabricated building 
materials on construction sites is still insufficient [39]. 

This study utilizes information-based computer vision object detection and recognition technology, 
focusing on the inventory management of prefabricated components at the construction site of 
prefabricated buildings. Through real-time monitoring of the quantity of various prefabricated 
components in the material yard, the construction schedule and material supply chain ordering, 
transportation, and entry plans are adjusted in a timely manner according to the actual construction 
situation, enabling the time and cost advantages of the prefabricated construction mode to be realized. 

3. Identification model for prefabricated components 

3.1. Data Collection and Processing 

The data collected by this research institute are images of prefabricated panels and prefabricated stairs, 
from the construction sites of 74 construction projects in Zhejiang Province (mainly Hangzhou, Huzhou, 
Taizhou, Quzhou, Wenzhou, Ningbo, Shaoxing, Jinhua, and Lishui). Mainly using imaging systems 
based on Power over Ethernet (PoE) cameras and mobile phone shooting to capture on-site images. On 
average, each construction site has 3 PoE security cameras. The total number of cameras in the imaging 
system based on PoE cameras is greater than 200. The collected images of prefabricated components 
cover various scenarios, such as (1) different positions of prefabricated components (mainly based on 
different stages of construction); (2) Different weather conditions; (3) Different times; (4) Different 
perspectives, distances, and shadows, as shown in Fig. 1. 

 
Fig. 1: Various scenes in the collected images. 

This study collected a dataset of 3000 images of prefabricated panels and prefabricated stairs with a 
resolution of 1920*1080 (some images have watermarks that have been removed or cropped) from actual 
construction processes. Use an annotation tool called Labelme [40] to label the collected image dataset, 
where prefabricated panels are labeled as PCSL (Precast Slab) and prefabricated stairs are labeled as 
PCST (Precast Stair), as shown in Fig. 2. More than 70000 target objects were annotated. The entire 
dataset is divided into training set, validation set, and testing set in a ratio of 7:1:2. 
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Fig. 2: Annotated schematic diagram. 

3.2. Developing the prefabricated component recognition model 

This study focuses on the recognition and counting of prefabricated components on construction sites. 
Considering the complex environment of the construction site, where production activities such as 
material stacking, worker construction, and construction machinery operation are intertwined, in order 
to further improve the accuracy and reliability of intelligent means, this study proposes an improved 
YOLOv8 object detection method based on a multi-head self-attention mechanism (MSM) to enhance 
the speed and accuracy of model object detection and counting. 

Typically, a typical self attention mechanism consists of three matrix operations: Q, K, and V, which 
are essentially self operations. MSM has made certain improvements to the typical self attention 
mechanism, allowing each attention operation to extract effective feature information from multiple 
dimensions through grouping. The specific structure is shown in Fig. 3. 

 
Fig. 3: Schematic diagram of multi-head self-attention mechanism. 

 
Fig. 4: MSM-YOLOv8 network structure diagram. 

The schematic diagram of the improved YOLOv8 network structure is shown in Fig. 4. The black 
arrows represent the data flow during network operation, and different colors represent different network 
modules. For example, blue represents ConvModule and CSPlayer_2Conv, while green represents 
feature fusion module.   
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The network structure mainly consists of three parts: backbone, neck, and head. Before inputting 
image data into Backbone, basic data preprocessing operations including data augmentation will be 
performed. The main function of Backbone is to extract feature information of the target area from the 
input image. When image data is input into Backbone, the target region features are extracted sequentially 
through convolution module, C2f module, and SPPF module. Then, the obtained features are further 
processed through MSM multi head self attention mechanism module to increase the feature weight of 
the target region and extract more effective feature information. The main function of the Neck section 
is to perform feature fusion. From the figure, it can be seen that there are three different scale network 
branches in the main input of the neck, including the main feature branch after feature enhancement using 
MSM. The three feature branches fused with Neck features are fed back into the Head section for 
classification and detection of target area features. The main output information here includes the position 
information and classification information of prefabricated components, that is, the position of the 
component in the picture and the category to which the component belongs. On this basis, a statistical 
quantity module is introduced to achieve recognition and counting functions, ensuring the output of 
quantity information for prefabricated components. 

3.3. Model training and evaluation 

The training process of the building material recognition model relies on the RTX4090 graphics card, 
with the specific software utilized and the versions of the virtual environments created omitted for brevity. 
The Epoch is set to 200, Batch Size to 8, Optimizer to Stochastic Gradient Descent (SGD), Learning Rate 
to 0.01, Weight Decay to 0.0005, and Momentum to 0.9. 

The model evaluation method adopts the following formula: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
× 100% (1) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
× 100% (2) 

𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
2 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 (3) 

𝐴𝐴𝐴𝐴 = �(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)𝑑𝑑𝑑𝑑
1

0

× 100% (4) 

𝑚𝑚𝑚𝑚𝑚𝑚 =
∑ 𝐴𝐴𝐴𝐴𝑖𝑖𝐶𝐶
𝑖𝑖=1

𝐶𝐶
× 100% (5) 

Among them, TP, FP, FN, and TN represent true positive, false positive, false negative, and true 
negative, respectively. AP (Average Precision) represents the area under the precision recall curve 
enclosed by the curve and coordinate axis, mAP (Mean Average Precision) represents the average 
precision across multiple categories, mAP50 represents the average precision at 50% IoU threshold, 
mAP50-95 represents the average mAP value within the range of 50-95% IoU threshold, and C represents 
the total number of categories. The larger the indicators, the better the model performance. 

Table 1: Model operation results. 

(a) Identification of inventory quantity of PCSL. 
Model Precision (%) Recall(%) F1-score mAP50(%) mAP50-95(%) MB 

YOLOv8 85.2 78.2 0.816 80.2 49.1 14.1 
MSM-YOLOv8 89.6 83.5 0.864 83.1 50.7 15.0 

(b) Identification of inventory quantity of PCST. 
Model Precision (%) Recall(%) F1-score mAP50(%) mAP50-95(%) MB 

YOLOv8 84.8 77.5 0.810 79.4 50.2 14.1 
MSM-

YOLOv8 87.5 83.8 0.856 82.4 53.7 15.0 

According to the results in Table 1, overall, the MSM-YOLOv8 inventory quantity recognition model 
has shown some improvement in the recognition reliability of each category. Taking the identification of 
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the number of PCSL as an example, compared with the original YOLOv8, the MSM-YOLOv8 model 
has improved accuracy, recall, F1 score, mAP50 and mAP50-95 by 4.4%, 5.3%, 0.048, 2.9%, and 1.6%, 
respectively. Due to the introduction of MSM, the size of the model has also increased by 0.9MB. 
Similarly, the recognition effect of the PST has also been improved to some extent, fully demonstrating 
that the introduction of MSM module helps to enhance the recognition ability of the model. 

4. Inventory management model 

4.1. Developing the inventory management model 

Based on the prefabricated component recognition model established above, we can obtain the actual 
number of components on the construction site. Combined with inventory theory, considering that the 
supply of prefabricated components is divided into four stages: production, transportation, on-site storage, 
and hoisting construction, this article establishes a corresponding dynamic inventory management model 
for construction sites for prefabricated components. 

Basic assumptions of the model: 

(1) When transporting prefabricated components to the construction site, they are first stacked in the 
material area and then lifted for construction; 

(2) Consider the time delay that may occur during the production phase after ordering prefabricated 
components; 

(3) Consider the possible transportation delay of prefabricated components when transported to the 
construction site; 

(4) Consider the amount of prefabricated components in transit during transportation. 

The parameter settings are as follows: 

(1) The inventory 𝐼𝐼𝑡𝑡 for the 𝑡𝑡-th cycle and the arrival quantity 𝐴𝐴𝑡𝑡 for that cycle can be monitored 
through a visual recognition model. 

(2) Time delay 𝐿𝐿 , transportation delay 𝑇𝑇𝑇𝑇𝑡𝑡−𝐿𝐿 , component in transit 𝐼𝐼𝐼𝐼𝑡𝑡 , demand 𝐷𝐷𝑡𝑡 , inventory 
adjustment 𝐼𝐼𝐼𝐼𝑡𝑡, inventory adjustment coefficient 𝛼𝛼𝑠𝑠, and component in transit adjustment 𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡 are model 
related parameters that can be adjusted according to actual engineering needs. 

(3) The order quantity 𝑄𝑄𝑡𝑡 and the order time 𝑆𝑆 for the (𝑡𝑡 + 1)-th cycle are the variables we need to 
find the optimal solution for. 

In this model, the optimal goal of inventory management is to minimize the sum of the delay cost 𝑐𝑐𝑝𝑝𝑖𝑖  
caused by insufficient inventory and the inventory holding cost 𝑐𝑐ℎ𝑖𝑖  within 𝑡𝑡 ordering cycles. 

𝐼𝐼𝑡𝑡 = 𝐼𝐼𝑡𝑡−1 + 𝐴𝐴𝑡𝑡 (6) 

𝐴𝐴𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑡𝑡−𝐿𝐿 (7) 

𝐼𝐼𝐼𝐼𝑡𝑡 = 𝐼𝐼𝐼𝐼𝑡𝑡−1 + 𝑄𝑄𝑡𝑡−1 − 𝐴𝐴𝑡𝑡 (8) 

𝐼𝐼𝐼𝐼𝑡𝑡 = 𝛼𝛼𝑠𝑠(𝐷𝐷𝑡𝑡 − 𝐼𝐼𝑡𝑡) (9) 

𝑄𝑄𝑡𝑡 = 𝐷𝐷𝑡𝑡 + 𝐼𝐼𝐼𝐼𝑡𝑡 + 𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡 (10) 

𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡 = 𝐿𝐿 × 𝐷𝐷𝑡𝑡 − 𝐼𝐼𝐼𝐼𝑡𝑡 (11) 

𝑄𝑄𝑡𝑡 = 𝐷𝐷𝑡𝑡 + 𝛼𝛼𝑠𝑠(𝐷𝐷𝑡𝑡 − 𝐼𝐼𝑡𝑡) + (𝐿𝐿 × 𝐷𝐷𝑡𝑡 − 𝐼𝐼𝐼𝐼𝑡𝑡) (12) 

𝐶𝐶 = 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑐𝑐𝑝𝑝𝑖𝑖 𝑡𝑡𝐼𝐼=0 + 𝑐𝑐ℎ𝑖𝑖 𝐼𝐼𝐼𝐼𝑡𝑡

𝑡𝑡

𝑖𝑖=1

� (13) 

This is a dynamic inventory management model for prefabricated components that minimizes the 
total inventory cost. Due to the complexity and nonlinear constraints of the objective function, traditional 
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optimization methods are difficult to effectively solve. In this paper, the particle swarm intelligence (PSO) 
algorithm is used to solve it. 

4.2. Particle swarm optimization 

According to the PSO principle, in a D-dimensional search space, there is a population 𝑋𝑋 =
(𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑛𝑛) with n individuals. Each particle i in the group is represented by its position vector and 
velocity vector, namely vectors 𝑋𝑋𝑖𝑖 = [𝑋𝑋𝑖𝑖1,𝑋𝑋𝑖𝑖2,⋯ ,𝑋𝑋𝑖𝑖𝑖𝑖]𝑇𝑇，  𝑉𝑉𝑖𝑖 = [𝑉𝑉𝑖𝑖1,𝑉𝑉𝑖𝑖2,⋯ ,𝑉𝑉𝑖𝑖𝑖𝑖]𝑇𝑇 . The memory of 
particles reflects their own experience, namely𝑃𝑃𝑖𝑖 = [𝑃𝑃𝑖𝑖1,𝑃𝑃𝑖𝑖2,⋯ ,𝑃𝑃𝑖𝑖𝑖𝑖]𝑇𝑇, which represents the self or local 
best position (𝑃𝑃best ) found by the particle; On the other hand, the vector 𝑃𝑃𝑔𝑔 = �𝑃𝑃𝑔𝑔1,𝑃𝑃𝑔𝑔2,⋯ ,𝑃𝑃𝑔𝑔𝑔𝑔�

𝑇𝑇
 

represents the global best position (𝐺𝐺best) of the population, reflecting the population's experience. 

Based on the objective function of prefabricated component inventory management mentioned above, 
the two variables that need to be solved are order quantity and order time, and a two-dimensional search 
space is constructed: the first dimensional vector 𝑋𝑋𝑖𝑖1 represents 𝑄𝑄𝑡𝑡 (which needs to be an integer, using 
integer encoding), and the second dimensional vector 𝑋𝑋𝑖𝑖2 represents 𝑆𝑆. Each particle represents the order 
quantity and order time situation within a certain period. In addition, since the objective function is to 
minimize the total inventory cost, the value of the objective function is the fitness value that measures 
the position of particles. The formula for updating the velocity and position of particles is as follows. 

𝑣𝑣𝑖𝑖(𝑚𝑚 + 1) = 𝜔𝜔 ∙ 𝑣𝑣𝑖𝑖(𝑚𝑚) + 𝑐𝑐1 ∙ 𝑟𝑟1[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑚𝑚) − 𝑥𝑥𝑖𝑖(𝑚𝑚)] + 𝑐𝑐2 ∙ 𝑟𝑟2[𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖(𝑚𝑚) − 𝑥𝑥𝑖𝑖(𝑚𝑚)] (14) 

𝑥𝑥𝑖𝑖(𝑚𝑚 + 1) = 𝑣𝑣𝑖𝑖(𝑚𝑚) + 𝑥𝑥𝑖𝑖(𝑚𝑚) (15) 

In order to enable the PSO to have high global search capability in the early stage of iteration and 
high local search capability in the later stage, the inertia weight ω and learning factor c adopt dynamic 
inertia weight and learning factor, as shown in the following equation. 

𝜔𝜔 = �𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 −
(𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚) × (𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚)

𝑓𝑓𝑎𝑎 − 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚
, 𝑓𝑓𝑖𝑖 ≤ 𝑓𝑓𝑎𝑎

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓𝑖𝑖 ≥ 𝑓𝑓𝑎𝑎
 (16) 

⎩
⎪
⎨

⎪
⎧𝑐𝑐1(𝑚𝑚) = 𝑐𝑐1,𝑠𝑠 + �𝑐𝑐1,𝑓𝑓 − 𝑐𝑐1,𝑠𝑠� × ln �

(𝑒𝑒 − 1) × 𝑚𝑚
𝑀𝑀

+ 1�

𝑐𝑐2(𝑚𝑚) = 𝑐𝑐2,𝑠𝑠 + �𝑐𝑐2,𝑓𝑓 − 𝑐𝑐2,𝑠𝑠� × ln �
(𝑒𝑒 − 1) × 𝑚𝑚

𝑀𝑀
+ 1�

 (17) 

In the formula, 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 are the maximum and minimum values of the inertia weight; 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 is 
the minimum fitness value in the current particle swarm; 𝑐𝑐1(𝑚𝑚) and 𝑐𝑐2(𝑚𝑚) are the individual learning 
factor and group learning factor of the algorithm in the mth iteration, respectively; 𝑐𝑐1,𝑠𝑠 and 𝑐𝑐1,𝑓𝑓 are the 
starting and ending values of individual learning factors; 𝑐𝑐2,𝑠𝑠 and 𝑐𝑐2,𝑓𝑓 are the starting and ending values 
of the group learning factor; 𝑚𝑚 is the current iteration count; 𝑀𝑀 is the maximum number of iterations; 𝑒𝑒 
is a natural constant. 

By using formulas (14) and (15), we can iterate step by step and find the optimal solutions 𝑄𝑄𝑡𝑡 and 𝑆𝑆 
with the minimum value of 𝐶𝐶. The specific process will be demonstrated in the next section. 

5. Case presentation 

Apply the identification model and inventory management model to a prefabricated construction 
project in Zhejiang Province. Initially, within the project's material yard, the effectiveness of the visual 
model in monitoring prefabricated components is illustrated in Fig. 5. 
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Fig. 5: Visual model recognition effect. 

In actual prefabricated construction projects, the building material identification and counting model 
proposed in this study can identify PCSL and PCST. The identification results of each prefabricated 
component are automatically marked with a bounding box, and the predicted probability can be indicated 
in the upper left corner of the bounding box. Similarly, the material quantity monitoring model has a 
counting module that can automatically count the total quantity of various materials in the image and 
automatically label them in the lower right corner of the image. 

According to the ordering plan of the project, a single standard floor construction requires 23 PCSLs 
and 6 PCSTs, with an ordering cycle of 4 days. The inventory holding cost of each prefabricated 
component is 200 CNY per day, and the cost of project delay is 10000 CNY per day. Assuming that the 
lifting construction is delayed for 24 hours due to weather conditions, the total inventory cost generated 
is 15800 CNY. Based on this, the identification model and inventory management model are used to 
optimize and adjust the order quantity and order cycle. 

Set the standard using PSO: particle number is 30; Iteration times N=200; 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚=0.95, 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚=0.5;  
The values of 𝑐𝑐1,𝑠𝑠  and 𝑐𝑐2,𝑠𝑠  are 2.5 and 0.5; The values of 𝑐𝑐2,𝑠𝑠  and 𝑐𝑐2,𝑓𝑓  are 0.6 and 2.4, respectively. 
Perform optimization and solution. 

 
Fig. 6: PSO operation results. 

Repeat the program 200 times to obtain the iterative convergence curve of the objective function (as 
shown in Fig. 6). It can be seen that the PSO established in this article gradually reduces the optimal 
solution obtained in each round of 200 iterations until the optimal solution is obtained. At the 71st 
iteration, the particle swarm algorithm found the optimal solution, which resulted in the lowest total 
inventory cost of 87% of the original plan, a reduction of 13%. At this point, the corresponding next 
cycle order quantity is 20 prefabricated panels and 5 prefabricated stairs, and the order time needs to be 
postponed by 16.3 hours. During the iteration process, the algorithm converges quickly and can quickly 
find the approximate optimal value, avoiding the randomness of the results and providing a new method 
for solving practical engineering case related problems. 
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6. Conclusion 

In the context of engineering intelligence and informatization, this article starts from the inventory 
management of prefabricated components and combines information technologies such as computer 
vision and PSO algorithm to construct an automatic and efficient dynamic inventory management model. 
The main contributions of this article are as follows: Firstly, image data collection was mainly carried 
out for different engineering projects in various regions of Zhejiang Province, and a dataset containing 
3000 prefabricated components was obtained and processed; In addition, by improving the YOLOv8 
model, a more accurate identification model for prefabricated components was obtained; Finally, by 
combining the identified data with PSO, automatic identification and dynamic inventory optimization of 
prefabricated components in prefabricated buildings were achieved.   

However, this article also has some shortcomings. Due to limitations in engineering data collection, 
the proposed model is mainly aimed at prefabricated building projects in Zhejiang Province, which 
mostly use prefabricated shear wall structures, with only slabs and stairs as prefabricated components, 
and lack attention to other types of building materials. Future work will expand the dataset and focus on 
dynamic inventory management of more types of building materials, thereby further improving the 
practicality of the model. 
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