
International Journal of Frontiers in Engineering Technology
ISSN 2706-655X Vol.4, Issue 8: 55-63, DOI: 10.25236/IJFET.2022.040808

Published by Francis Academic Press, UK
-55-

Program Design for Slime Mould Algorithm Based on
Python

Junlong Zheng1,2,*, Fengshan Yang3

1 Guangxi Electrical Polytechnic Institute, Nanning, 530007, China
2 King Mongkut Institute of Technology, Thailand, 10700

3 Guangxi Electrical Polytechnic Institute, Nanning, 530007, Guangxi, China
long8889@126.com
*Corresponding author

Abstract: Because of many papers on Optimization algorithms, most of them only write the principles,
mathematical models and pseudo-programs of the algorithm, and few of them provide complete
programs for a computer programming language, especially for SMA newly proposed in 2020, it is
difficult to find a complete computer program. However, for many scholars, it is very difficult to refer
to pseudo programs to write a complete program. This paper provides a complete SMA computer
program, and applies SMA to two well-known test functions to provide an important reference for
optimizing engineering projects.

Keywords: Slime mould algorithm; Python; Program design

1. Introduction

Most real-world problems have a high complication, nonlinear limitations, interdependent
parameters, and a wide limit of solutions. This ensures technical application with the ability to find a
solution for complex optimization problems in realtime[1]. Metaheuristic algorithms are one of these
techniques. These algorithms are optimization methods that provide logical and good solutions in a
reasonable amount of time. Optimization means that, given the constraints imposed, we achieve a set of
valuable variables to achieve the goal of minimizing the subject of the objective function.

However, each optimization algorithm has its own advantages and limitations. Here, this paper
introduces an optimization algorithm based on bionics —— slime mould algorithm [1], abbreviated
SMA below .Which provides one more algorithm for optimization calculation. In order to facilitate the
application and promotion of the algorithm in engineering projects, this paper uses Python computer
language to program the algorithm, and applies the algorithm to several famous test functions to verify
the correctness of the program design

The slime mold is a strange organism that is similar to an amoeba but has distinctive features. In the
food presentation, each of these organisms behaves like an amoeba. They move in the soil and swallow
bacteria. This organism is haploid (n chromosomal). But under conditions of environmental stress
(food shortages), they come together to form a full-cell colony, resembling a shell-less snail
(animal-like or plasmodium-like). The colony migrates from this environment and stops in the next
stage of movement and forms a base and capsule (mushroomlike). Inside the capsule, spores are
produced. As spores grow, they form in the environment of amoebic organisms, and this cycle
continues. Of course, cellular mucosal molds also reproduce sexually. At this stage, two amoeba-like
organisms combine to form an egg cell (chromosomal 2n), which is the only diploid cell in the life
cycle of this organism. The egg cell divides into meiosis, forming four cells that become amoebic-like
single-celled organisms in the environment and resume the asexual cycle. However, this creature has
no brain, it can do clever things and find its way in the winding paths for searching the food source. It
carefully balances its diet and measures food quality and the risk . To have another chance of looking
for another location, the time of leaving the area with a low food supply should be decided by the slime
mold. The heuristic on the currently available insufficient knowledge is a proper incentive for a slime
mold to assess the time of leaving the current spot. The mathematical modeling of this algorithm is
described below[2].

International Journal of Frontiers in Engineering Technology
ISSN 2706-655X Vol.4, Issue 8: 55-63, DOI: 10.25236/IJFET.2022.040808

Published by Francis Academic Press, UK
-56-

1.1 Approach food[1]

To model the approaching behavior of slime mould as a mathematical equation, the following rule
is proposed to imitate the contraction mode:

 (1)

Where is a parameter with a range of , decreases linearly from one to zero.

represents the current iteration, represents the individual location with the highest odor

concentration currently found, represents the location of slime mould, and represent two

individuals randomly selected from the swarm, represents the weight of slime mould.

The formula of is as follows:

 (2)

Where , represents the fitness of , represents the best fitness

obtained in all iterations.

The formula of is as follows:

 (3)

 (4)

The formula of is listed as follows:

 (5)

 (6)

Where indicates that ranks first half of the population, denotes the random

value in the interval of , denotes the optimal fitness obtained in the current iterative process,

denotes the worst fitness value obtained in the iterative process currently,
denotes the sequence of fitness values sorted(ascends in the minimum value problem).

1.2 Wrap food[1]

The mathematical formula for updating the location of slime mould is as follows:

International Journal of Frontiers in Engineering Technology
ISSN 2706-655X Vol.4, Issue 8: 55-63, DOI: 10.25236/IJFET.2022.040808

Published by Francis Academic Press, UK
-57-

 (7)

Where and denote the lower and upper boundaries of the search range, and

denote the random value in [0,1].

1.3 Grabble food[1]

The value of oscillates randomly between and gradually approaches zero as the

iterations increase. The value of oscillates between [-1,1] and tends to zero eventually.

2. Algorithm Pseudo-code of SMA

Algorithm Pseudo-code of SMA

Initialize the parameters popsize, ;

Initialize the positions of slime mould ;

While (
Calculate the fitness of all slime mould;

Calculate the W by Eq. (5);
For

 ;

 ;

End

;
End While
Return ;

3. Program design for SMA based on Python language

In order to facilitate the application of engineering projects, we use Python computer programming
language to program SMA as follows:

1
2
3
4
5
6
7
8
9

10
11

import numpy as np
from matplotlib import pyplot as plt
import random
import math
import copy

#Population initialization function
def initial(SMApop, dim, ub, lb):
 X = np.zeros([SMApop, dim])
 for i in range(SMApop):
 for j in range(dim):

International Journal of Frontiers in Engineering Technology
ISSN 2706-655X Vol.4, Issue 8: 55-63, DOI: 10.25236/IJFET.2022.040808

Published by Francis Academic Press, UK
-58-

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
67
68
69
70
71
72

 X[i, j] = random.random()\
 * (ub[j] - lb[j]) + lb[j]
 return X, lb, ub

#Boundary check function
def BorderCheck(X, ub, lb, SMApop, dim):
 for i in range(SMApop):
 for j in range(dim):
 if X[i, j] > ub[j]:
 X[i, j] = ub[j]
 elif X[i, j] < lb[j]:
 X[i, j] = lb[j]
 return X

'# Calculate fitness function
def CaculateFitness(X, fun,nn,\
Xdraw,Ydraw,Zdraw):
 SMApop = X.shape[0]
 fitness = np.zeros([SMApop, 1])
 for i in range(SMApop):
 fitness[i],nn,Xdraw,Ydraw,Zdraw\
= fun(X[i, :],nn,Xdraw,Ydraw,Zdraw)
 return fitness,nn,Xdraw,Ydraw,Zdraw

#--Function of maximum problem--
def SortFitness(Fit):
 fitness = np.sort(Fit, axis=0)[::-1]
 index = np.argsort(Fit, axis=0)[::-1]
 return fitness, index
'''#--Function of minimum problem--
def SortFitness(Fit):
 fitness = np.sort(Fit, axis=0)
 index = np.argsort(Fit, axis=0)
 return fitness, index'''

#-- Sort locations according to fitness --
def SortPosition(X, index):
 Xnew = np.zeros(X.shape)
 for i in range(X.shape[0]):
 Xnew[i, :] = X[index[i], :]
 return Xnew

#--SMA Main function--
def SMA(low,up,SMApop,dim,SMALoop,\
nn,Xdraw,Ydraw,Zdraw,fun):
 z = 0.03
 lb = low * np.ones([dim, 1])
 ub = up * np.ones([dim, 1])
 X, lb, ub = initial(SMApop, dim, ub, lb)
 fitness,nn,Xdraw,Ydraw,Zdraw \
= CaculateFitness(X, fun,nn,Xdraw,Ydraw,Zdraw)
 fitness, sortIndex = SortFitness(fitness)
 X = SortPosition(X, sortIndex)
 GbestScore = copy.copy(fitness[0])
 GbestPositon = copy.copy(X[0, :])
 Curve =[]
 iteration=[]
 for f in range(fitness.shape[0]):
 Curve.append(fitness[-(f+1),0])
 iteration.append(f+1)

International Journal of Frontiers in Engineering Technology
ISSN 2706-655X Vol.4, Issue 8: 55-63, DOI: 10.25236/IJFET.2022.040808

Published by Francis Academic Press, UK
-59-

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

 W = np.zeros([SMApop, dim])
 for t in range(1,SMALoop):
 worstFitness = fitness[-1]
 bestFitness = fitness[0]
 S = bestFitness - worstFitness + 10E-8
 for i in range(SMApop):
 if i < SMApop / 2:
 W[i, :] = 1 +\
 np.random.random([1, dim])\
* np.log10((bestFitness - fitness[i]) / (S) + 1)
 else:
 W[i, :] = 1 - \
np.random.random([1, dim])\
* np.log10((bestFitness - fitness[i]) / (S) + 1)
 tt = -(t / SMALoop) + 1
 if tt != -1 and tt != 1:
 a = math.atanh(tt)
 else:
 a = 1
 b = 1 - t / SMALoop
 for i in range(SMApop):
 if np.random.random() < z:
 X[i, :] = (ub.T - lb.T) * \
np.random.random([1, dim]) + lb.T
 else:
 p = np.tanh(abs(fitness[i] - GbestScore))
 vb = 2 * a * np.random.random([1, dim]) - a
 vc = 2 * b * np.random.random([1, dim]) - b
 for j in range(dim):
 r = np.random.random()
 A = np.random.randint(SMApop)
 B = np.random.randint(SMApop)
 if r < p:
 X[i, j] = GbestPositon[j] \
+ vb[0, j] * (W[i, j] * X[A, j] - X[B, j])
 else:
 X[i, j] = vc[0, j] * X[i, j]
 X = BorderCheck(X, ub, lb, SMApop, dim)
 fitness,nn,Xdraw,Ydraw,Zdraw \
= CaculateFitness(X, fun,nn,Xdraw,Ydraw,Zdraw)
 fitness, sortIndex = SortFitness(fitness)
 X = SortPosition(X, sortIndex)
 if (fitness[0] <= GbestScore):
 GbestScore = copy.copy(fitness[0])
 GbestPositon = copy.copy(X[0, :])
 Curve.append(GbestScore)
 iteration.append(nn)
 return GbestScore, GbestPositon,\
iteration,Curve,nn,Xdraw,Ydraw,Zdraw

The following is the SMA global main function

1
2
3
4
5
6
7
8
9
10
11

#-- SMA global main function--
import numpy as np
from matplotlib import pyplot as plt
from SMA import SMA as SMA
from Ackley import F2 as fun # Import objective function

Set general parameters
low=-0.8
up=0.8
dim = 2
nn=0

International Journal of Frontiers in Engineering Technology
ISSN 2706-655X Vol.4, Issue 8: 55-63, DOI: 10.25236/IJFET.2022.040808

Published by Francis Academic Press, UK
-60-

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Defines the variables used to draw the graph
Xdraw=[]
Ydraw=[]
Zdraw=[]
#--SMA Special parameters--
SMApop=100
SMALoop = 20
Call SMA ----
GbestScore,GbestPositon,iteration,Curve,nn,Xdraw,Ydraw,Zdraw =
SMA(low,up,SMApop,dim,SMALoop,nn,Xdraw,Ydraw,Zdraw,fun)
print('bestScore:',GbestScore)
print('bestPositon:',GbestPositon)
print('Iterations,Zdraw:',nn,Zdraw[-1])

Draw fitness iteration curve
plt.figure()
plt.semilogx(iteration,Curve,'r-',linewidth=2)
#plt.loglog(iteration,Curve,'r-',linewidth=2)
#plt.semilogy(iteration,Curve,'r-',linewidth=2)
plt.plot(iteration,Curve, color='green', label='training accuracy')
plt.xlabel('Iteration',fontsize='medium')
plt.ylabel("Fitness",fontsize='medium')
plt.title('SMA',fontsize='large')
plt.rcParams['axes.unicode_minus']=False
plt.show()

4. SMA is applied to two well-known test functions

4.1 Ackley function

The first function is Ackley. It is characterized by a nearly flat outer region in its two-dimensional
shape, as seen in the Fig1 Fig2, In this almost flat area, many valleys or peaks modulated by cosine
wave are superimposed, resulting in uneven surface and a large hole in the middle. The function poses
a risk of being stuck in one of its many local minima for optimization algorithms, particularly
hill-climbing algorithms. The limitationof the variables is in the range [−5, 5]. The formulation for this
function is given below:

2
1

1

1() 20 (0.2 ())
D

i
i

f x exp x
D =

= − − ∑

1

1((cos(2))) 20 (1)
D

i
i

exp x exp
D

π
=

− + +∑ (8)

The expression of the two-dimensional variable of the function is written into a python program:

1
2
3
4
5
6
7
8
9
10
11
12

import numpy as np
def F2(X,nn, Xdraw, Ydraw, Zdraw):
 x,y=X[0],X[1]
 Fxy=-20 * np.exp(-0.2 * \
np.sqrt(0.5 * (x**2 + y**2))) - \
(np.exp(0.5 * (np.cos(2 * np.pi * x)\
 + np.cos(2 * np.pi * y)))) + np.e + 20
 Xdraw.append(x)
 Ydraw.append(y)
 Zdraw.append(Fxy)
 nn = nn + 1
 return Fxy, nn, Xdraw, Ydraw, Zdraw

International Journal of Frontiers in Engineering Technology
ISSN 2706-655X Vol.4, Issue 8: 55-63, DOI: 10.25236/IJFET.2022.040808

Published by Francis Academic Press, UK
-61-

Figure 1: Ackley function

Figure 2: Rastrigin function

4.2. Rastrigin function

The second test function is Rastrigin. This function gives numerous local minima. It is highly
multimodal, the minimum positions are spread frequently. But the global minimum is 0, in the middle.
The two-dimensional variable value range of this function is [- 5, 5],and its figure and formulation is as
follows:

2
2

1
() 10 (10cos(2))

D

i i
i

f x D x xπ
=

= + −∑ (9)

4.3 SMA is applied to the two functions

In order to unify opinions, the number of iterations is defined as one operation by substituting
independent variables into the objective function each time, which is counted as one iteration.

SMA applies to both of these test functions, with the number of iterations set to 1000 and the
operation set to the minimum. In order to clearly understand the operation principle of SMA, we draw
the iteration curve, especially the iteration points in the process of program operation in the Fig3 Fig4.

International Journal of Frontiers in Engineering Technology
ISSN 2706-655X Vol.4, Issue 8: 55-63, DOI: 10.25236/IJFET.2022.040808

Published by Francis Academic Press, UK
-62-

Figure 3: The iterative curve for SMA applied to Ackley function

Figure 4: The iterative curve for SMA applied to Rastrigin function

From the analysis of the iterative curve of SMA applied to the two test functions, it can be seen that
the application of SMA to the optimization operation of the two test functions has fast convergence
speed, and only 1000 iterations can achieve more appropriate results. We also apply SMA to several
other commonly used optimization algorithm test functions, such as sphere function and schwefe
function, which achieve the same effect[3].

Figure 5: The operation position point for SMA applied to Ackley function

International Journal of Frontiers in Engineering Technology
ISSN 2706-655X Vol.4, Issue 8: 55-63, DOI: 10.25236/IJFET.2022.040808

Published by Francis Academic Press, UK
-63-

Figure 6: The operation position point for SMA applied to Rastrigin function

In the Fig5 Fig6 two figures representing the operation position points, " " indicates the starting
point of the operation the starting point. "×" Indicates the optimal fitness position .The color difference
in the figure represents the height of the position, and the scattered points in the figure represent the "
slime mould " randomly distributed by SMA. During the operation, it gradually converges to the
optimal position[4].

5. Conclusions

We have read many papers on Optimization algorithms. Most of them only write the principles,
mathematical models and pseudo-programs of the algorithms. Few programs are provided for a
computer programming language, especially for SMA, which was just introduced in 2020. It is difficult
to find a complete computer program. However, for many scholars, it is very difficult to refer to pseudo
programs to write a complete program. This paper provides a complete SMA computer program, and
applies SMA to two well-known test functions to provide an important reference for optimizing
engineering projects[5].

Acknowledgement

Research project: 1). 2022 Basic Research Capability Promotion Project for Young and
Middle-aged Teachers in Guangxi Higher Education Schools "Research on Automatic Positioning
System for Wireless Charging of Automobile Based on Maritime Search and Rescue Algorithm", No.
2022KY1335

2). Research results of the high-level innovation team of new energy automotive electronics
technology in Guangxi Electrical Polytechnic Institute, No. GEPI[2020] 268

References

[1] Shimin Li, Huiling Chen, Mingjing Wang, Ali Asghar Heidari, Seyedali Mirjalili, Slime mould
algorithm: A new method for stochastic optimization, Future Generation Computer Systems, 2020.
[2] Marcin Molga, Czesław Smutnicki. Test functions for optimization needs (2005). Retrieved in
Nov.2021.
[3] Khodaei, Hossein, et al., 2018. Fuzzy-based heat and power hub modelsfor cost-emission operation
of an industrial consumer using compromise programming. Appl. Therm. Eng. 137, 395–405.
[4] Gollou, A.R., Noradin, Gh., 2017. A new feature selection and hybrid forecastengine for day-ahead
price forecasting of electricity markets. J. Intell. Fuzzy Systems 32 (6), 4031–4045.
[5] Dehghani, Moslem, et al., 2021. Blockchain-based securing of data exchange in apower
transmission system considering congestion management and socialwelfare. Sustainability 13 (1), 90

	1. Introduction
	1.1 Approach food[1]
	1.2 Wrap food[1]
	1.3 Grabble food[1]

	2. Algorithm Pseudo-code of SMA
	3. Program design for SMA based on Python language
	4. SMA is applied to two well-known test functions
	4.1 Ackley function
	4.2. Rastrigin function
	4.3 SMA is applied to the two functions

	5. Conclusions
	Acknowledgement
	References

