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Abstract: Accurate real-time magnetic detection is crucial for achieving reliable geomagnetic matching 
navigation. Compared to traditional magnetic parameters (total field, vector components, and gradients), 
Magnetic Gradient Tensor (MGT) measurements offer superior spatial resolution, enhanced anti-
interference capability, and richer information content. MGT data are typically acquired using fluxgate 
sensor arrays; however, manufacturing tolerances, processing limitations, and inherent signal 
conditioning circuit imperfections introduce multiple error sources into the measurement system. To 
address these challenges, this paper analyzes three primary error sources within the detection system: 
intrinsic fluxgate sensor errors, inter-sensor misalignment errors within the array, and misalignment 
errors between the inertial navigation system (INS) and the fluxgate array. A comprehensive error 
calibration methodology for the MGT detection system is proposed. This method establishes 
corresponding error calibration models based on the characteristics of each error type, identifies 
relevant constraint relationships, and determines the solution methods for calibration parameters to 
achieve final error calibration. To validate the effectiveness of the proposed method, an experimental 
platform based on a non-magnetic turntable was constructed for error calibration experiments. The 
results demonstrate that the proposed method: Reduces the standard deviation of the computed total field 
data from fluxgates from 54.36-175.06 nT to below 2 nT, Decreases the Root Mean Square (RMS) error 
of triaxial readings between individual fluxgates from 301.96-29.06 nT to below 45 nT, and lowers the 
standard deviation of coordinate-transformed fluxgate triaxial readings from 2,317.77-3,355.33 nT to 
below 580 nT. 
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1. Introduction 

Geomagnetic matching navigation has been widely applied in numerous fields, including geophysical 
exploration, cruise missile guidance, and anti-submarine warfare [1-5] , owing to its advantages of 
concealment and passivity. The utilization of Magnetic Gradient Tensor (MGT) detection systems for 
acquiring magnetic information in geomagnetic matching navigation offers unique advantages, including 
high spatial resolution, strong anti-interference capability, and information richness [6]. However, the 
measurement accuracy of MGT—and consequently the navigation performance—can be compromised 
by several error sources within the MGT detection system. These include intrinsic fluxgate sensor errors, 
misalignment errors between fluxgate sensors, and misalignment errors between INS and fluxgate 
sensors [7, 8]. Therefore, rigorous error calibration is an essential step in achieving high-precision 
geomagnetic matching navigation based on this technology. 

Intrinsic fluxgate sensor errors within MGT detection systems primarily include triaxial non-
orthogonality errors, zero bias errors, and scale factor errors [9]. Current calibration methods for these 
errors fall into two categories: auxiliary vector calibration and independent scalar calibration. The 
principle of the first one involves comparing the fluxgate readings with reference magnetic field data 
generated by a constant magnetic field reference device or measurements from high-precision scalar 
magnetometers. By minimizing the discrepancy between these readings, the fluxgate errors are corrected. 
For instance, Ren et al. [10] established an error calibration model where readings from the target sensor 
were input into the model and compared against the magnetic field generated by the reference device. A 
least-squares algorithm was then employed to solve for the calibration parameters in the model. While 
such methods offer straightforward procedures, their accuracy is significantly compromised by 
multicollinearity in magnetic measurement data and the presence of outliers, which degrade the precision 
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of least-squares solutions. This second one leverages the trajectory characteristics of fluxgate 
measurements during free rotation in a stable geomagnetic field. For example, the ellipsoid fitting method 
[11] transforms fluxgate error calibration into an ellipsoid fitting problem under the constraint that ideal 
fluxgate measurements during vertical-axis rotation should form an elliptical trajectory. Although 
eliminating the need for external apparatus, this method lacks cross-validation mechanisms. Even when 
measurement data conform to theoretical trajectory characteristics, the computed total magnetic field 
may still exhibit significant deviation from ground-truth values due to the absence of reference validation. 

Misalignment errors between fluxgate sensors refer to the non-parallel alignment of triaxial sensors 
within an MGT measurement array during installation. This inconsistency causes measured magnetic 
vector data to reside in divergent coordinate systems, thereby introducing errors in MGT calculations. 
Such errors can be corrected using constraints derived from homogeneous measurements across vector 
sensors. For instance, Yan et al. [12] established an objective function based on the comparative 
relationship of corrected fluxgate readings, transforming the error calibration into an optimization 
problem. Kubík et al. [13] acquired multiple fluxgate readings by reorienting the sensor array in a stable 
geomagnetic field. They formulated nonlinear equations under the constraint that ideal fluxgate outputs 
must be consistent across sensors, solving these equations via the real root isolation method to calibrate 
inter-sensor misalignment.While these methods are conceptually straightforward and operationally 
feasible, their efficacy is highly dependent on the optimization algorithm's performance. 

Misalignment errors between INS and fluxgate sensors arise from imprecise triaxial alignment during 
installation, leading to coordinate transformation errors when projecting magnetic measurements into the 
geographic frame. For such errors between heterogeneous vector sensors, two primary calibration 
approaches exist: External-Reference Calibration and Internal-Reference Calibration. The first one relies 
on precision equipment. For example, Pang et al. [14] proposed a calibration technique using a non-
magnetic hexahedral frame to align fluxgate arrays with INS. The core idea involves stepwise calibration 
of discrepancies between fluxgate/INS axes and the hexahedral frame's coordinate system. However, 
accuracy is constrained by the precision of auxiliary devices. This sencond one uses one internal vector 
sensor as a reference. Li et al. [15] leveraged the invariance of vector dot products under coordinate 
rotation, proposing a dot-product invariant method to correct misalignment without external apparatus. 
Nevertheless, it faces challenges in defining robust objective functions for heterogeneous sensors. 

In practical mgt detection systems, the three aforementioned error sources coexist and require 
simultaneous integrated calibration. Addressing the limitations of existing research, this study proposes 
a comprehensive error calibration methodology for mgt systems. The primary contributions are 
summarized as follows: 

(1) We establish dedicated calibration models for three error categories above. 

(2) We propose the corresponding calibration methodology. Especially, for ins-fluxgate misalignment, 
we provide theoretical proof of an inherent constraint relationship between heterogeneous sensor data 
streams, enabling robust parameter solving without external references. 

(3) A non-magnetic turntable-based experimental platform was constructed, and error calibration 
experiments were conducted to validate the effectiveness of the proposed method. 

The remainder of this paper is organized as follows: section ii introduces fundamental principles of 
mgt detection. Section III details the proposed methodology’s theoretical framework. Section IV presents 
experimental validation through field tests. Finally, Conclusions are drawn in Section V. 

2. Preliminaries of magnetic gradient tensor detection  

2.1 Principle of magnetic gradient tensor 

The MGT matrix G is defined as the spatial rate of change of the magnetic vector B along the three 
mutually perpendicular axes of a Cartesian coordinate system. Its mathematical expression is given by 
[16]: 
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Where ∇ denotes the Hamilton operator. The background geomagnetic field—primarily originating 
from deep-source components—typically exhibits negligibly small magnetic gradient values. This 
implies that background interference can be disregarded during investigations and detection of the MGT. 
Furthermore, as established by Maxwell's equations, in source-free space, the divergence and curl of the 
magnetic field both vanish: 
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Expanding the above expression, it can be deduced that the components of the MGT matrix G satisfy 
the following relationships:  
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Based on these identities, G contains nine components but only five are independent. Furthermore, G 
is a real symmetric matrix and can be expressed as: 
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2.2 Magnetic gradient tensor measurement array 

The cross-shaped MGT measurement array is widely adopted due to its structural simplicity and high 
measurement accuracy [17]. As illustrated in Figure 1, the array comprises four fluxgate sensors labeled 
sequentially as S1, S2, S3, and S4. 

 
Figure 1: Schematic of cross-shaped MGT measurement array 

Where sensors S1 and S3 are positioned along the x-axis of the measurement coordinate system, 
separated by a baseline distance d. Sensors S2 and S4 are positioned along the y-axis, equally separated 
by the baseline distance d. The origin O of the measurement array defines the MGT measurement point. 
All sensor coordinate systems are aligned with the array's global coordinate system. 

The magnetic gradient tensor matrix Gm at point O is derived by approximating spatial derivatives 
through differential measurements between fluxgate sensor readings over short distances. For a cross-
shaped array, Gm is computed as: 
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Where Si
jB denotes the magnetic filed reading along the j-axis of sensor Si. 

3. Proposed Error calibration method for magnetic gradient tensor detection system  

The developed MGT detection system incorporates an INS rigidly connected to the magnetic tensor 
measurement array. This configuration enables real-time attitude capture of fluxgate sensors, facilitating 
attitude calibration to unify all fluxgate readings into a common geomagnetic coordinate system. 
Consequently, the system exhibits three primary error sources :i) Intrinsic fluxgate sensor errors. ii) 
Misalignment errors between fluxgate sensors. iii) Misalignment errors between INS and fluxgate 
sensors. 

3.1 Intrinsic fluxgate sensor errors 

3.1.1 Error calibration model 

Each fluxgate sensor comprises three orthogonal magnetic sensing axes (designated x, y, z) forming 
its measurement coordinate frame. However, mechanical imperfections and electrical limitations 
introduce three intrinsic error types: Triaxial non-orthogonal error, Scale factor error and Zero offset error. 

As depicted in Figure 2, two coordinate frames are defined: an ideal orthogonal reference frame (O-
xyz) and a fluxgate measurement frame (Oₘ-xₘyₘzₘ). 

 
Figure 2: Non-orthogonality of fluxgate sensor triaxial axes 

Assuming that the origin of the reference frame coincides with the fluxgate measurement frame, the 
z-axis is in the same direction, and the xOz plane coincides with the xmOzm plane. the non-orthogonal 
relationship is parameterized by three angles: where α denotes angle between xₘ-axis and x-axis, β 
denotes angle between xₘ-axis and xOy plane and γ denotes angle between the projection of yₘ-axis onto 
xOy plane and y-axis. Then the coordinate transformation matrix for correcting non-orthogonal error is 
given by: 
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Futhermore, Incorporating scale factors kx, ky, kz and zero offsets h = [hx, hy, hz]T, Then the conversion 
relationship between the measured value Bm = [Bmx, Bmx, Bmx]T of fluxgates and the true magnetic B = [Bx, 
By, Bz]T can be represented by (7), that is: 
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Therefore, (7) can be expressed as: 

 ( )m= −B Q B h  (9) 

(9) Constitutes the calibration model for intrinsic fluxgate sensor errors, where the nine parameters 
contained in matrices Q and vector h represent the calibration parameters. 

3.1.2 Error calibration method 

Based on (9), the square of the magnetic total field can be expressed as: 

 ( ) ( )2
m mB ΤΤ Τ= = − −B B B h Q Q B h  (10) 

This can be rearranged into a product form composed of a vector of fluxgate measurements and a 
vector of nine calibration parameters: 
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In a stable and uniform geomagnetic field, if N (N ≥ 10) groups of distinct fluxgate measurements m1, 
m2, …, mN are obtained by altering the fluxgate's attitude, and the corresponding magnetic total field 
values B1, B2, …, BN are simultaneously acquired using an optical pumping magnetometer, the parameter 
vector k can be estimated via the least squares method: 

 ( ) 1ˆ
c c c

−Τ Τ=k m m m H  (14) 

Where 1 2[ , ,..., ]c N
Τ=m m m m and 2 2 2

1 2[ , ,..., ]NB B B Τ=H denotes the matrix composed of magnetic 
measurement data.Through (14), the calibration parameters can be inversely solved, thereby completing 
the calibration of its intrinsic errors.  

3.2 Misalignment errors between fluxgate sensors 

3.2.1 Error calibration model 

The non-parallelism of sensitive axes between fluxgate sensors induces coordinate system 
inconsistencies, leading to significant errors in tensor measurements.  

 
Figure 3: Misalignment between fluxgate coordinate frame and reference coordinate system. 
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To characterize the misalignment errors among an array of fluxgate sensors, the coordinate system of 
the u-th sensor (u = 1, 2, 3, 4) is denoted as Ou-xuyuzu, as illustrated in Figure 3. These four coordinate 
systems are not mutually aligned. Any three-dimensional coordinate system can be aligned to another 
via Euler rotations [18]. By defining the first fluxgate's coordinate system (O1-x1y1z1) as the reference, the 
systems of the other three fluxgates can be aligned to it through a sequence of Euler rotations. Specifically, 
to align the coordinate system Ov-xvyvzv (v = 2, 3, 4) to O1-x1y1z1, it is assumed to first rotate by an angle 
αv about the xv-axis (following the right-hand rule), then by βv about the yv-axis, and finally by γv about 
the zv-axis. The Euler rotation matrix describing this process is: 
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Let , ,v vx vy vzB B B
Τ

 =  B be the magnetic field measured by the v-th fluxgate and , ,v vx vy vzB B B
Τ

 =  
   B

be its value in the reference coordinate system. Their relationship is: 

 ( ), ,v v v v vα β γ=B R B  (16) 

(16) Constitutes the calibration model for misalignment errors between fluxgate sensors, with αv, βv 
and γv serving as its calibration parameters. 

3.2.2 Error calibration method 

In a uniform and stable magnetic field environment, if inter-fluxgate misalignment errors are absent 
and intrinsic errors of all fluxgate sensors have been corrected, the readings from the four fluxgate sensors 
should theoretically remain consistent. This implies the relationship 1v =B B , where B1 denotes the 
magnetic measurement from the first fluxgate. By altering the orientation of the measurement array to 
obtain N sets of magnetic vector data across different poses, the objective function for correcting 
misalignment errors between the v-th fluxgate and first fluxgate is defined as: 
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Where s
vB  represents the reading of the v-th fluxgate under the s-th orientation. 

Minimizing (17) yields estimates of the calibration parameters αv, βv and γv: 
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(18) Constitutes a multi-objective nonlinear optimization problem. For such problems, direct 
analytical solutions are typically infeasible; instead, iterative numerical methods are employed to 
approximate optimal parameters. The Levenberg-Marquardt (LM) algorithm is a widely adopted iterative 
optimization technique, with its update rule given by [19]: 

 ( ) 1

1k k k k k kµ
−Τ Τ

+ = − +J J I J eθ θ  (19) 

Where θk is the vector of estimated calibration parameters at iteration k; ek denotes the N-dimensional 
residual vector of the objective function values; Jk is the Jacobian matrix of ek; μ is a damping 
hyperparameter that mitigates ill-conditioning in k k

ΤJ J . 
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3.3 Misalignment errors between inertial navigation system and fluxgate sensors 

3.3.1 Error calibration model 

The three axes of the INS and fluxgate cannot be guaranteed to be mutually parallel. This results in a 
misalignment error between the INS and the fluxgate sensor. 

  
Figure 4: Coordinate systems of fluxgate and INS. 

The coordinate system of the INS is defined as Op-xpypzp, and that of the fluxgate is defined as Oq-
xqyqzq. As illustrated in Figure 4, misalignment between these two coordinate systems inevitably arises 
due to hardware machining and installation tolerances. Using the INS coordinate system as the reference 
frame, the fluxgate coordinate system can be transformed to align with this reference. Assuming the 
coordinate system Oq-xqyqzq first rotates by angle ψ around the xq-axis, then by θ around the yq-axis, and 
finally by φ around the zq-axis to coincide with Op-xpypzp. the Euler rotation matrix describing this 
alignment process is: 

 ( ) ( ) ( ) ( ), , z y xψ θ ϕ ϕ θ ψ=R R R R  (20) 

Let Bm = [Bmx, Bmy, Bmz]T denote the magnetic vector measured by the fluxgate in its native frame (Fig. 
4), and Bt = [Btx, Bty, Btz]T represent the equivalent measurement in the INS-aligned frame. The 
relationship between these measurements before and after coordinate transformation is: 

 ( ), ,t mψ θ ϕ=B R B  (21) 

(21) Constitutes the calibration model for misalignment errors between INS and fluxgate sensors, 
where the rotation angles ψ, θ and φ embedded in R are the calibration parameters. 

3.3.2 Error calibration method 

The fluxgate sensor and INS are distinct types of sensors. By utilizing the attitude data measured by 
the INS, the orientation of the system can be determined. An auxiliary vector field is then employed to 
resolve the vector field in the INS coordinate frame. Subsequently, constraints between this vector field 
and the magnetic vector are established to solve for the misalignment calibration parameters. 

1) Vector Field Transformation of Attitude Data 

An auxiliary vector field is assumed, which yields a measurement denoted as W0 when the INS 
coordinate frame coincides with the East-North-Up (ENU) orthogonal coordinate system (i.e., roll, pitch, 
and yaw angles are zero). When the INS undergoes attitude changes, measuring roll angle a, pitch angle 
b, and yaw angle c, the measurement of this auxiliary vector field is derived as: 

 ( ) ( ) ( ) 0y x zc b a− − −W = R R R W  (22) 

Where Rx, Ry and Rz as defined in (15). (22) accomplishes the vector field transformation of INS-
measured attitude data. Here, W represents the measurement equivalent to that of a vector sensor aligned 
with the INS coordinate frame. 

2) Vector Field Constraint Relationships 

An arbitrary non-zero vector field with a measurement A = [Ax, Ay, Az]T in coordinate frame Oc is 
assumed. When frame Oc undergoes rotations about an arbitrary axis k = [kx, ky, kz]T by angles θ1, θ2 ans 
θ3, According to Rodrigues' rotation theory [20], these measurements satisfy: 

 ( ) ( )2
1 1 1 1sin 1 cosk kθ θ θ = + + − A M A = I R R A  (23) 

 ( ) ( )2
2 2 2 2sin 1 cosk kθ θ θ = + + − A M A = I R R A  (24) 
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 ( ) ( )2
3 3 3 3sin 1 cosk kθ θ θ = + + − A M A = I R R A  (25) 

Where 
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Furthermore, since det(Rk) = 0, there is:  
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Where 

 ( ) ( )sin 1 coskθ θ θ= + −f I R  (28) 

(28) Indicates the vectors (A1 - A), (A2 - A) and (A3 - A) are linearly dependent. This implies that the 
terminal points of A, A1, A2 and A3 are coplanar. The normal vector of this plane is given by: 
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Similarly, for another non-zero vector field with initial measurement B = [Bx, By, Bz]T in frame Oc, 
after the same rotational sequence, its measurements B, B1, B2 and B3 satisfy: 

 
( ) ( )

( ) ( )
1 2

1 2

B
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The terminal points of B, B1, B2 and B3 thus lie on a plane with normal vector NB. Expanding (29)and 
(30) reveals that NA and NB are linearly proportional, which means NA is parallel to NB. 

3) Objective function 

The preceding theoretical derivation establishes two fundamental conclusions: i) For any vector 
sensor in a stable vector field, rotating the sensor around a fixed axis results in the terminal points of its 
measured vector readings lying on a common plane. ii) For any two vector sensors in their respective 
stable vector fields with coincident coordinate system, rotating both sensors around the same fixed axis 
causes the terminal points of their measured vectors to lie on two mutually parallel planes. These 
conclusions enable the construction of the misalignment error calibration objective function. 

When the INS and fluxgate rotate synchronously around the same axis, both systems acquire data at 
m sampling points. For the i-th sampling point, the INS records attitude angles are ai, bi and ci. According 
to (22), these records can be resolved into a vector field measurement: 

 ( ) 0, ,i i i ia b c− − −W = R W  (31) 

Where W0 is an arbitrary non-zero auxiliary vector. We can construct the point cloud matrix 

1 2, ,..., m

ΤΤ Τ Τ =  D W W W , then subtract the column-wise means from it to obtain the centered matrix Dc, 
and finally perform singular value decomposition (SVD) on Dc: 

 c
Τ=D U V∑  (32) 

The right singular vector Vmin corresponding to the smallest singular value represents the normal 
vector of the plane containing the terminal points of Wi. For the fluxgate, the measured vector at the i-th 
sampling point, denoted as Bi, is transformed into the INS coordinate frame using (21). Based on 
Conclusion ii, the following relationship holds: 

 ( ) ( )min , , , , 0i jψ θ ϕ ψ θ ϕ ⋅ − = R B R BV  (33) 

The objective function for misalignment errors between INS and fluxgate sensors is thus defined as: 
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 ( ) ( ) ( ) ( ){ }
1 2

min
1 1

1
, , , , , ,

2

n m m
k k k

i j
k i j i

mn m
g ψ θ ϕ ψ θ ϕ ψ θ ϕ

−

= = +

−
 = ⋅ − ∑∑ ∑ R BV R B  (34) 

Where n represents the number of experiments. Minimizin (34) yields estimates of the calibration 
parameters ψ, θ ans φ: 

 ( )
, ,

ˆˆ ˆ, , arg min , ,g
ψ θ φ

ψ θ ϕ ψ θ ϕ=  (35) 

Substituting the optimizedψ̂ , θ̂ and ϕ̂ into (21) completes the errors calibration. (35) constitutes a 
multi-objective nonlinear optimization problem. As in Section 3.2, the LM algorithm solves this 
efficiently via iterative updates. 

4. Experimental result 

The error calibration methods discussed in this chapter require a stable and uniform magnetic field 
environment. Consequently, all field experiments were conducted at the Yingcheng Seismic Monitoring 
Station of the Hubei Earthquake Agency in Hubei Province, China. 

4.1 Filed calibration test for intrinsic fluxgate sensor errors 

Within the station's absolute geomagnetic observation house, a measurement array containing four 
fluxgate sensors (Mag-03, Bartington Ltd.) was sequentially mounted on a non-magnetic turntable. 
Stepwise rotations were performed about each of the three axes of the fluxgates at 30° increments. The 
sensor outputs were recorded at each orientation, yielding 36 datasets per fluxgate. A commercial cesium 
optical-pumping magnetometer (CS-3, 0.6 pT/√Hz@1 Hz sensitivity, Scintrex Ltd., Canada) was 
simultaneously deployed in the observation house to provide reference total-field magnetic 
measurements at corresponding timestamps. To validate consistency in error calibration parameter 
estimation, the test was repeated twice. The acquired experimental data were subsequently processed 
using the error calibration framework detailed in Section 3 to calibrate the fluxgate sensors. 

Table 1 reports the standard deviations of the computed total field magnitudes for all four fluxgates 
before and after calibration across both test trials. Results indicate that post-calibration standard 
deviations were consistently reduced below 2 nT for all sensors, confirming robust calibration efficacy. 

Table 1: Standard deviation of computed total magnetic field data before vs. after calibration (unit: 
nT). 

Test 
group 

Fluxgate 1 Fluxgate 2 Fluxgate 3 Fluxgate 4 
Before  After Before  After Before  After Before  After 

Test 1 59.00 0.65 54.76 1.30 124.60 1.02 174.69 1.43 
Test 2 59.86 0.46 54.39 0.54 124.55 0.40 175.06 0.42 

4.2 Filed calibration test for Misalignment errors between fluxgate sensors 

Within the absolute geomagnetic observation house of the seismic monitoring station, the magnetic 
gradient tensor measurement array was mounted on a non-magnetic turntable. The turntable was rotated 
360° around the x-, y-, and z-axes (defined relative to the fluxgate array coordinate system) in 15° 
increments, yielding 72 distinct orientations of the fluxgate array. The triaxial readings of each fluxgate 
sensor were recorded at every orientation. Additionally, a static data acquisition experiment was 
conducted to establish baseline noise levels between fluxgates after misalignment calibration as a 
reference. The acquired data were processed using the error calibration methodology detailed in Section 
3. 

To quantitatively evaluate calibration performance, Table 2 presents the Root Mean Squared 
Differences (RMSD) of triaxial readings between Fluxgate 1 and Fluxgates 2–4 before and after 
calibration, alongside RMSD values from static conditions. The RMSD is defined as: 

 ( )2

1
1

1 ; 2,3, 4; , ,
n

i i
jk jk k

i
RMSD B B i j x y z

n =

= − = =∑  (36) 
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Where i
jkB denotes the k-axis component reading of the j-th fluxgate in the i-th experimental dataset. 

Table 2: RMSD of triaxial readings between fluxgates before vs. after calibration (unit: nT). 

Calibration 
test 

RMSD between  
Fluxgate 1 & 2 

RMSD between  
Fluxgate 1 & 3 

RMSD between  
Fluxgate 1 & 4 

x-axis y-axis z-axis x-axis y-axis z-axis x-axis y-axis z-axis 
Before  425.94 394.19 400.66 629.06 401.46 301.94 576.62 409.39 484.59 
After 24.34 42.86 28.36 17.30 20.33 19.79 17.16 20.46 23.00 
Static 19.66 29.12 13.48 8.47 10.78 8.83 2.76 6.87 10.52 

Table 2 onfirms that post-calibration RMSD values of triaxial readings between fluxgates were 
significantly reduced, all falling below 45 nT. These values exhibited minimal divergence from RMSD 
values measured under static conditions, indicating effective misalignment error calibration. 

4.3 Filed calibration test for Misalignment errors between inertial navigation system and fluxgate 
sensors 

To ensure optimal GPS antenna signal reception for maintaining the precision of INS (CGI-430, 
Shanghai Huace Navigation Technology Ltd.) attitude measurements, the experiment was conducted in 
a relatively open and magnetically stable calibration hut within a seismic monitoring station. 

The INS and MGT measurement array were rigidly connected via acrylic structural components to 
eliminate relative motion between the fluxgate sensors and the INS. This assembly was mounted on a 
non-magnetic turntable using nylon screws. The entire hardware system was rotated 360° about two 
distinct axes defined in the INS and fluxgate coordinate frames, with a rotational step size of 10°, yielding 
72 datasets. Attitude readings from the INS and magnetic vector measurements from the fluxgates were 
synchronously recorded via a data acquisition unit at each orientation. The acquired data were processed 
using the misalignment error calibration methodology detailed in Section 3. 

To quantitatively evaluate the calibration efficacy, the Standard Deviations (STD) of the triaxial 
magnetic readings (reflecting fluctuation levels) were calculated. As summarized in Table 3, the pre-
calibration standard deviations approximate 3,000 nT across all three axes. Post-calibration, these values 
decreased to approximately 300 nT, confirming that the INS-derived attitude data now accurately 
represent the fluxgate’s orientation. This validates the method’s effectiveness in calibrating INS-fluxgate 
misalignment errors. 

Table 3: STD of triaxial readings transformed to unified coordinate frame before vs. after calibration 
(unit: nT). 

Calibration test STD of x-axis readings STD of y-axis readings STD of z-axis readings 
Before 3355.33 3037.14 2317.77 
After 394.54 555.99 164.93 

5. Conclusion 

This paper proposes a comprehensive error calibration methodology for magnetic gradient tensor 
detection systems. The key innovations distinguishing this work from prior research include: The 
theoretical demonstration of inherent constraint relationships between fluxgate sensors and INS 
measurements within stable uniform vector fields, enabling a new misalignment calibration approach 
between these heterogeneous sensors. 

Field validation experiments conducted at Yingcheng Seismic Monitoring Station (Hubei Earthquake 
Agency) confirmed the method's efficacy. Post-calibration results demonstrated: Standard deviation of 
fluxgate-derived total field reduced to < 2 nT (pre-calibration: 54.36–175.06 nT); RMS differences 
between fluxgate triaxial readings decreased to < 45 nT (pre-calibration: 301.94–629.06 nT); Standard 
deviation of coordinate-transformed triaxial readings lowered to < 580 nT (pre-calibration: 2,317.77–
3,355.33 nT). 

These advancements significantly enhance magnetic measurement precision, demonstrating 
substantial potential for applications in geomagnetic matching navigation and related fields. 
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