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Abstract: Porous materials are ubiquitously present in natural environments and engineering 

applications, where their pore structural characteristics serve as critical factors influencing functional 

performance. Consequently, quantitative characterization of porous structures have attracted 

multidisciplinary attention, providing theoretical support for aerospace engineering, electrochemical 

engineering, functional materials, and biochips. The rapid advancement of computational technologies 

has enabled digital reconstruction as effective tool for characterizing the microstructures of porous 

materials. Machine learning-based methodologies have established novel pathways for digital 

reconstruction of porous materials. Thus, a new structural generation method for porous materials is 

proposed based on diffusion model. By using the Bentheimer sandstone 2D slices from the digital rocks 

super-resolution dataset, the image generation is implemented through denoising diffusion models 

following data preprocessing. Both Fréchet Inception Distance (FID) and Learned Perceptual Image 

Patch Similarity (LPIPS) metrics are used to evaluate the generated porous images. The results 

demonstrate the superior performance of diffusion models in generating high-fidelity images, achieving 

FID and LPIPS scores of 284.6933 and 0.165 respectively. The generated porous images exhibit 

enhanced structural authenticity compared to conventional methods. The present model provide a 

comprehensive framework for structural reconstruction of porous materials. 
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1. Introduction 

Porous materials are ubiquitously present in natural environments and engineering applications, 

where their pore structures and physicochemical properties critically influence transport characteristics 

and functional performance, attracting multidisciplinary research interest[1-2]. The pore architecture 

and transport dynamics serve as decisive factors in determining material functionality and process 

efficiency, driving extensive investigations into quantitative characterization and property prediction of 

photoelectric porous materials across aerospace engineering, electrochemical systems, functional 

materials, and biochip technologies. 

Advancements in computational methodologies have enabled digital reconstruction and numerical 

simulation as pivotal tools for studying porous media. Traditional reconstruction approaches primarily 

rely on experimental data or 2D images to construct two/three-dimensional models through 

mathematical and statistical techniques. These include stochastic reconstruction based on experimental 

parameters and numerical methods such as Gaussian field simulation, simulated annealing, 

process-based modeling, multiple-point statistics, Markov chain Monte Carlo (MCMC) methods, 

sequential indicator simulation, and hybrid strategies. However, conventional digital core 

reconstruction techniques suffer from significant hardware burdens and prolonged computational 

durations, substantially limiting their applicability [3-4]. 

The emergence of digital rock physics has revolutionized porous media characterization by 

providing novel structural analysis methods that address the accuracy limitations and time-intensive 

nature of traditional approaches. As an advanced digital methodology, machine learning-based 

reconstruction leverages computational algorithms to reconstruct porous media models from limited 

data, overcoming experimental constraints while delivering precise geometric representations for 

numerical simulations and performance predictions. For instance, Liqun Shan et al. [5] developed a 

super-resolution reconstruction algorithm integrating convolutional neural networks (CNN), residual 

learning, and attention mechanisms to generate high-resolution carbonate and sandstone images with 

indistinguishable high-frequency details. Yuzhu Wang et al. [6] implemented neighborhood embedding 

algorithms for micro-CT image enhancement, supplementing low-frequency data from micro-CT with 
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high-frequency features from scanning electron microscopy (SEM) images to achieve state-of-the-art 

reconstruction performance. Javad Siavashi et al. [7] proposed a CNN-based upscaling framework 

combined with downsampling techniques to predict macroscopic properties for single- and two-phase 

flows, demonstrating high consistency in dynamic behavior between coarse and high-resolution models 

while reducing computational costs. Generative adversarial networks (GAN) [8] currently dominate 

structural reconstruction methodologies. Wenshu Zha et al. [9] enhanced reconstruction quality and 

efficiency using Wasserstein GAN with gradient penalty, where CNN serve as both generator and 

discriminator networks. Mosser et al. [10] developed a GAN-based framework for rapid generation of 

porous solid-void structures through implicit probability distribution modeling of 3D image datasets. 

Junxi Feng et al. [11] accelerated multipoint statistical reconstruction via conditional GAN (cGAN) to 

maintain statistical consistency with target systems. Feng et al. [12] implemented cGAN for full-image 

reconstruction from subregions using coupled objective functions to constrain training stability. Reza 

Shams et al. [13] stabilized 3D reconstructions through autoencoder-GAN hybrids optimized via 

gradient descent. Yang et al. [14] established scale-independent multiscale models using cGANs for 

improved pore-scale characterization. Rui Xu et al. [15] constructed physics-informed encoder-decoder 

networks to simulate 3D fluid flow in heterogeneous permeability fields, achieving high agreement 

with numerical simulations at reduced computational costs. Feng et al. [16] pioneered a 

bicycleGAN-based framework for direct 2D-to-3D image translation with verified accuracy and 

efficiency. 

Nevertheless, existing machine learning-based reconstruction models frequently encounter 

challenges including training instability, mode collapse, and uncontrollable noise artifacts. To address 

these limitations, this study proposes the adoption of diffusion models for porous material image 

generation, capitalizing on their enhanced stability and precise controllability in synthetic data 

production. 

2. Denoising Diffusion Models 

The theoretical foundation of Denoising Diffusion Probabilistic Models (DDPM) originates from 

interdisciplinary research in non-equilibrium thermodynamics and stochastic dynamics. Sohl-Dickstein 

et al. [17] first proposed its fundamental paradigm in 2015, and subsequent advancements by Ho et al. 

[18] in 2020 established the modern formulation of DDPM through systematic theoretical derivations 

and algorithmic optimizations. This model achieves reversible mapping between data distributions and 

Gaussian noise via a Markov chain-driven bidirectional stochastic process. In the field of image 

generation, DDPM has been widely applied to tasks such as super-resolution reconstruction, medical 

image restoration, and cross-modal synthesis, demonstrating exceptional fidelity in reconstructing 

complex textures. 

2.1 Noise Addition Process 

A denoising diffusion model typically comprises two complementary components: the noise 

addition process and the structure reconstruction process. The noise addition process incrementally 

introduces noise to transform data into pure Gaussian noise, while the reconstruction process learns to 

recover the original data from the noisy input. These mutually opposing processes collectively form the 

foundational framework of diffusion probabilistic models. 

The noise addition process gradually degrades the original data distribution into isotropic Gaussian 

noise through predefined noise scheduling parameters. The state transition equation is formulated as 

follows (Equation (1) [18]): 

q(xt ∣ xt−1) = N(xt; √1 − βtxt−1, βtI)                       (1) 

where tβ denotes a predefined sequence of noise intensity coefficients, and I represents the identity 

matrix. 

As the number of training iterations increases, the data distribution progressively transitions from 

its original form to a Gaussian noise distribution. After sufficient iterations, the data samples are 

entirely transformed into Gaussian noise, marking the completion of the forward diffusion process. 

This degradation mechanism is illustrated in Figure 1.  
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Figure 1: Schematic diagram of the noise addition process. 

2.2 Structure Reconstruction Process 

Following the completion of the noise addition phase, the generation of novel images requires the 

inverse transformation from pure noise to porous material microstructure. This critical task is 

accomplished through the structural regeneration process, which involves training a parameterized 

neural network to iteratively predict and remove noise perturbations. At each step t, the state transition 

equation is formulated as follows (Equation (2) [18]):  

𝑝𝜃(xt−1 ∣ xt) = 𝑁(𝑥𝑡−1, 𝜇𝜃(𝑥𝑡 , 𝑡), 𝛴𝜃(𝑥𝑡 , 𝑡))                   (2) 

where denotes the model parameter, while  and θΣ are learnable parameters optimized through 

training. 

By optimizing the neural network parameters θ, which govern the reverse process, the 

Kullback-Leibler (KL) divergence between the forward and reverse diffusion trajectories is minimized. 

This optimization ensures the generation of high-fidelity data samples from Gaussian noise. The 

schematic workflow of the reverse diffusion process is illustrated in Figure 2. 

 

Figure 2: Schematic diagram of the structural regeneration process. 

3. Model Training 

3.1 Network model Architecture 

In diffusion probabilistic models, the U-Net network [19] plays a crucial role. This network 

structure not only inherits the symmetrical encoder-decoder architecture of the traditional U-Net but 

also undergoes optimization and improvement in line with the characteristics of diffusion models. 

Firstly, this U-Net network still retains its classic "U" shape, meaning it consists of a gradually 

downsampling encoder part and a gradually upsampling decoder part. During the encoder stage, the 

network gradually extracts features from the input data through convolutional layers and pooling layers, 

while reducing the size of the feature maps. This helps the model capture broader contextual 

information. The encoder stage is composed of an initial convolutional layer with a kernel size of 7*7 

and padding of 3atte, and two downsampling residual modules. Each downsampling residual module 

consists of two Block_klass convolutional layers, a residual layer with an attention mechanism[20], and 

a downsampling layer with a kernel size of 4*4, stride of 2, and padding of 1. The Block_klass 

convolutional layer contains two convolutional layers with a kernel size of 3*3 and padding of 1, a 

group normalization layer, and a SiLU activation function. In the decoder stage, the network gradually 

restores the size and structure of the original data through upsampling and convolution operations, 

thereby achieving the reconstruction or generation of the input data. The decoder stage is composed of 

two upsampling residual blocks, a convolutional layer with a kernel size of 3*3 and padding of 1, and a 

final convolutional layer with a kernel size of 1*1. Each upsampling residual module consists of two 

Block_klass convolutional layers similar to those in the encoder, a residual layer with an attention 

mechanism, and an upsampling layer with a kernel size of 4*4, stride of 2, and padding of 1. There is 

also a bottleneck section between the encoder and decoder. The bottleneck section is composed of two 

convolutional layers with a kernel size of 3*3 and padding of 1, sandwiching a residual layer with an 



Academic Journal of Materials & Chemistry 

ISSN 2616-5880 Vol. 6, Issue 2: 51-56, DOI: 10.25236/AJMC.2025.060207 

Published by Francis Academic Press, UK 

-54- 

attention mechanism. The input images are 800 sandstone images with a pixel size of 64*64. They first 

pass through a 7*7 initial convolutional layer, where the spatial dimensions remain unchanged, but the 

number of channels changes from 1 to 66. Then, local features are extracted through 3*3 convolutional 

layers, followed by group normalization and SiLU function activation to increase the nonlinearity of 

the network and enable it to learn complex mapping relationships. Residual connections are introduced 

to help the network learn identity mappings and alleviate the vanishing gradient problem in deep 

networks. The attention mechanism is added to enhance the network's ability to focus on important 

features and improve the model's expressiveness. The spatial dimensions are reduced and the number 

of channels is increased through downsampling blocks. After passing through two downsampling 

residual blocks, the feature maps reach the bottleneck section, where the image is processed at the 

minimum spatial dimension, with the number of channels remaining unchanged but features being 

further extracted. Then, through two upsampling residual blocks, each upsampling block increases the 

spatial dimensions through transposed convolution (the reverse operation of downsampling) while 

reducing the number of channels. Other operations are the same as those in downsampling until the size 

is restored to be close to that of the input image. Then, the feature maps enter another Block_klass 

convolutional layer, which performs nonlinear transformation of the upsampling feature maps, 

cross-channel information exchange, and further feature fusion to help the model better extract 

information from high-level feature maps and then pass it to the final convolutional layer. The image 

passes through the final convolutional layer, where the number of channels changes from dim to 

out_dim, and the spatial dimensions remain unchanged. This layer maps the deep features learned by 

the model to the final output space. However, unlike the traditional U-Net, this U-Net also incorporates 

information from the time step. The network receives the time step as an additional input at each layer 

of the encoder and decoder, enabling the model to adjust its feature extraction and reconstruction 

strategies based on the current noise level. Additionally, the U-Net in the diffusion probabilistic model 

employs advanced techniques such as residual connections and attention mechanisms to further 

enhance its performance. 

3.2 Training Dataset 

The experimental framework employs 800 Bentheimer sandstone slices from the Digital Rocks 

database (800×800 pixels, 3.8 μm resolution) as the training dataset[21]. As depicted in Figure 3, these 

images exhibit a biphasic structure, with white regions corresponding to the solid matrix and black 

areas representing pore spaces. Prior to model training, a comprehensive preprocessing protocol is 

executed: (1) Spatial Standardization: Random cropping is applied to extract 64×64 pixel sub-images. 

(2) Phase Contrast Optimization: Histogram stretching enhances grayscale differentiation between 

pores and matrix. (3) Augmentation Strategy: Implementation of stochastic horizontal flips and 

constrained rotational transformations (±15°). (4) Value Normalization: Pixel intensities are linearly 

rescaled to the [-1, 1] interval. 

 

Figure 3: The microstructures of sandstone images. 
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4. Results and Analysis 

4.1 Fréchet Inception Distance (FID) 

The Fréchet Inception Distance (FID) serves as a robust metric for assessing the quality and 

diversity of generative models. Rooted in Fréchet distance theory, it quantifies the similarity between 

two image sets by comparing their statistical distributions in the feature space of the Inception v3 

classification network. Specifically, FID computes the distance between feature vectors extracted from 

real and generated images, where lower scores indicate higher similarity. An ideal FID score of 0 

signifies identical image distributions. 

While FID demonstrates sensitivity to fine-grained details and alignment with human visual 

perception—making it particularly suitable for evaluating GAN-generated imagery—it exhibits notable 

limitations. These include dependency on input data scale and distribution, computational intensity, and 

inherent reliance on the pretrained Inception network’s feature representation. In this study, the 

diffusion model achieves an FID score of 284.6933, reflecting its generative performance relative to the 

training data. 

4.2 Learned Perceptual Image Patch Similarity (LPIPS) 

LPIPS emerges as a deep learning-driven perceptual similarity metric that diverges from traditional 

error-based evaluations. By leveraging pretrained neural networks, it models human visual perception 

through hierarchical feature comparisons, capturing both global structural coherence and local textural 

patterns. Lower LPIPS values (ranging 0–1) denote smaller perceptual discrepancies, with applications 

spanning image restoration, super-resolution, medical imaging, and multimedia compression. 

However, LPIPS introduces computational overhead due to its dependency on deep networks and 

sensitivity to training data quality. For evaluation, generated images undergo debinarization and 

normalization before LPIPS calculation. Random sampling of 10 synthesized images yields a mean 

LPIPS value of 0.165, which falls below the human perceptual difference threshold. This quantitatively 

confirms the high fidelity of generated microstructures in replicating authentic pore-solid textural 

characteristics. 

5. Conclusion 

This study systematically investigates diffusion model-based image generation technology, 

providing a comprehensive exposition of its theoretical foundations, architectural design, training 

methodologies, and evaluation metrics. A dedicated diffusion framework is implemented for 

microstructure synthesis, with rigorous assessment of generation performance. The principal findings 

are summarized as follows: 

(1) Feasibility Validation: The experimental results substantiate the viability of diffusion models in 

optoelectronic porous material image generation. A machine learning-driven technical framework is 

established, enabling rapid synthesis of diverse photoelectric porous media with customizable pore 

architectures. 

(2) High-Fidelity Generation: Leveraging progressive denoising mechanisms, the diffusion model 

demonstrates exceptional capability in producing high-resolution images that exhibit remarkable 

structural congruence with ground-truth samples. This approach provides an efficient data generation 

paradigm particularly suited for applications requiring micron-scale texture accuracy. 

The presented methodology establishes a robust theoretical foundation for subsequent experimental 

investigations while offering critical technical references for porous media image synthesis and related 

interdisciplinary applications, including energy material design and biomedical scaffold optimization. 
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