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Abstract: This paper is an attempt to distinguish depressed patients from healthy samples mainly by 
analyzing magnetoencephalogram data of depressed patients and healthy people under different 
emotional picture stimuli. The following conclusions are mainly drawn: First, the relationship of 
information storage and condition entropy is obtained firstly through the formula derivation, and the 
higher the information storage value, the lower the condition entropy. The healthier the biological 
system, the higher the complexity. Second, the conditional entropy values of the 
magnetoencephalography channel were mostly higher in the healthy samples than in the depressed 
patients under the emotional picture stimulation. Accordingly, the conditional entropy values of the 
frontal region under negative stimulation were lower in depressed patients than in healthy subjects. 
Third, under both the AR model and the ARFI model, the magnetoencephalogram information storage 
values were higher in depressed patients than in healthy samples. The difference was more pronounced 
especially near the frontal regions for both. The variability of the results obtained under the ARFI 
model was even more pronounced when depressed patients and healthy samples were more 
discriminated near the left frontal region than the right frontal region, as revealed by the study of line 
plots of information storage values across left and right frontal regions channels. 

Keywords: Depression; ARFI; MEG; Conditional Entropy; AR 

1. Introduction 

Depression pathogenesis is complex, and current medical diagnostic means are single. Major 
depressive patients even experience huge body pain as well as suicidal tendencies and so on. Therefore, 
it is particularly important to discover methods that can effectively treat depression, according to the 
survey: the incidence of depression in our country is 3.8% - 5.7%, but the identification rate of 
depression is still less than 20%, and only less than 10% of depressed patients have received relevant 
pharmacological treatments.[1-4] MEG can superimpose the location of analyzed intracerebral activity 
on anatomical images such as MRI (magnetic resonance imaging) to provide the structure and function 
of the brain. As an important basis for clinical diagnosis and treatment, MEG has received significant 
attention from many countries and scientists. MEG can effectively analyze the behavior and emotions of 
patients by detecting physiological information in various brain regions of the human brain. Currently, 
many emotion related diseases have been effectively prevented, treated, and restored by the detection of 
MEG. Magnetoencephalography is a new direction for the study of brain function, and it is important to 
determine whether the complexity is perfect, so it is crucial to choose appropriate methods to analyze the 
complexity of magnetoencephalography, and entropy algorithms are among the most powerful methods 
for calculating the complexity of brain function, such as permutation entropy and approximate entropy. 
Therefore, at present, domestic and extrinsic methods are mostly used to solve when analyzing nonlinear 
signals such as magnetoencephalography and EEG.[5-7] 

At present, the study of event-related magnetic field changes depression magnetoencephalography 
mainly includes two aspects of physical sensory irritation and cognitive ability. For the resting state of 
depression research is mainly dominated by slow waves generated by neural activity in brain regions, 
previous studies have found that the generation of slow waves is mainly due to Neuro-Electromagnetic 
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changes in brain regions and thus leads to slow wave activity near the corresponding brain regions, for 
which many foreign experts deeply study, Brigitte et al, first selecting some patients with schizophrenia 
and depression or patients with affective disorders and then contrasting the slow wave changes in normal 
human brain regions, found that the affective disorders in patients with psychiatric disorders may be 
caused by abnormal slow wave activity in the frontal lobes. Christian et al showed that frontal slow 
wave activity was significantly reduced in depressed patients relative to schizophrenia patients and 
normals, and that slow wave activity in the temporal and parietal lobes of depressed brains was also 
reduced relative to schizophrenia patients, such that the density of dipoles corresponding to slow waves 
in brain regions was reduced in depressed patients, particularly relative to schizophrenia patients, The 
percentage of dipoles in depressed patients was significantly reduced in whole brain regions, and finally 
it was found that depressed patients showed significant differences relative to normal controls only in 
frontal regions; Through further studies of the abnormal slow wave activity in these brain regions, it was 
found that all were related to clinical target symptoms, such as patients with essence schisis hallucination 
was associated with increased slow wave activity in the left temporal lobe of the brain, depression 
related symptoms were associated with decreased slow wave activity in the left frontal lobe of the 
brain.[8] Another similar study found abnormalities in slow wave activity in the right occipital region of 
the brain if depressed patients were left untreated, such that the dipole density of slow waves in the 
occipital region increased which could be an element of depression generation.[9-11] 

This paper mainly applies AR and ARFI models to analyze the information storage differences of 
magnetoencephalograms from healthy individuals and depressed patients by employing multiscale 
conditional entropy methods to analyze the differences in brain complexity between healthy individuals 
and depressed patients. 

2. Methods  

2.1. Dataset description and preprocessing 

The magnetoencephalogram data acquired in this experiment were distributed in 5 different brain 
regions, 5 being occipital (occipital, O), frontal (frontal, f), central (central, c), temporal (temporal, t), 
and parietal (parietal, P).[12] However, different brain regions are located in different large regions, 
including the left, middle, and right regions, which are denoted by L, Z, and R, respectively. The 
correspondence of different brain regions is shown in figure  Fig 1. The CTF 275 holoprosencephaly 
magnetoencephalography system has 275 information channels, 132 and 11132 in the left, middle, and 
right regions, respectively. Description: the 275 channels are all composed of three letters and two digits, 
with the first letter representing the brain magnetic signal, with two letters representing the larger region, 
that is, the left, middle, and one of the right regions, and with the third letter representing the region, that 
is, the frontal, occipital, temporal, parietal, and one of the central regions. The latter two numbers 
represent the coordinates where the channel was located. For example 25 channel expressed as mlf11. 1 
~ 24, 133 ~ 156 channels are located in the central area, 25 ~ 57, 157 ~ 189 channels are located in the 
frontal area, 58 ~ 76, 190 ~ 208 channels are located in the occipital area, 77 ~ 98, 209 ~ 230 channels 
are located in the parietal area, 99 ~ 132, 231 ~ 264 channels are located in the temporal area; Above are 
channels located in large areas and symmetrical to each other, say: 25 ~ 57 in the left frontal area, 157 ~ 
189 in the right frontal area, other channels are similar. Both 265 ~ 275 are information channels located 
in the middle zone. 

 
Figure 1:  MEG distribution maps of different brain regions 

This paper was collected with Data of MEG suffix with a sampling frequency of 1200 Hz. These 
data are all three-dimensional data of 275*161*80, 275 channels per acquisition, 161 data sampling 
points, and 80 represents the number of pictures of different emotional stimuli, that is, pictures of 
positive, moderate, and negative stimuli in this paper. Since Matlab cannot process The MEG form of 
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the data, so first the data is transformed into Matlab can identify Data in mat format. This will be taken 
for subsequent experiments Mat rectangle data. 

2.2. Multiscale conditional entropy 

Originally proposed by Kolmogorov for the concept of complexity, their measure of complexity 
focused on describing the random length of sequences, somewhat reflecting the concept of entropy many 
of our physiological metrics can be measured in terms of complexity. Chaos holds that the higher the 
complexity of a person's physiological system, the better its stress capabilities are. 

At present, common entropy measurement methods have approximate entropy, sample entropy and 
so on. The approximate entropy and the complexity of the time series are proportional, and the larger the 
approximate entropy, the more complex the time series, and vice versa. Sample entropy is also a method 
used to measure temporal complexity and is nothing more than a certain improvement over approximate 
entropy. Costa proposed a multiscale entropy algorithm. Multiscale entropy (MSE) extends the sample 
entropy to multiple time scales, which offers the following advantages:  

① It is suitable for analyzing systematic time series;  

② Information of the original signal can be effectively restored. The problem with sample entropy is 
that it does not account well for the different timescales that may exist in a time series. The basic 
principles of multiscale entropy include coarse granulation or downsampling of time series, mostly to 
analyze time series at increasingly coarse temporal resolutions. 

Conditional entropy represents the degree of irregularity in the time series of a nonlinear dynamic 
system and can be used to characterize the complexity of the system. On the basis of conditional entropy 
plus multiscale treatment forms the experimental approach of this chapter: multiscale conditional 
entropy. It mainly starts with a coarse-grained time series, then a coarse-grained sequence is subjected to 
phase space reconstruction, and finally the conditional entropy of the sequence is calculated. It is critical 
to combine multiscale and conditional entropy, which can over come averages after serial segmentations 
that can in turn compose a new time series. This makes it possible to study the complexity information 
inherent to each period of the time series separately, without making calculations on the entire time 
series, improving computational efficiency. Attention needs to be paid in multiscale algorithms to the 
choice of scale factor in the coarsening process, and the size of scale factor is directly related to whether 
it can accurately extract the information of time series and distinguish the difference between time series. 
The sequence also needs phase space reconstruction after it undergoes coarse-grained process, and the 
key of phase space reconstruction is the selection of embedding dimension parameters and determination 
of the optimal time delay. 

2.3. Selected scale factors 

It is important to choose an appropriate scale factor in order not to affect the experimental results. To 
be representative of the last data obtained, our final data were all post averaged, first by calculating and 
then averaging the multiscale condition entropy over 10 healthy experimenters, and second by 
calculating and then averaging the multiscale condition entropy over 6 depressed patients. The obtained 
results were analyzed according to different scale factors, and the most appropriate scale factor was 
selected. Below are plots of the change in the multiscale conditional entropy between depressed patients 
and healthy subjects in the face of stimuli from positive emotional pictures, and since the scale factors 
should not be too large or too small, 4, 6, 8 were chosen for this experiment scale factors were 
sequentially replaced for comparison. The abscissa represents 275 informative channels of the 
magnetoencephalogram, and the ordinate is the multiscale conditional entropy value of the experimental 
subject. 

2.4. AR model and parameter selection 

The AR model belongs to the random signal parameter model and is also a type of linear output 
model. The model can be expressed in the following equation: 
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In the above formula, ( )x n is time series of MEG signals, ia  is the prediction coefficients of the 
AR model, p  is the order of the model and ( )nω  is the prediction error. In this study, AR model 
parameter estimation was performed by least square method, the choice of the order p  is crucial in the 

modeling process. Defining filtered data 
( )f
n nX X= . Finally ordinary least squares was used to extract 

the data from the filtered 
( )f
nX  to estimate the AR parameters, to solve the AR model 

( )( ) f
n nA L X E= . 

The order p  of the model was evaluated by Bayesian information criterion. Finally it was chosen as 12 
and low pass filter step was chosen as 48 in the experiment. 

2.5. ARFI model and parameter selection 

ARIMA model (autorepressive integrated moving average model), a differential integrated moving 
average autoregressive model, also known as integrated moving average autoregressive model (moving 
also known as slippage), is one of the time series prediction analysis methods. ARIMA (p, d, q), where 
AR is the " autoregressive " and p is the number of autoregressive terms; MA is the " sliding average ", q 
is the sliding average term, and d is the number of differences (orders) made to make it a stationary 
sequence. Although not present in the English name of ARIMA, the term 'difference' is a critical step. 
The model can be expressed as: 
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The ARFI model is stationary at 0.5 <d < 0.5 and nonstationary at 0.5 < d < 1 but implies regression. 
By allowing d to be written as d = D1 + d > 1 with 0.5 < D1 < 0.5 D and D ∈ {1,2,...}, The ARFI model 
can be extended to nonstationary settings. The most common situation occurs at d = 1, when the process 
is called to have a unit root; The ARFI (p, d) formula is then used to model the increment of the series, 
which is the difference between consecutive observations. Note that the defined process is a special case 
of the broader ARFIMA (p, d, l) process, which also contains a class of autoregressive processes AR (P). 
Here we restrict our analysis to the description of the ARFIMA (p, d, 0) process, which we denote as the 
ARFI (p, d) process. 

3. Result and Discussion 

3.1. Scale factor selection 

 
Figure 2: Multiscale conditional entropy with a scaling factor of 4 
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Figure 3: Multiscale conditional entropy with a scaling factor of 6 

 
Figure 4: Multiscale conditional entropy with a scaling factor of 8 

From the top panel, when the scale factor is 6, the ensemble shows that the multiscale conditional 
entropy of healthy experimenters is larger than that of depressed patients, also with good discrimination 
in the left as well as the right frontal regions. So when selecting the scale factor 6, the depressed patients 
and healthy samples can be relatively well distinguished. The panels below are the MEG information 
storage profiles of depressed patients and healthy subjects through different emotional stimuli under AR 
and ARFI models. 

3.2. Performance for the two models 

 
Figure 5: The distribution maps of information storage of brain magnetograms of experimental 

subjects under the ARFI model 
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Figure 6: The distribution maps of information storage of brain magnetograms of experimental 

subjects under the ARFI model 
It can be seen from the figure that the information storage values of most channels of the 

magnetoencephalograms of healthy subjects are smaller than those of patients with depression when 
facing different emotional picture stimuli, that is, the conditional entropy values of the 
magnetoencephalogram signals of healthy samples are higher than those of patients with depression 
under emotional picture stimuli. A study comparing the information storage values of the 
magnetoencephalography signals under the two models can see that the analysis of the information 
storage values of depressed patients and healthy people under the same experimental conditions can lead 
to similar conclusions in both models. But the AR model was less significant in the distribution of 
magnetoencephalogram information storage in both experiments than the ARFI model in calculating the 
difference in magnetoencephalogram information storage values between depressed patients and healthy 
samples. Thus, it appears from experimental results that the ARFI model is more powerful than the AR 
model in studying magnetoencephalographic information storage experiments of depression. 

4. Conclusion 

The stress of life and work causes most young people to start becoming depressed and having 
difficulty falling asleep, and gradually develop depressive symptoms. By analyzing the 
magnetoencephalography data of depressed patients and healthy individuals under different emotional 
picture stimuli, we found that the conditional entropy values of the magnetoencephalography channel 
were mostly higher in healthy samples than in depressed patients under emotional picture stimuli. When 
subjects were faced with different emotional stimuli, information storage values of 
magnetoencephalograms were mostly higher in depressed patients than in healthy samples, although the 
variability of the results obtained under the ARFI model was more obvious. 
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