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Abstract: To deal with the icing problem of wind turbine blades, the traditional classification methods 

are introduced firstly in this paper, and the XGBoost model based on monitoring and data acquisition 

(SCADA) system is introduced to estimate the icing conditions of blades. Meanwhile, the generation 

process of the XGBoost model is introduced in detail. Finally, the superiority of the XGBoost model is 

verified by experiments. The results show that XGBoost has higher precision and efficiency than other 

methods. 
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1. Introduction 

With the environmental problems becoming increasingly prominent, renewable energy is being 

extensively used. Meanwhile, wind power generation catches on among countries and regions of the 

world as a non-pollution and low-cost electricity industry [1]. To acquire greater development values, 

wind turbines usually built-in high-altitude areas, which quickly cause some blade icing problems, which 

leads to a series of consequences. Specifically, it has the following hazards: Firstly, after icing, the airfoil 

of the fan blade changes, leading to the decrease of wind energy capture capacity. In addition, the ice 

attached to the blade increases the energy required for blade rotation and finally leads to the power loss 

of the fan. Secondly, after the fan blade freezes, some structural parameters of the blade change directly, 

affecting its inherent modal parameters and inducing blade fracture. In the meantime, when the fan blade 

ice accumulates to a certain extent, the ice will break and fly out under the influence of dead weight, 

which will quickly hit the inspection personnel in the wind field and cause personal accidents. If it isn't 

disposed of in time, this will bring irreversible damages to the system. Even blades without anti-icing 

and de-icing protection will be at risk of downtime. Therefore, icing detection on wind turbines is 

particularly significant for enhancing efficiency in the electric power industry and prolonging the wind 

turbines' operational life [2]. 

In terms of traditional wind turbines (WTs) blade icing detection techniques, foreign countries are 

more mature than domestic ones [3]. The mechanism of the detection method measures the corresponding 

changes due to ice accretion to detect whether blades are frozen. For instance, icing detection of WT 

blade based on the ultrasonic guided-wave way measures changes of quality, refection characteristic, 

conductivity, heat conductivity, and permittivity [4]. We can also take advantage of the mechanical 

properties. When there is ice on the sensor, ice will augment the rigidity and resonant frequency of the 

sensor to calculate the thickness of the ice [5]. However, traditional WTs blade icing detection methods 

can result in high costs and aggrandize the mechanical complexity of WTs. From the above discussion, 

it is very significant to find a safe and reliable detection method. Many researchers have started using 

data-driven modeling based on SCADA systems, reducing maintenance costs [6]. 

The method of blade icing detection based on data-driven is equal to classification problems in 

mathematics. Also, there are many ways to figure out the classification problems. The most common 

way is logistic regression which is often used to solve dichotomous problems. K-Nearest Neighbor (KNN) 

is also one of the most fundamental algorithms in machine learning. The Fisher discrimination criterion 

is a classic supervised data dimension reduction method. But the fact is that the above three methods 

only use the distance between data to make a judgment, and they didn’t excavate the nonlinear 

characteristic between variables. 
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To excavate the correlations between variables deeply, many algorithms on machine learning solve 

the problem. Firstly, decision tree is a sorting technique based on the tree structure. Secondly, support 

vector machine (SVM) is a classifier with the most significant spacing in the feature space. The hidden 

Markov model (HMM) is a classification way for processing time-series data. Although the above three 

approaches dig the relevancy of information correctly, they are single-mode models. Industrial data 

generally has multi-modal characteristics. Under the influence of working conditions, the relationship 

between variables is varied. To solve this difficulty, ensemble learning inspires us. 

Currently, there are two ways commonly used in ensemble learning. One is random trees based on 

bagging. The other is XGBoost based on boosting. The ideology of bagging is not complicated. The weak 

learners need to be independent of each other. However, most methods cannot guarantee the 

independence of each learner. Also, there is no way to differentiate the weak learner impression. And the 

output prediction speed is slow. Compared with bagging, the ideology of boosting is more straightforward 

and practical. In recent years, XGBoost based on boosting caught on. Compared to the traditional 

boosting algorithm, its unique point is a lot of optimizations are made. For example, the loss function is 

optimized by using second-order Taylor expansion. They are using regularization to avoid overfitting. In 

engineering, Zhang et al. adopt the XGBoost algorithm to diagnose the fault in bearing [7]. Its specific 

process is divided into two parts. The first thing is collecting data using a vibrating sensor as input of the 

XGBoost model. Then, vibration data are extracted and influenced by equipment complexity and other 

factors. 

The above literature review shows that the XGBoost model based on SCADA system performs quite 

well and convincingly for condition monitoring and fault diagnosis. The novel and advantages of the 

proposed method are summarized as follows: (a) deep learning is used to adaptively extract multilevel 

nonlinear features from SCADA data, which improves the feature extraction process and acquired feature 

performance, and lays a foundation for improving the diagnostic accuracy of the model. (b) Automatic 

use of CPU multi-threading parallel computing, while the algorithm's accuracy is also improved. 

Therefore, compared with traditional machine learning models, the XGBoost icing detection model based 

on monitoring and SCADA system has better detection accuracy and generalization ability. 

2. Concept and Approach 

Before introducing XGBoost, we should understand the concept of the decision tree. The decision 

tree is a standard machine learning method whose purpose is to classify new examples using models 

learned from a given training data set. As the name suggests, it makes classification decisions based on 

the tree structure. The final conclusion of the decision process corresponds to the decision result we 

predict. Each question posed in the decision process is a test of some properties. 

Generally, a decision tree consists of a root node, several internal nodes, and several leaf nodes. The 

leaf node corresponds to the decision result. Each of the other nodes corresponds to a property test, and 

each node contains a sample set divided into child nodes according to the test attributes. The root node 

has the complete set of samples. The path from the root to each leaf corresponds to a sequence of decision 

trees. Classification and Regression Tree (CART) [8] is a kind of decision tree. The tree is a binary tree, 

meaning that each split produces two leaves. 

XGBoost is an improved algorithm to integrate boosting based on Gradient Boosting Decision 

(GBDT) [9]. Its core idea is to use CART as the weak learner, each iteration based on the existing tree, 

adding a tree to fit the residuals. 

First, determining the predicted value of the initial tree: 
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The objective function of the XGBoost: 
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We can conclude that XGBoost adds a regular item based on the error function. Its purpose is to 

prevent overfitting, reduce the complexity of the trees and improve generalization ability, where T 

represents the number of leaves in a tree, and  denotes the score of the leaf nodes.  and are the 

penalty coefficients. iy  is the label value of the thi  sample. 

( )t

iy


represents the predicted value went 

through t  iterations. 

The objective function can be simplified by the second-order Taylor expansion: 
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We can define: 
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To minimize this objective function, we can set its derivative to zero and the optimal fraction of each 

leaf node is obtained: 
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Plugging in the objective function, the minimum loss is expressed as: 
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Fig. 1 can clearly show the running process of the XGBoost. 

 

Figure 1: XGBoost running process 

The greedy algorithm of enumerating all tree structures can be used to solve the problem of how to 

split a leaf node. In the meanwhile, set the tree depth and the tree stops growing when the gain is below 

a set threshold [10]. 
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3. Experiment and Discussion 

SCADA systems are currently used in large wind turbines. SCADA system is controlled by the older 

generation algorithm, which is the integrated use of the signal acquisition, on-line monitoring and signals 

analysis function of the system, which can make the data acquisition, parameter regulation of wind 

turbines, equipment control, and fault alarm, etc., is generally used in wind turbine condition monitoring 

and fault diagnosis, can provide the reliable operation of the wind farm with powerful technology 

platform support. This paper mainly uses the SCADA system collecting and recording the data 

information to detect whether the fan blades freeze. 

The positive and negative samples were mixed and randomly shuffled. Among them, 200 pieces of 

data are used as training sets. There are 26 variables. The variables are detailed in Table 1. 

Table 1: Variables name 

Variables 

Wind_speed generator_speed power wind_direction 

wind_direction_mean yaw_position yaw_speed pitch1_angle 

pitch2_angle pitch3_angle pitch1_speed pitch2_speed 

pitch3_speed pitch1_moto_tmp pitch2_moto_tmp pitch3_moto_tmp 

acc_x acc_y environment_tmp int_tmp 

pitch1_ng5_tmp pitch2_ng5_tmp pitch3_ng5_tmp pitch1_ng5_DC 

pitch2_ng5_DC pitch3_ng5_DC   

The model heap established above was used to analyze the 1879 test data to determine whether ice 

was formed. We use XGBoost(XGB), K-Nearest Neighbors(KNN), decision tree classifier(DTC), 

Logistic Regression(LR), Naive Bayes(NB), Support Vector Classification(SVC) for comparison. We 

use error rate, accuracy rate, recall rate, and F1-score to represent the effect of the model to evaluate the 

quality of the model. The effects of different methods are detailed in Table2. The error rate represents the 

proportion of the samples with the wrong classification to the total samples, which is an indicator for 

evaluating classification models. To evaluate the model from the whole perspective, the evaluation 

criteria are based on the whole sample set. As the name implies, the lower the error rate, the better the 

model. The accuracy rate shows how many of the positive samples are genuinely positive. That is, the 

evaluation criteria are based on the predicted results. And the model with higher accuracy is more suitable 

for predicting blade icing. Recall rate represents how many favorable forces in the sample are correctly 

predicted. Recall rate refers to the original sample. Generally speaking, the higher the recall rate, the 

lower the accuracy. F1-score refers to the harmonic average of recall rate and precision rate. When F1-

score is high, this model is ideal. Also, we draw the ROC curve of the predicted results and calculate the 

AUC value. The larger the integral of the ROC curve is. That means the more extensive the value of 

AUC is, the better the classifier can distinguish positive and negative samples. 

Table 2: Results of different models 

Model Error rate Precision rate Recall rate F1-score 

XGB 0.002 0.997 1.0 0.998 

SVC 0.014 0.977 0.996 0.986 

LR 0.033 0.939 0.998 0.967 

NB 0.138 0.782 1.0 0.878 

KNN 0.035 0.936 0.997 0.965 

DTC 0.012 0.976 1.0 0.988 

From Table 2 and Figure 1, it can be concluded that the error rates of linear classifiers such as KNN, 

LR, and NB are as high as 0.035, 0.033, and 0.138, which incorrectly distinguish the operating state of 

wind turbines, while the error rates of nonlinear classifiers, DTC and SVC are 0.012 and 0.014. 

Compared to linear classifiers, the error rate is reduced, but the effect is still not ideal due to the 

limitations of single-mode processing. The error rate of XGBoost reaches 0.002, and its classification 

effect is better than other models. 
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Figure 2: Error rate comparison 

 

Figure 3: Comparison of other indicators 

 

Figure 4: ROC curve and AUC value 
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As shown from Figure 3, the accuracy rate is shown in the red line, and it is clear that XGBoost has 

the highest accuracy rate. Table 2 is 0.997, linear classifier KNN, LR, and NB are 0.936,0.939, and 0.782. 

Respectively, nonlinear classifier KNN and SVC are 0.936 and 0.977, which are not as low as XGBoost 

accuracy. The blue line represents the F1-score, and it can be clearly seen that XGBoost has the highest 

value (0.998), linear classifier KNN, LR and NB are 0.965, 0.967, and 0.878, respectively, and nonlinear 

classifier DTC and SVC are 0.965 and 0.986 respectively, all of which are lower than XGBoost F1-score. 

The closer the ROC curve is to the upper left corner, the higher the totality of the model. The point 

on the ROC curve closest to the upper left corner is the best threshold for the fewest classification errors, 

with the fewest total number of false positives and false negatives. The AUC value represents the area 

under the ROC curve, and the more significant the area, the better the effect of the model. From Figure 

4, we can see the ROC curve and AUC value of each model, of which the AUC value of XGBoost is 

0.9969, and the AUC value of other models is below it XGBoost has more advantages in handling the 

icing detection of fan blades. 

From the above results, it can be seen intuitively that XGBoost is significantly better than the other 

five methods. Three methods of Logistic Regression, Naive Bayes, KNN do not excavate the nonlinear 

characteristics between data, so the effect is relatively poor. SVC and DTC deal with the nonlinear model 

but not a multimodal model. So the effect is better than the above three methods. The XGBoost uses the 

idea of integrated learning. Both nonlinear models and multimodal models are processed. Therefore, it 

is better than the above five methods in error rate, precision rate, recall rate, and F1-score. 

4. Conclusion 

In order to predict blade icing more accurately, XGBoost method based on SCADA data is used to 

train and test. We compared five methods to validate the effectiveness and high efficiency of XGBoost. 

The research found that XGBoost has a 2% error rate, which was lower than other methods. XGBoost 

has the accuracy rate of 99.7%, which is higher than other methods. The results demonstrate the 

superiority and effectiveness of the proposed model. 
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