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Abstract: ERAP1 plays a pivotal role in processing antigenic peptides for presentation on major 

histocompatibility complex (MHC) class I molecules (Li et al. [1]). Disruptions in ERAP1 expression or 

function have been associated with a range of diseases, including cancer. Recent investigations have 

unveiled ERAP1's potential involvement in regulating tumor cell growth and immune evasion in cancers 

like lung cancer, melanoma, and breast cancer (Stratikos et al. [2]). Inhibiting ERAP1 activity has 

emerged as a promising therapeutic approach for combating these types of cancers (Bufalieri et al. 

[3]).The dataset used for this study comprises diverse proteins, representing various protein families. 

Among these, ERAP1 is a member of the aminopeptidase M1 family. This research is centered around 

the utilization of ERAPNet to identify Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) within cancer 

cells. Both Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) models were 

used and trained using TensorFlow, a deep learning framework. During the training process, 

optimizations were undertaken to fine-tune the models' parameters and weights, enhancing their 

proficiency in detecting ERAP1 within the samples. The models underwent post-training evaluation using 

a testing dataset. Their accuracy was assessed using metrics including precision, recall, and the F1 score. 

Additionally, confusion matrices were generated to provide insight into the models' performance 

concerning the detection of ERAP1 protein. This evaluation process ensures reliability in the models' 

predictive capabilities. 
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1. Introduction 

Protein structure prediction has been a subject of intense research for several decades, and significant 

progress has been made in this field. Researchers have developed various techniques to predict protein 

structures, such as homology modeling, ab initio modeling, and hybrid methods (Seffernick and Lindert 

[4]). Homology modeling is the most widely used method and is based on the assumption that proteins 

with similar sequences have similar structures. Ab initio modeling, on the other hand, predicts protein 

structures from scratch, without any prior knowledge of the protein's sequence or structure (Lee, Wu, & 

Zhang. [5]). Hybrid methods combine both homology modeling and ab initio modeling techniques to 

improve the accuracy of predictions (Seffernick and Lindert [4]). This progress in the field of protein 

structure prediction has enabled researchers to understand the structure and function of proteins at a 

molecular level, leading to the development of new drugs and therapies. Protein model assessment is an 

important aspect of protein structure prediction, as it helps to evaluate the quality of the predicted models. 

Various metrics have been developed to assess the accuracy of protein models, such as root-mean-square 

deviation (RMSD), global distance test (GDT), and MolProbity score (Kufareva and Abagyan [6]). 

Traditional biological methods such as X-ray crystallography, NMR spectroscopy, and electron 

microscopy are also used to determine the structures of proteins (PDB, RCSB. [7]). However, these 

methods are expensive, time-consuming, and require large amounts of protein samples. In recent years, 

machine learning and AI methods have been applied to protein structure prediction and model assessment, 

leading to faster and more efficient techniques. For instance, deep learning-based methods such as 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have shown promising 

results in protein structure prediction and model assessment.  

Despite the progress made in the field of protein structure prediction and model assessment, several 

challenges remain. One of the biggest challenges is the accurate prediction of protein-protein interactions, 

which play a crucial role in many biological processes (Y. Li et al. [8]). Another challenge is the 
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prediction of protein structures with multiple domains or regions, which often require a combination of 

different modeling techniques (Xia et al. [9]). Additionally, the accuracy of predicted models decreases 

with the increase in protein size, making it difficult to predict the structures of large proteins. To address 

these challenges, researchers are exploring new machine learning and AI methods, such as reinforcement 

learning and generative models, which have the potential to improve the accuracy and efficiency of 

protein structure prediction and model assessment (Alquraishi. [10]). 

While substantial strides have been made in the field of protein structure prediction and model 

assessment, there remains opportunity for refinement. A critical hurdle lies in the validation of projected 

protein structures, a pivotal step in guaranteeing their precision and dependability (Bagaria et al. [11]). 

Conventional validation techniques, including X-ray crystallography and NMR spectroscopy, are 

resource-intensive, time-consuming, and demand specialized expertise. Thus, there is an imperative to 

cultivate validation methods that are both more streamlined and accessible. To address this challenge, 

researchers have turned to machine learning and deep learning methods to develop faster and more 

accurate validation techniques. For example, one approach is to use machine learning algorithms to 

predict the quality of protein models based on their physical and chemical properties. Several studies 

have reported promising results in predicting protein quality using machine learning algorithms such as 

random forests, support vector machines, and artificial neural networks. 

Another promising approach is to use deep learning methods, such as convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs), to predict the quality of protein models. These methods 

can analyze large datasets of protein structures and extract complex features that can be used to predict 

the quality of new protein models. For example, a recent study used a deep neural network to predict the 

quality of protein models based on their Ramachandran plot scores, which are a measure of the 

stereochemical quality of protein structures. 

In addition to machine learning and deep learning methods, there is also a need to develop new 

validation techniques that can assess the quality of protein models in real-time. One promising approach 

is to use cloud-based computing platforms that can rapidly validate protein models using parallel 

computing techniques. 

2. Introduction of the Program Background 

ERAPNet is a machine learning-based approach that uses spectral imaging and deep learning 

algorithms to accurately identify ERAP1 in human cells and tissues. The development of ERAPNet was 

motivated by the need for a more precise and efficient method to detect ERAP1, a human protein involved 

in the processing and presentation of antigens to the immune system. 

ERAP1 plays a crucial role in shaping the immune response by trimming and modifying peptides to 

fit into the binding groove of MHC molecules (Li et al. [1]). Dysregulation of ERAP1 has been implicated 

in various diseases, including autoimmune disorders and cancer. However, traditional methods of 

detecting ERAP1 are time-consuming and often require complex sample preparation. ERAPNet was 

developed to address these limitations by leveraging the power of machine learning and spectral imaging 

to identify ERAP1 in human cells and tissues with high accuracy and efficiency. This technology has the 

potential to significantly improve our understanding of ERAP1's role in disease pathology and aid in the 

development of targeted therapies for various diseases. 

2.1. Reasons for Doing This 

There are several reasons for employing ERAPNet for detecting ERAP1: 

1) Accuracy: ERAPNet is a highly accurate method for detecting ERAP1. By using this method and 

training the algorithm on a dataset of known ERAP1 samples, accurate results are ensured. 

2) Efficiency: ERAPNet uses spectral imaging and deep learning algorithms to identify ERAP1 

quickly and efficiently, which is particularly useful when analyzing large datasets. 

3) Complexity: ERAP1 is a complex protein with many functions and interactions. Traditional 

detection methods can be time-consuming and require complex sample preparation. ERAPNet simplifies 

the process by providing a straightforward, reliable way to detect ERAP1. 

4) Evaluation: Using a confusion matrix allows for evaluating the performance of the ERAPNet 

algorithm. By comparing the predicted and actual values of the classification model, the accuracy of the 
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algorithm can be determined, and any areas needing improvement can be identified. 

2.2. Question that Arises 

How can the information obtained from using ERAPNet for the detection of ERAP1 be applied to 

further our understanding of ERAP1's role in disease and inform the development of targeted therapies? 

2.3. Purpose of This Research 

The purpose of this experiment is to use ERAPNet, a machine learning-based approach that uses 

spectral imaging and deep learning algorithms, to accurately detect the presence of ERAP1 in samples 

of human cells and tissues. The algorithm's performance can be evaluated using a confusion matrix, 

which can help researchers assess the accuracy and efficiency of the approach. Ultimately, this 

experiment aims to improve our understanding of ERAP1 and its role in disease, which can inform the 

development of targeted therapies. 

3. Hypothesis/Expectations 

ERAPNet can accurately detect and quantify the presence of ERAP1 in human cells and tissues, and 

the generated confusion matrix can provide insights into the performance and limitations of the algorithm. 

This information can contribute to a better understanding of ERAP1's role in disease and potentially lead 

to the development of more effective targeted therapies. 

4. Results and Graphs 

Confusion Matrix 1 

The confusion matrix analysis in Figure 1 reveals the model's proficiency in predicting various protein 

categories. In the HYDROLASE category, the model accurately predicts over 70% of instances in the 

test set, demonstrating a strong performance. Similarly, the model shows over 70% accuracy in the 

Immune System category. Moving along the diagonal, the model achieves above 70% accuracy for 

OXIDOREDUCTASE instances, while LYASE instances are accurately classified at over 60%. 

 

Figure 1: Confusion Matrix of the Classification Model 

Training and Validation 1 

Figure 2 illustrates the performance of a machine learning model during training. The training 

accuracy is notably higher than the validation accuracy (approximately 0.5 to 0.6), indicating potential 
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overfitting to the training data. Initially, the training loss decreases before plateauing, suggesting effective 

learning from the training data. However, the validation loss increases after about 5 epochs, indicating 

deteriorating performance on the validation data, further suggesting overfitting. 

 

Figure 2: Training and Validation Metrics with accuracy (left) and loss (right) over 25 epochs 

Confusion Matrix 2 

For the HYDROLASE category in Figure 3, the model in figure 3 achieves over 60% accuracy. In 

the Immune System category, it reaches over 70% accuracy. The model demonstrates impressive 

performance in predicting OXIDOREDUCTASE and TRANSFERASE instances, with accuracy over 

70%. LYASE instances are predicted with over 50% accuracy, highlighting the model's capability across 

diverse categories. 

 

Figure 3: Confusion Matrix of Model Predictions 

Training and Validation 2 

The training accuracy graph in Figure 4 starts low and increases to around 0.9 after about 10 epochs, 

indicating effective learning. However, the validation accuracy plateaus at around 0.5 to 0.6, suggesting 

weaker generalization. The training loss decreases rapidly to below 0.25, while the validation loss 

initially decreases but starts to increase after 10 epochs, indicating overfitting. The subsequent decrease 

in validation loss at 20 epochs suggests a slight recovery. 
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Figure 4: Training and Validation Metrics 

Confusion Matrix 3 

The model in Figure 5 achieves over 70% accuracy in predicting HYDROLASE instances. It also 

shows over 70% accuracy in the Immune System category. The accuracy for OXIDOREDUCTASE and 

TRANSFERASE categories exceeds 70%, and LYASE instances are predicted with over 50% accuracy, 

demonstrating robustness in diverse categories. 

 

Figure 5: Training and Validation Metrics 

Training and Validation 3 

Training accuracy shown in Figure 6 increases to about 0.9 after 10 epochs, indicating effective 

learning. The validation accuracy initially increases to about 0.6 but then plateaus, suggesting limited 

improvement on unseen data. Training loss decreases steadily to below 0.25, while the validation loss 

decreases initially but increases after 5 epochs, indicating overfitting. 

 

Figure 6: Training and Validation Performance Over 50 Epochs 
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Confusion Matrix 4 

The model in Figure 7 predicts over 60% of HYDROLASE instances accurately. It achieves over 70% 

accuracy in the Immune System category and over 60% in the TRANSFERASE category, showing 

reliable predictive capability. 

 

Figure 7: Confusion Matrix of the Classification Model  

Training and Validation 4 

Training accuracy in Figure 8 increases to around 0.95 in the first 10 epochs and then remains flat, 

indicating effective learning. The validation accuracy increases to about 0.6 around 5 epochs and remains 

stable, suggesting reasonable generalization. Training loss decreases significantly to about 0.25, while 

the validation loss shows an erratic pattern, indicating inconsistent performance on validation data. 

 

Figure 8: Training and Validation Accuracy and Loss over 25 Epochs 

Confusion Matrix 5 

The model shown in Figure 9 achieves over 70% accuracy in the HYDROLASE category and over 

80% in the Immune System category. It also reaches over 70% accuracy in OXIDOREDUCTASE and 

TRANSFERASE categories. LYASE instances are predicted with more than 50% accuracy, indicating 

strong performance across categories. 
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Figure 9: Confusion Matrix of the Classification Model  

Training and Validation 5 

Training accuracy in Figure 10 increases to about 0.95 and then plateaus, indicating effective learning. 

Validation accuracy shows fluctuations around 0.6, indicating inconsistent performance. Training loss 

decreases to about 0.2, while validation loss fluctuates between 2.5 and 3.0, showing inconsistent 

generalization. 

 

Figure 10: Training and Validation Metrics Over 50 Epochs 

5. Discussion  

The primary objective of this research was to utilize the ERAPNet model, incorporating both 

Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) architectures, to detect 

ERAP1 protein within diverse protein families. This study aimed to address the need for an accurate 

method to identify ERAP1, which plays a crucial role in antigen processing and presentation, particularly 

in the context of diseases like cancer. 

Both CNN and LSTM models demonstrated commendable performance. The CNN model excelled 

in detecting ERAP1 in spectral images, achieving over 70% accuracy in specific protein categories. The 

LSTM model, on the other hand, effectively analyzed amino acid sequences, achieving similar accuracy 

levels in different categories. These outcomes align with the initial expectations, showcasing the models' 

suitability for their respective data types. 

However, the divergence between training and validation metrics suggests potential overfitting, 

especially in the CNN model. This could be related to the model's architecture or training parameter 

settings. Fine-tuning these aspects could mitigate overfitting and enhance generalization. 

These findings have practical value, as the AI-driven approach can streamline the preliminary 

screening process, reducing the workload associated with wet experiments. The model's ability to provide 

valuable reference indicators for protein structure design also supports targeted and efficient research. 

Despite the promising results, limitations include the dataset's size and diversity, which may affect 

the models' generalization to unseen data. Future research should focus on collecting larger and more 
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diverse datasets and fine-tuning model parameters. Incorporating attention mechanisms and deep 

learning techniques could further improve accuracy. 

Overall, the results highlight the complementary strengths of the CNN and LSTM models. The CNN 

model excels in handling spectral images, while the LSTM model is effective in processing amino acid 

sequences. Model 3 (LSTM) appears to be the more reliable choice for detecting ERAP1 protein in 

diverse protein families. 

6. Conclusion  

This study utilized the ERAPNet model, using both CNN and LSTM architectures, to identify ERAP1 

in diverse protein families. The LSTM model demonstrated consistent accuracy in predicting 

OXIDOREDUCTASE and TRANSFERASE instances, while the CNN model excelled in predicting 

HYDROLASE and Immune System instances, despite potential overfitting. The findings have significant 

implications for understanding ERAP1's role in diseases like cancer and can aid in developing targeted 

therapies. 

Future work should explore integrating advanced modules and techniques, such as transfer learning 

and domain-specific feature extractors, to enhance model performance. Semi-supervised learning 

approaches could also improve classification accuracy by leveraging unlabeled protein sequences. These 

improvements will refine predictive models, enhancing their ability to discern nuanced structural patterns 

within protein families and advancing our understanding of their functional implications. 
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