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Abstract: The dynamic response perturbation of structures due to elastic waves is typically associated 
with energy. Using MATLAB's powerful numerical simulation capabilities, we calculated the energy flux 
density for SH waves incident on a circular cavity and normalized the results. The findings indicate that 
the incident frequency significantly impacts the energy flux density. High-frequency waves, despite their 
rapid local variations, experience rapid energy attenuation, resulting in a more dispersed overall energy 
flux density distribution. In contrast, low-frequency waves exhibit a relatively smooth energy flux density 
distribution. These research outcomes are crucial for enhancing the safety and stability of underground 
structures. 
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1. Introduction 

Elastic waves are a type of wave phenomenon generated by external disturbances in materials, with 
their waveforms having widespread applications in engineering, geology, physics, and materials science. 
These applications include the dynamic response of structures to seismic waves [1][2] and the monitoring 
of material damage using ultrasonic waves. During the propagation of elastic waves, the transmission 
and distribution of the carried energy play critical roles in structural safety assessments and damage 
monitoring. Energy density describes the energy stored per unit volume, while energy flux density 
describes the energy passing through a unit area per unit time. Energy density serves as a key parameter 
for characterizing the energy transmission of elastic waves, directly reflecting the distribution and 
variation of energy within the medium. 

Numerical simulations can overcome many limitations of experimental research and accurately 
predict wave behavior and energy transmission processes under complex conditions. MATLAB, as a 
powerful numerical computation and simulation tool, plays an indispensable role in the study of elastic 
waves. It offers a wealth of numerical computation functions and powerful data processing capabilities, 
enabling the rapid and accurate solution of complex partial differential equations and the simulation of 
elastic wave propagation in various media[3]. Furthermore, MATLAB's robust visualization capabilities 
allow for the intuitive presentation of elastic wave propagation processes and energy density distributions, 
providing convenient analytical tools. 

2. Elastic wave theory 

Elastic waves can be categorized into longitudinal waves (P-waves) and transverse waves (S-waves) 
based on the propagation direction relative to the direction of vibration. Transverse waves can further be 
divided into SH-waves and SV-waves. SH-waves are a type of transverse wave where the direction of 
vibration is perpendicular to the direction of propagation and vibrates horizontally. Due to their unique 
propagation characteristics, SH-waves have been widely applied in seismic wave analysis, ultrasonic 
testing, and materials science research. In isotropic, homogeneous, and purely elastic media, SH-waves 
satisfy the geometric equation, motion equation, and constitutive equation. Through the displacement 
method, the motion equation expressed by the displacement function can be derived. By substituting the 
geometric equation into the constitutive equation and performing spatial partial differentiation, the vector 
form of the motion equation can be obtained: 
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2( 2 ) ( )ρ λ µ µ= + ∇ − ∇× ∇× +u u u f                         (1) 

Where u is the displacement potential function,∇ is the Laplace operator, ρ is the density of the 
medium, and λ and μ are Lamé constants. 

According to Helmholtz's theorem, any vector field u can be expressed as the sum of the gradient of 
a scalar field φ and the curl of a vector field ψ: 

, 0p s ϕ= ∇ += ∇+ ∇×u u u ψ ψ =
                        (2) 

Substituting equation (2) into equation (1) and further analyzing, we can derive: 
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Where cp and cs are the wave speeds of P-waves and S-waves, respectively, with the speed of P-waves 
being greater than that of S-waves. The simple harmonic wave displacement expression for SH-waves 
vibrating with time is generally: 

cos ( )u A k x ct= −                                 (4) 

In the above equation, the wave number k=ω/c, where ω is the angular frequency; A is the amplitude, 
x represents the projection of a spatial point in the direction n f wave propagation; c is the wave speed, 
specifically cs; and t is the time.  

3. Elastic wave energy flux density 

When elastic waves propagate into an elastic medium, they cause deformation of the medium's 
microscopic units, resulting in elastic potential energy. Simultaneously, each microscopic unit oscillates 
around a certain equilibrium position, generating kinetic energy. In the process of elastic wave 
propagation, there is both energy inflow and outflow for the elastic medium, meaning wave propagation 
is accompanied by energy transfer. The elastic potential energy per unit volume in an elastic medium is 
referred to as the elastic potential energy density wu, and the kinetic energy per unit volume is called the 
kinetic energy density wk, Where e is the strain, the expression is: 
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The total energy density w is the sum of the elastic potential energy density wu and the kinetic energy 
density wk. For an elastic wave incident on a uniform elastic medium, analyzing the time rate of change 
of energy flow is crucial. Therefore, we calculate the time rate of change for both the elastic potential 
energy density wu and the kinetic energy density wk respectively. The time rate of change of the elastic 
potential energy density wu is: 
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The time rate of change of the elastic potential energy density wk is: 
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Adding equations (6) and (7) yields the time rate of change of the mechanical energy density. The 
energy flux density vector field I is defined as: 
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Applying the time rate of change of the mechanical energy density to equation (8), we get: 
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4. MATLAB example implementation 

For a cylindrical cavity with a radius a, an SH wave incident from the positive xxx-direction, the 
model diagram is shown in Figure 1: 

 
Figure 1: Model incidence diagram 

In this scenario, it is necessary to establish a cylindrical coordinate system and transform the incident 
wave equation (4) into the function Ur in cylindrical coordinates. Using the wave function expansion 
method [4] and the integral definition of the Bessel function, U contains the Bessel function. Due to 
diffraction phenomena when waves encounter different media, scattered waves are generated[5]. The 
scattered wave is also an SH wave, and its functional expressions Ur and Us are: 
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Where A0 is the constant amplitude, r is the cavity radius, H（1）
n (kr) is the n-th order Hankel function 

of the second kind, and J（1）
n (kr) is the first kind Bessel function. Here, εn=2(n≠0);e-iωt is the time factor. 

Adding the two equations in (10) yields the total wave field U, from which the corresponding strain 
and stress can be derived. Additionally, the boundary condition, i.e., no stress on the cavity surface 
(σrz=0), is applied to the stress obtained from the total wave field to solve for An.For computational 
convenience, let A0=1,a=3.5, with incident wave frequencies f=50 Hz ,100Hz,150 Hz, SH wave speed 
cs=3500m/s. 

According to equation (8), it is necessary to determine the stress and the corresponding displacement. 
For this example, the cavity only exhibits displacement u3. Using MATLAB, the radial and angular partial 
derivatives of the displacement U on the cavity surface are calculated. Combining with equation (8), the 
energy flux density Iu on the cavity surface can be obtained: 
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It is evident that the final energy flux density is positively correlated with the shear modulus μ, which 
may result in larger numerical values. Therefore, normalization is performed based on these results, and 
the normalized results are compared with the energy flux density of the incident wave on the cavity 
surface, denoted as If. This method effectively compares the impact of the cavity on the incident wave, 
eliminating absolute value deviations due to parameter selection, making the results more intuitive and 
comparable. The final calculation is shown in Figure 2: 

 
Figure 2: If distribution of relative energy flux density 

It is clear that as the frequency increases, the local variation in relative energy flux density becomes 
more pronounced. This is due to stronger scattering and interference effects at the cavity edge for high-
frequency waves, leading to significant local peaks and valleys in relative energy flux density. Low-
frequency waves, due to their longer wavelengths, exhibit weaker scattering effects around the cavity, 
resulting in a smoother distribution of relative energy flux density and a more uniform energy distribution. 
The relative energy flux density distribution on the cavity surface shows different characteristics under 
incident waves of different frequencies. The figure shows that the energy flux density at certain locations 
for mid-frequency waves (100 Hz) is significantly higher than that for high-frequency waves (150 Hz), 
possibly because the mid-frequency wave has a moderate wavelength, which neither distributes smoothly 
like the low-frequency wave nor attenuates rapidly and fluctuates sharply like the high-frequency wave, 
thus forming higher energy flux density at certain locations. This is closely related to wave attenuation, 
scattering effects, and interference patterns. Although high-frequency waves have stronger scattering and 
interference effects, their energy may also attenuate faster, resulting in lower energy flux density at some 
locations compared to mid-frequency waves. Low-frequency waves, due to their longer wavelengths, 
have a more uniform energy flux density distribution, with less pronounced local maxima and minima. 

Furthermore, at θ=π/2 and 3π/2, the energy flux density reaches its minimum. This is because 
destructive interference between the incident and scattered waves may occur at these locations, leading 
to a reduction in local relative energy flux density. Additionally, due to the symmetry of the circular 
cavity, these angles may be symmetrical points of energy distribution during wave propagation and 
scattering, resulting in minimum relative energy flux density distribution. 

5. Conclusion 

This study investigates the relative energy flux density distribution of SH waves of different 
frequencies incident on a deeply buried circular cavity, with numerical simulations conducted using 
MATLAB. The results reveal the relative energy flux distribution at various angles and the influence of 
frequency on this distribution. The findings indicate that selecting an appropriate frequency can 
effectively control and optimize the energy flux density distribution in practical engineering applications. 
This has significant implications for the design of underground structures and seismic wave protection. 

0

30

60

90

120

150

180

210

240

270

300

330

0.0

0.4

0.8

1.2

1.6

2.0

0.0

0.4

0.8

1.2

1.6

2.0

If

 f=50Hz
 f=100Hz
 f=150Hz



International Journal of Frontiers in Engineering Technology 
ISSN 2706-655X Vol.6, Issue 5: 47-51, DOI: 10.25236/IJFET.2024.060507 

Published by Francis Academic Press, UK 
-51- 

References  

[1] Sun Jinshan, Zuo Changqun, Zhou Chuanbo, et al. Dynamic disturbance characteristics of blasting 
stress waves on adjacent circular tunnels [J]. Journal of Vibration and Shock, 2015, 34(18): 7-12+18.  
[2] Lu Shiwei, Zhou Chuanbo, Liu Hongyu, et al. Law of blasting vibration in rock masses with a single 
layer interface structure [J]. Engineering Blasting, 2021, 27(02): 29-34. 
[3] Zhang Maochen, Lu Shiwei, Zhou Chuanbo, et al. Analysis of the propagation characteristics of 
cylindrical SH waves in soil-rock strata [J]. Engineering Blasting, 2023, 29(04): 35-42. 
[4] Mao C C, Pao Y H. The diffraction of elastic waves and dynamic stress concentrations [M]. New 
York: Crane, Russak &Company Inc.,1972  
[5] Liu Zhongxian, Liang Jianwen, Zhang He. Scattering of plane P-waves and SV-waves by a lined 
cavity in an elastic half-space (I)—Method [J]. Journal of Natural Disasters, 2010, 19(4): 71-76. 


	1. Introduction
	2. Elastic wave theory
	3. Elastic wave energy flux density
	4. MATLAB example implementation
	5. Conclusion
	References

