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Abstract: The Mumford-Shah (MS) model is an important tool for data segmentation. The previous 

research on piecewise constant MS segmentation model with total variation regularization pursued the 

shortest length of boundaries. By contrast, in this article, we propose a novel piecewise smooth Mumford-

Shah segmentation model by utilizing the total generalized variation (TGV) regularization, which 

assumes that the feature function of a data can be approximated by the sum of a piecewise constant 

function and a smooth function. The newly introduced TGV regularized piecewise smooth model is 

effective in segmenting point cloud surfaces with irregular structures and getting the optimal boundaries 

rather than the shortest boundaries. We solve the piecewise smooth MS model by alternating 

minimization and alternating direction method of multipliers (ADMM), where the subproblems are solved 

by either the closed-form solution or numerical packages. Our algorithm is discussed from several 

aspects, and comparisons with the piecewise constant MS model. Experimental results show that our 

TGV regularized segmentation method can yield competitive results when compared to other approaches. 

Keywords: Point cloud surface segmentation, Total generalized variation, The Mumford-Shah model, 

ADMM 

1. Introduction 

The point cloud data is usually acquired from the surfaces of a physical object, which is a fundamental 

understanding of the physical structure. With the improvement of scanning technology, the amount of 

point cloud data is increasing. Modeling of data will face many problems such as large storage space, 

low computational efficiency, poor computational effect, and so on. Therefore, for point cloud data with 

large size and complex structures, it needs to be preprocessed via segmentation and fragmentation 

algorithms in order to be used effectively in subsequent applications such as parameterization, 

simplification, shape retrieval, multiresolution modeling, skeleton extraction, and so on. As the point 

cloud lacks of topological connection, the point cloud segmentation algorithm has greater challenges. So 

far, a wide variety of point cloud segmentation algorithms have been developed. The interested reader 

can refer to several excellent surveys [1,2] as well as some recent developments [3,4,5,6,7,8,9]. 

For a given point cloud surface 𝑆 with region Ω, point cloud segmentation aims to decompose the 

data region Ω  into 𝐊  disjoint connected piecewise smooth subsets Ω𝑘  with a union of smooth 

boundaries Γ such that 

Ω = Ω1 ∪ Ω2 ∪ …∪ ΩK ∪ Γ, Ω𝑖 ∩ Ω𝑗 = ∅. 

The pioneered Mumford-Shah (MS) segmentation model [10] has been successfully applied to image 

segmentation and mesh surface segmentation [11,12,13,14,15,16,17,18], which tries to find an optimal 

piecewise smooth approximation 𝐮 of 𝑓 by the following minimization problem: 

min
𝐮,Γ 

|Γ| + 𝛽 ∫ |∇𝐮|2𝑑𝑥
 

Ω\Γ
+ 𝛼 ∫ |𝑓 − 𝐮|2𝑑𝑥

 

𝛺
,                       (1) 

where 𝑓 is the input feature function of 𝑆, 𝐮 is a piecewise smooth approximation of 𝑓, such that 

𝐮 varies smoothly within each Ω𝑖 and discontinuously across the boundaries of Ω𝑖, and |Γ| stands for 

the total boundary length. 

To better deal with images with intensity inhomogeneity and surfaces with local uneven regions, the 
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following model is proposed by decomposing a piecewise smooth function into a piecewise constant 

function and a smooth function. 

𝐼(𝑥) = 𝑏(𝑥)𝜇𝑖 + 𝑛(𝑥), 𝑥 ∈ Ω,                           (2) 

where 𝑏(𝑥) is a smooth function, and 𝑛(𝑥) is the noise. Based on (2), Li et al. [15] built up the 

following piecewise smooth MS model by utilizing a non-convex 𝐿𝑝(0 ≤ 𝑝 ≤ 1) regularity term and 

laplace smooth term. 

min
{𝑏,𝐮,𝜇} 

∫ |∇𝐮|𝑝
 

Ω
𝑑𝑥 +

𝛽

2
∫ |∆b|2𝑑𝑥

 

Ω
+

𝜂

2
∫ |𝑏|2𝑑𝑥

 

Ω
+ 𝛼 ∑ ∫ ⟨𝑓𝑘, 𝐮⟩𝑑𝑥

 

Ω𝑘
𝑘 ,       (3) 

where 𝑓 = (𝑓1, 𝑓2, … , 𝑓𝐊) with 𝑓𝑘 = (𝐼 − 𝑏 − 𝜇𝑘)
2. 

The above piecewise smooth MS models have been demonstrated to be effective in dealing with 

images with intensity inhomogeneity. To the best of our knowledge, there are few research discussing 

piecewise smooth MS model techniques for point cloud segmentation. Inspired by the research work of 

piecewise smooth MS models in image segmentation, in the paper, we focus on studying piecewise 

smooth MS model for point cloud segmentation. Moreover, the existing Mumford-Shah models try to 

obtain the shortest length of boundaries |Γ| with the total variation regularization (TV). However, as the 

surface is irregular, the shortest boundaries sometimes are not necessarily the optimal segmentation 

boundaries. Recently, the total generalized variation regularization (TGV) on surfaces [19,20] has been 

proved to be able to alleviate the stair-case effects of TV regularization effectively. Based on the good 

properties of TGV penalizing the one order discontinuity of a function. We consider total generalized 

variation regularized piecewise smooth MS point cloud segmentation method. 

The previous research on piecewise constant MS segmentation method with TV regularization pursue 

the shortest length of boundaries. Different from previous work, the goal of this paper is to investigate 

the piecewise smooth Mumford-Shah model for point cloud surface segmentation with the TGV 

regularization trying to obtain the optimal boundaries instead of the shortest boundaries. The TGV 

regularization containing first order TV and second order differential operator is first presented. With this 

regularization in hand, we devise the TGV regularized piecewise smooth MS point cloud segmentation 

method. The optimization problem is solved by alternating minimization and alternating direction 

method of multipliers. Our algorithm is discussed and compared to several state-of-the-art methods in 

various aspects. Experimental results show that our piecewise smooth MS method. 

The remainder of the paper is organized as follows. Section 2 gives some notations, differential 

operators on point cloud surface and the definition of TGV regularization. In section 3, we introduce our 

TGV regularized piecewise smooth MS point cloud segmentation method. Section 4 presents the details 

of solving our segmentation method. In section 5, we present our experiments and comparisons. Section 

6 concludes the paper. 

2. Total Generalized Variation on Point Cloud Surface 

In the section, we introduce some notations followed by differential operators and total generalized 

variation regularization on point cloud surfaces. 

2.1. Notations 

Without loss of generality, we denote a discrete point cloud surface sampled from a smooth manifold 

as 𝑆 = 𝑣𝑖 ∈ ℝ3, 𝑖 = 0,1, … , N𝑠 − 1, where N𝑠 is the number of vertices. The local mesh structure of 𝑣𝑖 

is denoted as 𝒢(𝑖) = (𝑣𝑖 ,𝒩(𝑖), 𝒯(𝑖)), where 𝒩(𝑖) is the neighbour point set of 𝑣𝑖 obtained by the k-

Nearest Neighbour (kNN) method, and 𝒯(𝑖)  is the triangles set containing 𝑣𝑖  achieved by the 

technique in [21]. Let {𝜏𝑖 , 𝑖 = 0,1, … , T𝑠 − 1} be the set of triangles and T𝑠 is the number of triangles. 

In addition, for each vertex 𝑣𝑖 , a linear basis function is denoted as 𝜙𝑖(𝑣𝑗) = 𝛿𝑖𝑗 , where 𝛿𝑖𝑗  is the 

Kronecker delta with 𝒯(𝑖) being the local support. 

2.2. Differential operators on point cloud surface 

For self-inclusion, we present the definitions of differential operators on point cloud surface (see 

[16,20] for details). 

We first denote the space 𝐔𝑆 = 𝐑 N𝑆×𝑛. For 𝐮 = (𝐮0, … , 𝐮𝜏, … , 𝐮N𝑆−1) ∈ 𝐔𝑆 , 𝐮𝑖 = (𝑢𝑖,1, … , 𝑢𝑖,𝑛), is 
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a 𝑛-dimensional vector. We then have 𝐮 on 𝑆. 

u = ∑ u𝑖0≤𝑖≤N𝑆−1 𝜙𝑖 .                                 (4) 

For a triangle 𝜏 = (𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘), the gradient operator ∇ restricted on 𝜏 has the following form 

(∇𝐮)𝜏 = 𝐮𝑖(∇𝜙𝑖)𝜏 + 𝐮𝑗(∇𝜙𝑗)𝜏
+ 𝐮𝑘(∇𝜙𝑘)𝜏,                   (5) 

where (∇𝜙𝑖)𝜏 = (𝑣𝑖 − 𝑂) ‖𝑣𝑖 − 𝑂‖2⁄  is a piecewise constant vector (𝑂 is an intersection point of 

straight lines 𝑣𝑖𝑂 and 𝑣𝑖𝑣𝑗 satisfying 𝑣𝑖𝑂 ⊥ 𝑣𝑗𝑣𝑘). 

Based on (4) and (5), the gradient operator ∇𝐮 on 𝑆 is given as follows 

∇𝐮 = ∑ 𝐮𝑖0≤𝑖≤N𝑆−1 ∇𝜙𝑖 = ∑ 𝐮𝑖 ∑ (∇𝜙𝑗)𝜏𝜏∈𝒯(𝑖)𝑖 = ∑ (∇𝐮)𝜏0≤𝜏≤T𝑆−1 .          (6) 

We then denote the range of ∇ as 𝐕𝑆. For ∀𝐩 ∈ 𝐕𝑆, as the adjoint operator of ∇ is −div, we then 

have the following divergence operator for 𝑆. 

(div(𝐩))
𝑖
= −

1

𝐴𝑖
∑ 〈𝐩𝜏, (∇𝜙𝑖)𝜏〉𝜏∈𝒯(𝑖) 𝐴𝜏,                      (7) 

where 𝐴𝑖 =
1

3
∑ 𝐴𝜏𝜏∈𝒯(𝑖) , and 𝐴𝜏 is the area of 𝜏. 

Generally, we can get the following weighted divergence operator (div(𝑇𝐩))
𝑖
 

(div(𝑇𝐩))
𝑖
= −

1

𝐴𝑖
∑ 〈𝑇𝐩𝜏, (∇𝜙𝑖)𝜏〉𝜏∈𝑇(𝑖) 𝐴𝜏,                     (8) 

where 𝑇 is a 3 × 3 matrix. When 𝑇 is identity matrix, (div(𝑇𝐩))
𝑖
= (div(𝐩))

𝑖
. 

Based on the div operator (7) and (8), for 𝐩 ∈ 𝐕𝑆, we present the definition of (∇𝐩)𝑖 restricted on 

each 𝑣𝑖 

(∇𝐩)𝑖 =

[
 
 
 
(div(𝑇11𝐩))

𝑖
(div(𝑇12𝐩))

𝑖
(div(𝑇13𝐩))

𝑖

(div(𝑇21𝐩))
𝑖

(div(𝑇22𝐩))
𝑖

(div(𝑇23𝐩))
𝑖

(div(𝑇31𝐩))
𝑖

(div(𝑇32𝐩))
𝑖

(div(𝑇33𝐩))
𝑖]
 
 
 
,               (9) 

where 𝑇𝑖𝑗 = [𝑡𝑚𝑛] is a 3 × 3 matrix with 𝑡𝑚𝑛 = 𝑓(𝑥) = {
1, 𝑚 = 𝑖, 𝑛 = 𝑗,
0,                 𝑒𝑙𝑠𝑒,

    𝑖, 𝑗 = 0,1,2. 

For ∀𝐩 ∈ 𝐕𝑆, we then introduce the symmetrical space 𝐖𝑆, which is the range of 
∇𝐩+(∇𝐩)𝑇

2
. 

2.3. Total Generalized Variation Regularization (TGV) 

According to above differential operator, we present the following TGV regularization on point cloud 

surface. 

For 𝐮 ∈ 𝐔𝑆, 𝐯 ∈ 𝐕𝑆, 𝐰 ∈ 𝐖𝑆, we then have 

TGV(𝐮) = min
𝐯

‖∇𝐮 − 𝐯‖1 + 𝛼0‖ℰ(𝐯)‖1

                                                   = ∑ ∑ |(∇𝐮 − 𝐯)𝜏𝑘|𝐴𝜏
𝑛
𝑘=1𝜏 + 𝛼0 ∑ ∑ |ℰ(𝐯)𝑖𝑘|𝐴𝑖

𝑛
𝑘=1𝑖 ,

             (10) 

where ℰ(𝐯) =
∇𝐯+∇𝐯𝑇

2
 is the symmetrical partial differential operator. 

The above TGV regularization has been applied for mesh denoising [20]. As point cloud surface is 

irregular and lack of connection structure, the existing TGV model has rarely been generalized to point 

cloud surface. In addition, the piecewise smooth Mumford-Shah (MS) segmentation model with total 

variation (TV) regularization has been proved to be able to deal with images with intensity 

inhomogeneity effectively [15,22,23]. However, the piecewise smooth MS model is also rarely applied 

to point cloud segmentation. In the following, we focus on TGV regularized piecewise smooth MS mesh 

segmentation method to point cloud segmentation. 
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3. TGV regularized piecewise smooth MS point cloud segmentation method 

3.1. The feature space 𝒇 

For a point cloud surface 𝑆 to be divided into 𝐊 disjoint parts, the spectral space is an effective way 

to describe the structure of 𝑆 , which is consisted of the eigenvectors of the Laplacian matrix 

[17,18,24,25]. In the paper, we consider using the spectral space to define the feature space 𝒇 . 

Specifically, the Laplacian matrix 𝐿 = [𝐿𝑖𝑗] of 𝑆 is given as follows: 

𝐿𝑖𝑗 = {

−𝜔𝑖𝑗 , 𝑖 ≠ 𝑗 and 𝜏𝑖 , 𝜏𝑗 share an edge,

∑ 𝜔𝑖,𝑘,𝑘  𝑖 = 𝑗 and 𝑘 ∈ 𝒩𝑖 ,                      

0,              otherwise,                                 

                  (11) 

where 𝜔𝑖𝑗 = 𝑙𝑒exp (−
𝑑(𝑛𝑖,𝑛𝑗)

𝑑
), 𝑑 being the average of 𝑑(𝜏𝑖 , 𝜏𝑗) over all edges, and 𝑑(𝑛𝑖 , 𝑛𝑗) =

𝜎‖𝑛𝑖 − 𝑛𝑗‖ with 𝑛𝑖 being the normal of vertices 𝑣𝑖. the parameter 𝜎 = 1 for a concave edge and 𝜎 =

0.1  for a convex edge. Suppose {𝑙0, 𝑙1, … , 𝑙𝐾}  are the eigenvectors of the 𝐾 + 1  smallest   

eigenvalues of 𝐿. We then define the feature space as 𝒇 = {𝑙1, 𝑙2, … , 𝑙𝐾−1}. 

3.2. The proposed point cloud segmentation method 

By introducing a multi-continuous label 𝐮 ∈ 𝐶𝐮 = {𝐮𝑖|𝑢𝑖,𝑘 ≥ 0,∑ 𝑢𝑖,𝑘
𝐊
𝑘=1 = 1, ∀𝑖} ⊂ 𝐔𝑆 , we then 

obtain the following piecewise smooth MS point cloud segmentation optimization problem. 

min
𝐮𝛜𝑪𝐮,𝒃, 𝜇 

TGV(𝐮)+
𝛽

2
‖∆𝐛‖𝐔𝑆

2 +
𝜂

2
‖𝐛‖𝐔𝑆

2 +
𝛼

2
⟨𝐮, 𝑠(𝐟, 𝐛, 𝜇)⟩𝐔𝑆

,             (12) 

where 𝑠(𝐟, 𝐛, 𝜇) = {𝑠𝑖(𝐟, 𝐛, 𝜇)}  with 𝑠𝑖(𝐟, 𝐛, 𝜇) = {‖𝐟𝑖 − 𝐛𝑖 − 𝜇𝑘‖
2}𝑘=1

𝐊 , 𝐟  can be normals or 

eigenvectors of a Laplace matrix, and 𝛽, 𝜂, 𝛼 are positive parameters. 

3.3. Alternating minimization method (AMM) for solving (12) 

By introducing the following function: 

𝜒(𝐮) = {
0,             𝐮 ∈ 𝑪𝐮

+∞, 𝐮 ∉ 𝑪𝐮
,                            (13) 

The minimization problem (12) can be solved alternately by the following two optimization problems. 

 For fixed 𝜇: 𝐮, 𝐛 can be obtained by 

min
𝐮,𝐛, 𝜇 

TGV(𝐮)+
𝛽

2
‖∆𝐛‖𝐔𝑆

2 +
𝜂

2
‖𝐛‖𝐔𝑆

2 +
𝛼

2
⟨𝐮, 𝑠(𝐟, 𝐛, 𝜇)⟩𝐔𝑆

+ 𝜒(𝐮),          (14) 

which is non-differentiable, and can be efficiently solved by augmented Lagrangian method (ALM) 

or alternating direction multiplier method (ADMM) [26,27,28]; see section 4 for details. 

 For fixed 𝐮, 𝐛: 𝜇 can be obtained by 

min
𝜇

𝛼

2
⟨𝐮, 𝑠(𝐟, 𝐛, 𝜇)⟩𝐔𝑆

, 

and is exactly 

𝜇𝑘 =
∑ 𝑢𝑘,𝑖(𝐟𝑖−𝐛𝑖)𝑖

∑ 𝑢𝑘,𝑖𝐴𝑖𝑖
, 𝑘 = 0,1, … , 𝐊.                         (15) 

In our implementation, the alternating minimization method is listed in Algorithm 1. 

Algorithm 1 AMM for solving (12) 

1. Initialization: 

1.1 𝜇−1: computed according to the technique in [18]; 

1.2 𝐮−1: obtained by 𝜇−1; 

1.3 𝐯−1 = 0, 𝐛−1 = 0, 𝐩−1 = 0, 𝐪−1 = 0, 𝐳−1 = 0, λ𝐩
−1 = 0, λ𝐪

−1 = 0, λ𝐳
−1 = 0, 𝑙 = −1; 

2. Repeat 

2.1 For fixed 𝜇𝑙−1, computing (𝐮𝑙 , 𝐯𝑙 , 𝐛𝑙 , 𝐩𝑙 , 𝐪𝑙 , 𝐳𝑙 , λ𝐩
𝑙 , λ𝐪

𝑙 , λ𝒛
𝑙 ) by solving (14) through Algorithm 2; 

2.2 For fixed (𝐮𝑙 , 𝐛𝑙), computing 𝜇𝑙 from (15); 

Until(‖𝑢𝑛+1 − 𝑢𝑛‖𝐔𝑺
< 10−𝟓). 

3. Classify 𝐮 by the method in [29]. 
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4. Algorithm details for solving (14) 

In the following, we present the details for solving (14). By introducing three auxiliary variables 𝐩 ∈
𝐕𝑆 and 𝐪, 𝐳 ∈ 𝐔𝑆. The problem (14) with 𝑝 = 2 can be further written as 

min
𝐮,𝐛∈𝐔𝑆,𝐯∈𝐕𝑆,
𝐩∈𝐕𝑆,𝐪,𝐳∈𝐔𝑆

‖𝐩‖1 + 𝛼0‖𝐪‖1 +
𝛽

2
‖∆𝐛‖𝐔𝑆

2 +
𝜂

2
‖𝐛‖𝐔𝑆

2 +
𝛼

2
⟨𝐳, 𝑠(𝐟, 𝐛, 𝜇)⟩𝐔𝑆

+ 𝜒(𝐳) ,
    (16) 

s. t.  𝐩 = ∇𝐮 − 𝐯, 𝐪 = ℰ(𝐯), 𝐳 = 𝐮. 

To solve (16) effectively, we define the following augmented Lagrangian functional: 

ℒ(𝐮, 𝐯, 𝐛, 𝐩, 𝐪, 𝐳; 𝜆𝐩, 𝜆𝐪, 𝜆𝐳) = ‖𝐩‖1 + 𝛼0‖𝐪‖1 +
𝛽

2
‖∆𝐛‖𝐔𝑆

2 +
𝜂

2
‖𝐛‖𝐔𝑆

2

                       +
𝛼

2
⟨𝐳, 𝑠(𝐟, 𝐛, 𝜇)⟩𝐔𝑆

+ 𝜒(𝐳)

                                                             + (𝜆𝐩, 𝐩 − (𝛁𝐮 − 𝐯))
𝐕𝑆

+
𝑟𝐩

2
‖𝐩 − (𝛁𝐮 − 𝐯)‖𝐕𝑆

2

                                             + (𝜆𝐪, 𝐪 − ℰ(𝐯))
𝐔𝑆

+
𝑟𝐪

2
‖𝐪 − ℰ(𝐯)‖𝐔𝑆

2

                               +(𝜆𝐳, 𝐳 − 𝐮)𝐔𝑆
+

𝑟𝐳

2
‖𝐳 − 𝐮‖𝐔𝑆

2 ,

        (17) 

where 𝑟𝐩, 𝑟𝐪 and 𝑟𝐳 are positive parameters. 

The solution of (17) is equivalent to the following saddle-point problem 

max
𝜆𝐩,𝜆𝐪,𝜆𝐳

min
𝐮,𝐯,𝐛,
𝐩,𝐪,𝐳

ℒ(𝐮, 𝐯, 𝐛, 𝐩, 𝐪, 𝐳; 𝜆𝐩, 𝜆𝐪, 𝜆𝐳) ,
                      (18) 

which can be iteratively solved by splitting (18) into the following several subproblems. 

4.1. Sub-minimizations with respect to 𝒖, 𝒗, 𝒃 

The 𝐮, 𝐯, 𝐛 sub-problems are reformulated as follows 

min
𝐮∈𝐔𝑆

(𝜆𝐩, −∇𝐮)
𝐕𝑆

+ (𝜆𝐳, −𝐮)𝐔𝑆
+

𝑟𝐩

2
‖𝐩 − (𝛁𝐮 − 𝐯)‖𝐕𝑆

2 +
𝑟𝐳

2
‖𝐳 − 𝐮‖𝐔𝑆

2
         (19) 

min
𝐯∈𝐕𝑆

(𝜆𝐪, −ℰ(𝐯))
𝐔𝑆

+ (𝜆𝐩, 𝐯)
𝐕𝑆

+
𝑟𝐪

2
‖𝐪 − ℰ(𝐯)‖𝐔𝑆

2 +
𝑟𝐩

2
‖𝐩 − (𝛁𝐮 − 𝐯)‖𝐕𝑆

2
      (20) 

min
𝐛∈𝐔𝑆

𝛼

2
⟨𝐳, 𝑠(𝐟, 𝐛, 𝜇)⟩𝐔𝑆

+
𝛽

2
‖∆𝐛‖𝐔𝑆

2 +
𝜂

2
‖𝐛‖𝐔𝑆

2 .                  (21) 

The above sub-problems are quadratic programming problems, and can be solved by various 

numerical packages, such as MKL, Taucs and Eigen. 

4.2. Sub-minimizations with respect to 𝒑, 𝒒, 𝒛 

Specifically, the 𝐩, 𝐪, 𝐳 sub-problems can be reformulated as follows and solved with the closed 

form solutions. 

 For 𝐩 sub-problem, we have 

min
𝐩∈𝐕𝑆

‖𝐩‖1 + (𝜆𝐩, 𝐩)
𝐕𝑆

+
𝑟𝐩

2
‖𝐩 − (∇𝐮 − 𝐯)‖𝐕𝑆

2 .                  (22) 

It has the following closed form solution 

∀𝑒, 𝐩𝑒 = {
(1 −

1

𝑟𝐩|𝐰𝑒|
)𝐰𝑒 , |𝐰𝑒| >

1

𝑟𝐩
,

0,                                      |𝐰𝑒| ≤
1

𝑟𝐩
,
                     (23) 

where 𝐰𝑒 = (∇𝐮 − 𝐯 −
𝜆𝐩

𝑟𝐩
) |𝑒. 

 For 𝐪 sub-problem, we have 
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min
𝐮∈𝐔𝑆

𝛼0‖𝐪‖1 + (𝜆𝐪, 𝐪)
𝐔𝑆

+
𝑟𝐪

2
‖𝐪 − ℰ(𝐯)‖𝐔𝑆

2 ,                    (24) 

which has the following closed form solution 

∀𝜏, 𝐪𝑖 = {
(1 −

𝛼0

𝑟𝐪|𝐜𝑖|
) 𝐜𝑖 , |𝐜𝑖| >

𝛼0

𝑟𝐪
,

0,                                   |𝐜𝑖| ≤
𝛼0

𝑟𝐪
,
                     (25) 

where 𝐜𝑖 = ℰ(𝐯) −
𝜆𝐪

𝑟𝐪
. 

 For 𝐳 sub-problem, we get 

min
𝐳∈𝐔𝑆

𝛼

2
⟨𝐳, 𝑠(𝐟, 𝐛, 𝜇)⟩𝐔𝑆

+ 𝜒(𝐳) + (𝜆𝐳, 𝐳)𝐔𝑆
+

𝑟𝐳

2
‖𝐳 − 𝐮‖𝐔𝑆

2 ,             (26) 

It can be solved through 

z = Proj𝐶u
(u −

𝛼𝑠(f,b,𝜇)+𝜆z

𝑟z
) ,                            (27) 

which can be calculated via Michelot's algorithm [30]. 

The whole algorithm for solving (18) is listed in Algorithm 2. 

Algorithm 2 ADMM for solving (18) 

1. Initialization: 

1.1 𝐮𝑙,0 = 𝐮𝑙−1, 𝐯𝑙,0 = 𝐯𝑙−1, 𝐛𝑙,0 = 𝐛𝑙−1, 𝐩𝑙,0 = 𝐩𝑙−1, 𝐪𝑙,0 = 𝐪𝑙−1, 𝐳𝑙,0 = 𝐳𝑙−1; 

1.2 λ𝐩
𝑙+1,0 = λ𝐩

𝑙 , λ𝐪
𝑙+1,0 = λ𝐪

𝑙 , λ𝒛
𝑙+1,0 = λ𝒛

𝑙 , 𝑘 = 0; 

2. Repeat 

2.1 𝐳-subproblem: For fixed (λ𝒛
𝑙+1,𝑘, 𝐮𝑙,𝑘, 𝐛𝑙,𝑘), compute 𝐳𝑙,𝑘+1 from (27); 

2.2 𝐮-subproblem: For fixed (λ𝐩
𝑙+1,𝑘, λ𝒛

𝑙+1,𝑘, 𝐩𝑙,𝑘, 𝐯𝑙,𝑘, 𝐳𝑙,𝑘+1), compute 𝐮𝑙,𝑘+1 by solving (19); 

2.3 𝐯-subproblem: For fixed (λ𝐩
𝑙+1,𝑘, λ𝐪

𝑙+1,𝑘, 𝐩𝑙,𝑘, 𝐪𝑙,𝑘, 𝐮𝑙,𝑘+1), compute 𝐯𝑙,𝑘+1 by solving (20); 

2.4 𝐛-subproblem: For fixed (𝐳𝑙,𝑘+1), compute 𝐛𝑙,𝑘+1 by solving (21); 

2.5 𝐩-subproblem: For fixed (λ𝐩
𝑙+1,𝑘, 𝐯𝑙,𝑘+1, 𝐮𝑙,𝑘+1), compute 𝐩𝑙,𝑘+1 from (23); 

2.6 𝐪-subproblem: For fixed (λ𝐪
𝑙+1,𝑘, 𝐯𝑙,𝑘+1), compute 𝐪𝑙,𝑘+1 from (25); 

2.7 Update Lagrange multipliers: 

                λ𝐩
𝑙+1,𝑘+1 = λ𝐩

𝑙+1,𝑘 + 𝑟𝐩(𝐩
𝑙,𝑘+1 + 𝐯𝑙,𝑘+1 − ∇𝐮𝑙,𝑘+1); 

                λ𝐪
𝑙+1,𝑘+1 = λ𝐪

𝑙+1,𝑘 + 𝑟𝐪(𝐪
𝑙,𝑘+1 − ℰ(𝐯𝑙,𝑘+1)); 

                λ𝐳
𝑙+1,𝑘+1 = λ𝐳

𝑙+1,𝑘 + 𝑟𝐳(𝐮
𝑙,𝑘+1 − 𝐳𝑙,𝑘+1); 

Until (‖𝐮𝑙,𝑘+1 − 𝐮𝑙,𝑘‖𝐔𝑺
< 10−𝟑). 

3. 𝐮𝑙 = 𝐮𝑙,∗, 𝐯𝑙 = 𝐯𝑙,∗, 𝐛𝑙 = 𝐛𝑙,∗, 𝐩𝑙 = 𝐩𝑙,∗, 𝐪𝑙 = 𝐪𝑙,∗, 𝐳𝑙 = 𝐳𝑙,∗, 

        λ𝐩
𝑙+1 = λ𝐩

𝑙,∗, λ𝐪
𝑙+1 = λ𝐪

𝑙,∗, λ𝒛
𝑙+1 = λ𝒛

𝑙,∗
. 

5. Experimental results and discussions 

In this section, we present experiments of our piecewise smooth MS segmentation method with TGV 

regularization on a wide variety of point cloud surfaces. The experiments of our algorithms are conducted 

using Microsoft Visual Studio 2010 on a desktop with Intel(R) Core (TM) i7-8850 CPU @2.60GHz and 

16GB memory and all point cloud surfaces were rendered using point shading. 

This section will discuss our method from several aspects, such as choices of parameters, comparison 

with other algorithms, experimental results on various point cloud surfaces, computational cost and 

limitation analysis. 

5.1. Parameters and the number of segments 

There are seven parameters in our algorithm: 𝛼, 𝛽, 𝛼0, 𝜂, 𝑟𝐩, 𝑟𝐪  and 𝑟𝐳 . Therein 𝛼, 𝛽, 𝛼0, 𝜂  are 

variational model parameters; 𝑟𝐩, 𝑟𝐪, 𝑟𝐳  are optimization algorithmic parameters. The parameters 

𝜂, 𝑟𝐩, 𝑟𝐪 and 𝑟𝐳 can be fixed by 𝜂 = 0.00001, 𝑟𝐩 = 1, 𝑟𝐪 = 1, 𝑟𝐳 = 100. Moreover, 𝛼, 𝛽 and 𝛼0 affect 

the segmentation results. According to lots of experimental tests, the parameter settings of 𝛼, 𝛽 and 𝛼0 
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are summarized as follows. 

Firstly, the parameter 𝛼  affects the segmentation boundary. The larger 𝛼  is, the better the 

segmentation boundary is; see Fig.1 for the impact of the parameter 𝛼 on the results. However, when 

the 𝛼 is too large, the algorithm may over segment the point cloud surfaces (see the result with 𝛼 =
5.0 × 105 in Fig.1). 

 

Figure 1: The segmentation results of different 𝛼 by our TGV-PS method with other parameters fixed. 

Secondly, the parameter 𝛽 also plays an important impact on the segmentation boundary. Fig.2 

shows the impact of parameter 𝛽 on the experimental results when other parameters are fixed. It can be 

seen from the figure that the larger the 𝛽 value, the better the segmentation boundary. When 𝛽 reaches 

a certain threshold, the result reaches the optimal, and subsequent increases in 𝛽 will have less impact 

on the result. According to a large number of experiments, 𝛽 is in the range of [103, 107]. 

 

Figure 2: The segmentation results of different 𝛽 by our TGV-PS method with other parameters fixed. 

Finally, 𝛼0 has an effect on the segmentation result. Fig.3 shows the impact of different parameters 

𝛼0 on the segmentation results when other parameters are fixed. As shown, similar to the parameter 𝛽, 

the larger the value of the parameter 𝛼0, the better the segmentation boundary is. When 𝛼0 reaches a 

certain threshold, the result reaches the optimal, and subsequent increasing of 𝛼0 has less impact on the 

result. Due to the diversity of point clouds and the non-convexity of the Mumford-Shah model, it is 

difficult to estimate this parameter with a formula. However, according to a large number of experiments, 

it can be seen that 𝛼0 is in the range of (0, 100]. 

 

Figure 3: The segmentation results of different 𝛼0 by our TGV-PS method with other parameters fixed. 

The number of segments 𝐊 are affected by the topological structure and semantic information by 

the point cloud. It is difficult to find an empirical formula suitable for all point cloud surfaces. In the 

paper, 𝐊 is set manually. 

5.2. Comparisons to other MS-based methods 

As our method is based on TGV regularized piecewise smooth MS segmentation model, we consider 

compare our method with three MS-based segmentation methods. Specifically, these methods are our 

piecewise smooth MS model method based on TGV regularization (denoted as “TGV-PS”), the piecewise 

linear MS model based on TV regularization (denoted as “TV-PL”), the piecewise smooth MS model 

based on TV regularization (denoted as “TV-PS”) and the piecewise linear MS model based on TGV 

regularization (denoted as “TGV-PL”). 

Fig.4 shows the comparison results between our method and other three MS-based segmentation 

approaches. From the results, it can be found that the TV-PL method and TV-PS method based on the TV 

regularization obtain the shortest segmentation boundaries, which is not the optimal segmentation 

boundaries. By comparison, the TGV-PL method and the TGV-PS method adopt the second-order TGV 

regularization, which is able to capture the first-order discontinuous information, and can achieve the 

better segmentation boundaries. 

 

Figure 4: Comparisons of segmentation results among Initialization (a), TV-PL(b), TV-PS(c), TGV-

PL(d) and TGV-PS(e). 
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In addition, we further analyze the differences between TGV-PL and TGV-PS. In Fig.5, we present 

the segmentation results produced by the TGV-PL method and TGV-PS method with different parameters 

𝛼0  and 𝛼 , respectively. As the TGV-PS method containing the smooth function 𝐛, the results are 

semantic and stable with the changing of the parameter 𝛼 (see the third row of Fig.5). However, the 

TGV-PL method is more sensitive to the changing of the parameter 𝛼0 and 𝛼 due to lack of smooth 

function 𝐛. The segmentation results of the TGV-PL method are prone to falling to the local minima. 

Therefore, the TGV regularized piecewise smooth MS method exhibits the greater advantage than 

other MS-based segmentation techniques. 

 

Figure 5: The segmentation results of different 𝛼0 by TGV-PL method with other parameters fixed 

(The first row), the segmentation results of different 𝛼 by TGV-PL method with other parameters fixed 

(The second row), and the segmentation results of different 𝛼 by TGV-PS method with other 

parameters fixed (The last row). 

5.3. More segmentation results 

This section will show the segmentation results of the piecewise smooth MS point cloud segmentation 

method based on TGV regularization on various point cloud surfaces. It includes two aspects: two-region 

segmentation and multi-region segmentation. 

The first is the display of the two-region segmentation results of point cloud surfaces. Fig.6 shows 

the two-region segmentation results of our TGV-PS method on some point cloud surfaces. The four rows 

results of Fig.6 are the original point cloud, the initialization segmentation results, the distribution map 

of the characteristic function 𝐟 , and the two-region segmentation result of the TGV-PS method, 

respectively. As observed, our method can capture the geometric structure of the point cloud very well, 

and obtain the better segmentation results consisting with the human semantic cognition. 

 

Figure 6: The two-region segmentation results of some point cloud surfaces by our TGV-PS method. 

Then, Fig.7 shows the multi-region segmentation results of our TGV-PS method on various point 
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cloud surfaces. It can be seen that the results are consistent with the semantics of human perception, 

indicating that our method can achieve satisfactory results. 

 

Figure 7: The multi-region segmentation results of some point cloud surfaces by our TGV-PS method. 

5.4. Computational cost 

We now discuss the computational cost. The main computational cost is the iteratively solving the six 

sub problems in Algorithm 2. The main factors affecting the computational cost are the number of points 

in the point cloud, the number of segmentations and the parameter 𝛼. When the point cloud size is large 

or the number of segmentations is large, the computational time is longer. It was also found that if the 

parameter 𝛼  is too small, the algorithm will be very slow. The new smooth function 𝐛 and TGV 

regularization based on piecewise linear space will also make the running time of the method longer. 

5.5. Limitations  

Our method has been demonstrated very effective in getting the optimal segmentation boundaries on 

point cloud surfaces, but it still has some limitations. Firstly, we cannot give a formula to precisely 

compute the parameters and segmentation parts 𝐊. Secondly, for point cloud surfaces with too sparse 

density and uneven distribution, it is difficult to construct an accurate topology. It causes our algorithm 

to be unable to give satisfactory segmentation results (see Fig.8 for an example), where the “guitar” point 

cloud density in Fig.8(a) is too sparse, and the “cup” handle in Fig.8(b) is unevenly distributed, both of 

which lead to poor segmentation results. Finally, due to the non-convexity of the algorithm, the 

convergence of the algorithm cannot be guaranteed and the computational efficiency is relatively low. 

 

Figure 8: Failed results produced by our TGV-PS method. 
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6. Conclusions  

The Mumford-Shah (MS) model is a vital tool for data segmentation, which pursues the shortest 

length of boundaries by the total variation regularization. The previous efforts try to solve the MS model 

through approximating the solutions with the piecewise constant functions. Different from most previous 

methods, in the article, we presented a novel piecewise smooth Mumford-Shah point cloud surface 

segmentation technique using the total general variation regularization. The new model assumes to 

approximate the solutions by a sum of piecewise constant functions and a smooth function, which is 

effective in segmenting point cloud surfaces with irregular structures and getting the optimal boundaries 

rather than the shortest boundaries. 

We solve our piecewise smooth MS method by the optimization iterative algorithm based on 

alternating minimization and ADMM, where the subproblems are solved by either the closed-form 

solution or numerical packages. Our algorithm is discussed from several aspects, including setting of 

parameters, computational costs and comparisons with other methods. Experimental results show that 

our piecewise smooth MS method can yield competitive results. 

There are a few problems for further investigation. For instance, design segmentation algorithm based 

on the TGV diffusion model. 
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