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Abstract: Combination therapy has emerged as a highly effective strategy for medicating complex diseases. 
With the proliferation of diverse biological data, computational methodologies have been extensively employed 
to pinpoint candidate drug combinations. Over the recent years, numerous models for predicting drug 
combinations have come to the fore, and several systematic reviews have been published on this topic. However, 
these reviews primarily focus on two-drug models, with limited attention given to multi-drug or high-order drug 
combinations. Therefore, the objective of this review is to provide a comprehensive overview of existing multi-
drug prediction models. The review begins by itemizing potential data sources that may aid in the prediction of 
multi-drug combinations. It then summarizes the various computational models utilized for exploring multi-
drug combinations. Finally, the review concludes by highlighting the key challenges and future directions for 
predictive multi-drug models. 
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1. Introduction 

Combination therapy is defined as the union of two or more curative substances. A growing number of 
studies have revealed that multi-drug therapies are effective in a broad spectrum of diseases, including cancer[1-

3], virus infections such as human immunodeficiency virus (HIV)[4], cardiovascular disease[5], diabetes[6], and 
malaria[7], significantly propelling the development of modern medical. In cancer, for example, utilizing 
combination therapies that involve targeted anti-cancer agents can potentially address drug resistance, improve 
the efficacy of existing medications, lessen the toxicity of single agents at limiting doses, and expand the range 
of available treatments[8]. Kopetz and his colleagues demonstrated that compared to standard therapy, the 
combination of encorafenib, cetuximab, and binimetinib lead to considerably longer overall survival and a 
greater response in patients with metastatic colorectal cancer with the BRAF V600E mutation[9]. As for diabetes, 
Xie et al. evaluated the effectiveness of the combination treatment with gamma-aminobutyric acid (GABA), 
dipeptidyl peptidase 4 (DPP-4) inhibitors, proton pump inhibitors and insulin in type 1 diabetes (T1D) patients 
and indicated that this combination could notably decrease fasting blood glucose, HbA1c level, daily insulin 
dosage, and fasting plasma C-peptide etc.[6].  

Computational approaches, which are efficient in both time and cost, have been widely used to speed up the 
evaluating and prioritizing process of candidate drug combinations, which includes systems biology techniques, 
mathematical methods, stochastic search algorithms and machine learning (ML) approaches[10,11]. NEXGB[12] 
introduced extreme gradient boost (XGBoost) to forecast the synergistic relationships between drug 
combinations and cancer cell lines, which involves the extraction of topological features associated with the 
target protein within a protein-protein interaction (PPI) network. DeepSynergy[13], regarded as the initial deep 
learning approach developed for predicting synergistic relationship between drug combinations and cancer cell 
lines, applied a feed-forward neural network (FNN) to compute the synergy scores of drug combinations. 
GraphSynergy[14] informed the PPI network by a spatial-based graph convolutional network (GCN) to guide 
drug combination predictions. DeepTraSynergy[15] made synergistic anticancer drug combination predictions 
by employing transformers to understand the features of multimodal input. KGANSynergy[16] developed a 
comprehensive knowledge graph attention network to effectively leverage neighbor information of known 
drugs and cell lines and anticipate drug synergy. 

In the past few years, many researchers have already conducted comprehensive reviews in these drug 
combination prediction models. Wang et al. delved into the drug synergy quantitation models and the drug 
synergy prediction models applying deep learning (DL) methods, and gave an insight into the current major 
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obstacle and potential future challenges faced by deep learning approaches[17]. Besharatifard et al. systematically 
analyzed various GNN based drug combination prediction models, where the predictive performance of 
different models was compared and the advantages and limitations of distinct methods were discussed[18]. Chen 
et al. devoted attention to the data used for exploring combinatorial drug effects and provide a comprehensive 
overview of diverse multi-omics data integration-based approaches, concluding that multi-omics data holds 
great potential for guiding novel synergistic therapy development[19]. Wang et al. summarized classic drug-drug 
interaction (DDI) databases and popular DDI prediction approaches based on ML, and outlines the key 
challenges and future directions of DDI prediction[20]. Zhao et al. summarized ML-based score function-based 
models developed to detect DDI interactions and discussed their strengths as well as limitations[21]. 

However, these reviews predominantly concentrate on two-drug scenarios while devote scant attention on 
multi-drug or high-order drug combinations which are also significant in the treatment of intricate diseases. 
Consequently, this review centers on predictive methodologies for multi-drug combination tasks, including drug 
synergy, DDI, and adverse drug events. First, we list and classify related data sources that have the potential to 
enhance the capability of multi-drug combination prediction. Then, we summarize recent computational 
methods for predicting multi-drug combinations applying machine learning, stochastic searching or data mining 
techniques. Finally, we examine the current challenges and future directions concerning multi-drug combination 
predictions. 

2. Potential Data Sources for Multi-drug Combination Prediction 

The procedure of drug discovery encompasses four fundamental steps: (1) target identification and 
validation, (2) lead compound discovery and optimization, (3) pre-clinical studies, (4) clinical development. 
Each step yields different types of data including chemical information, pharmacogenomic data, clinical records, 
multi-omic data such as genomic, proteomic and metabolomic data, among other aspects. Cheerfully, all these 
data can be used to investigate the effects of the agents in amalgamation, since every type of data offers distinct 
biological insights. These varied data types could be broadly classified on three hierarchical levels: molecular 
level, cellular level and individual level. Table 1 outlines a number of freely accessible and popular datasets 
which are conducive to investigating multi-drug combinations. 

Table 1: Summary of potential data sources for multi-drug combination prediction. 

Data Type Database URL Description 

Molecular 
level 

Drug 
centric 
data: 

ChEMBL[22] https://www.ebi.ac.uk/chembl Chemical, physical 
and biological 

properties of drugs 
PubChem[23] https://pubchem.ncbi.nlm.nih.gov 
DrugBank[24] https://www.drugbank.com 
DDinter[25] https://ddinter.scbdd.com DDIs 

Target 
centric 
data 

PDB[26] https://www.rcsb.org 

Proteins, genes,  
or biological 

pathways 

STRING[27] https://string-db.org 
BingdingDB[28] http://www.bindingdb.org 

STITCH[29] http://stitch.embl.de 
TTD[30] https://db.idrblab.net/ttd 

KEGG[31] https://www.kegg.jp 

Cellular level 

GDSC[32] https://www.cancerrxgene.org Dose-response data 
of single drug or 

drug combinations 
DrugComb[33] https://drugcomb.fimm.fi 

DrugCombDB[34] http://drugcombdb.denglab.org 
CCLE[35] https://sites.broadinstitute.org/ccle Profiling data of 

cells DepMap[36] https://depmap.org/portal/home 

Individual level FAERS 

https://www.fda.gov/drugs/drug-
approvals-and-databases/fda-

adverse-event-reporting-system-
faers-database 

Clinical ADEs 
records 

2.1 Molecular Level  

2.1.1 Drug Centric Data 

In drug prediction tasks, various drug features are utilized to guild predictions. These features are typically 
derived from the chemical or physical properties of the drug and offer valuable insights into the characteristics 
and possible interactions of the drugs[37]. ChEMBL[22], an exceptionally extensive database, holds a wide range 
of information regarding bioactive molecules with drug-like properties, merging chemical, bioactivity and 
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genomic data. In the same way, PubChem[23] serves as the most extensive global repository of publicly available 
chemical information, encompassing a wide array of data such as chemical and physical properties, biological 
activities, safety profiles, toxicity information, and so on. Drugbank[24] integrates detailed drug information with 
thorough details about drug targets and drug actions. 

2.1.2 Target Centric Data 

Drug targets might take of a form of a protein (such as an enzyme, receptor, or transporter), a gene, or a 
biological pathway. Typically, gene-/protein- focused databases usually collects the information about amino 
acid sequences, gene terms and PPIs, which serve as the foundation for rational drug design[38]. Protein Data 
Bank[26] (PDB), recognized as the inaugural open-access digital data resource in the biological science, is a data 
center for the worldwide archive of three-dimensional structural data for large biological macromolecules like 
proteins, DNA, and RNA. STRING[27] is a database that comprises both established and predicted protein-
protein interactions, which include direct (physical) and indirect (functional) associations, currently covering 
59,309,604 proteins from 12,535 organisms. 

2.2 Cellular Level 

The response of cancer cells to the pharmacological agents, whether administered as monotherapy or in 
combination therapy, can elucidate potential targets the exhibit similarly responses to the same drug or to drugs 
with similar action mechanisms[39]. This idea can be instrumental in predicting effective multi-drug 
combinations. The Genomics of Drug Sensitivity in Cancer[32] (GDSC) database represents the largest free 
source of data regarding drug sensitivity in cancer cells and molecular markers of drug response. It has 
characterized 1,000 human cancer cell lines and evaluated their responses to hundreds of compounds. 
DrugComb[33] and DrugCombDB[34] are specialized databases focus on the curation of synergistic drug 
combinations across a diverse array of cancer cell lines. Both of them computed multiple synergy scores to 
ascertain the overall synergistic or antagonistic effects of drug combinations. 

2.3 Individual Level 

It is worth mentioning that clinical records are rarely used in drug-pair predictive methods, compared to they 
are frequently used in multi-drug models. Advancing the mining of high-order DDI events induced by adverse 
drug effects from large-scale electronic health record (EHR) databases has garnered significant attention as an 
innovative research domain[40]. FEARS, also referred as the FDA Adverse Event Reporting System, is a 
comprehensive database containing adverse drug events (ADEs) reports received from manufacturers under 
regulatory requirements, as well as direct reports from consumers and healthcare professionals. 

3. Multi-drug Combination Prediction Methods 

Since there is no consensus on the computational methods for estimating and predicting multi-drug 
combinations, a number of approaches, techniques and theories have been developed to tackle different multi-
drug combination challenges covering multi-drug synergy, multi-drug interactions and multi-drug adverse 
response. We categorize these multi-drug prediction approaches in four groups: classic ML methods and DL 
methods, stochastic searching methods and data mining methods (Table 2). 

Table 2: Summary of computational methods for multi-drug combination prediction. 

Type of 
method Model Algorithms Year Characteristic Number 

of Drugs 

Classic 
machine 
learning 

Larkins-Ford 
et al.[41] 

RF, BART, 
KNN, LR, 
XGBoost, 

Naïve Bayes, 
neural network 

2022 

Using in vitro data of pairwise 
drug combinations to 

prediction in vivo high-order 
drug combinations 

3 or 4 

PINet1.0[42] RWR 2022 
Using biological pathway 

interaction networks to predict 
optimal drug combinations 

2 ~ 5 

Deep 
learning 

DeepMDS[43] FNN 2022 Integrating multi-omics data to 
forecast multi-drug synergy ≥2 

D3I[44] Attention 
mechanism 2019 To Predict cardinality-

invariant and order-invariant ≥2 



Frontiers in Medical Science Research 
ISSN 2618-1584 Vol. 7, Issue 2: 83-90, DOI: 10.25236/FMSR.2025.070212 

Published by Francis Academic Press, UK 
-86- 

high-order DDIs 

SMC-
HNCL[45] 

Attention 
mechanism 2024 

To predict synergistic multi-
drug combination based on 

heterogeneous network 
representation learning with 

contrastive Learning 

≥2 

DeepDrug[46] GNN 2025 
To identify lead combinations 
of approved drugs for treating 

AD 
2~6 

BAITSAO[47] LLM 2024 
A Foundation Model for tasks 

related to drug synergy 
prediction 

≥2 

Stochastic 
searching SD2ID2S[48] SD2ID2S 2018 To quantify and discover the 

patterns of high-order DDIs ≥2 

Data 
mining 

Yao et al.[49] Apriori 
algorithm 2020 To evaluate the directional 

effects of high-order DDIs 2~7 

BMC3PM[50] BMC3PM 2023 

A personalized drug 
combination protocol applying 
individual pattern of perturbed 

gene expression 

1~5 

Shi et al.[51] 

Mixture drug-
count response 
model, class-
based mining 

2024 

To discover high-risk hig-
horder drug combinations and 
their low-risk althernative drug 

combinations 

3~4 

3.1 Classic Machine Learning Methods 

Machine learning algorithms, which belong to the realm of artificial intelligence (AI), can learn relationships 
among input data, such as interactions of drug-drug or drug-target, by seamlessly integrating various feature 
types, and formulate ideal strategies for analyzing these data without pre-defined parameters. Historically, 
classic ML techniques have been employed to enhance and streamline drug discovery processes, frequently in 
conjunction with other in silico approaches [52]. 

Larkins-Ford et al. hypothesized that in vivo high-order drug combinations can be forecasted using in vitro 
data of pairwise drug combinations[41]. To analyze the data, which comprising two- and three-drug combinations 
among 10 commonly used anti-tuberculosis drugs, both unsupervised and supervised ML algorithms were 
utilized. Initially, principal component analysis (PCA), an unsupervised ML method, was employed for 
preliminary data analysis, revealing a robust predictive signal. Subsequently, in order to enhance classification 
accuracy, seven ML methods including random forest (RF), bayesian additive regression tree (BART), 
XGBoost, k-nearest neighbor (K-NN), logistic regression (LR), Naïve Bayes and neural networks were assessed 
respectively using repeated random partitioning. PINet1.0[42] introduced a biological model grounded in the 
pathway interaction network to identify optimal drug combinations for different diseases. PINet, the pathway 
interaction network, is composed of four categories of entities: drugs, genes, diseases and pathways, along with 
eight types of interactions among these entities: drug-gene, drug-disease, drug-pathway, gene-gene, gene-
disease, gene-pathway, disease-pathway and pathway-pathway. The restart random walks (RWR) algorithm 
was employed to capture the “disease state” and the “drug state”, thereby generating a probability distribution 
that reflect the influence of a disease or drug on human. The PINet was then utilized to predict both optimal 
pair-wise and high-order drug combinations. 

3.2 Deep Learning Methods 

3.2.1 Feedforward Neural Network 

DeepMDS[43] aims at using a deep learning method that integrated multi-omics data to forecast multi-drug 
synergy for personalized anti-cancer therapies. First, a dataset was curated, which included gene expression 
profiles from cancer cell lines, information regarding the targets of anti-cancer drugs, and the drug response 
across a diverse array of cancer cell lines. Then a fully connected deep neural network was developed to estimate 
half maximum inhibitory concentration (IC50) values in a regression context and to generate classification 
labels in a classification context. The performance of DeepMDS was notable, achieving a mean square error 
(MSE) of 2.50 in the regression task and attaining a peak classification accuracy of 0.94. 
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3.2.2 Attention Mechanism 

For the first time, D3I[44] applied deep learning to predict high-order DDI prediction. This model was 
designed to predict cardinality-invariant and order-invariant DDIs. D3I leverages four distinct types of 
information pertaining to the drugs: side-effect data, target data, therapeutic indication data, and chemical 
substructure fingerprints. The architecture of the model comprises three key components: an encoder that 
transformers drugs into latent representations, an aggregator that synthesizes a single embedding for the input 
drug combination using strategies such as max pooling, mean pooling, and self-attention mechanisms, and a 
predictor that assesses the probability of adverse drug reactions (ADRs) for a drug combination. Furthermore, 
D3I is capable of accurately predicting ADRs for combinations of drugs that, when considered individually, do 
not elicit ADRs. 

SMC-HNCL[45] is an innovative methodology for forecasting synergistic multi-drug combinations by 
thoroughly examining the extensive information available in drug heterogeneous networks. Two different 
methods were used to capture the drug features. One uses a contrastive learning-based approach within the drug-
target heterogeneous network to gather more comprehensive information. The other calculates the unique drug 
anatomical therapeutic chemical (ATC) codes using Jaccard coefficient. These drug features are then fused by 
attention mechanism, and a multi-head self-attention based group representation method is employed to learn 
representations of drug combinations, innovatively realizing synergistic multi-drug combination prediction. 

3.2.3 Graph Neural Network 

DeepDrug[46] is aiming at identifying the lead combinations for treating Alzheimer's disease (AD), with 
following innovations. Firstly, it incorporates long genes, immune and aging pathways, as well as somatic 
mutation markers linked to AD, while also integrating expert knowledge to expand the range of candidate 
targets. Secondly, DeepDrug captures crucial pathways linked with AD by constructing a signed directed 
heterogeneous biomedical graph with a large number of nodes and edges, and node/edge weighting. Thirdly, it 
utilizes GNN to encode the weighted biomedical graph into a new embedding space, enabling the capture of 
granular relationships across different nodes. Lastly, it systematically selects high-order drug combinations 
based on a threshold that accounts for diminishing returns. 

3.2.4 Large Language Model 

BAITSAO[47] represents a newly developed foundation model (FM) specifically engineered for drug 
synergy prediction. In recent times, foundation models have brought about significant enhancements in the 
performance of deep learning across diverse domains. In the realm of natural language processing (NLP), these 
models, commonly referred to as large language models (LLMs), have attracted widespread attention. The 
authors constructed the training datasets for BAITSAO utilizing context-enriched embeddings derived from 
LLMs to serve as the initial representation of drugs and cell lines. Following the validation of the relevance of 
these embeddings, BAITSAO was pre-trained using a comprehensive drug synergy database within a multi-
task learning framework, characterized by meticulous task selections. The outcomes of extensive experiments 
underscored the advantages of the model architecture and the impact of pre-training. BAITSAO is readily 
adaptable for the execution of novel downstream tasks pertinent to drug synergy analysis. 

3.3 Stochastic Search Algorithms 

The initial computational approaches employed to address the prediction of drug combinations involved a 
class of stochastic search algorithms that do not necessitate the presence of positive and negative samples 
(training data) for the resolution of optimization problems[39]. The study SD2ID2S[48] marks a pioneering effort 
in examining the quantification and identification of patterns among high-order DDIs. The authors hypothesized 
that when two drugs are co-administered alongside a group of other analogous drugs, it is plausible that these 
two drugs may possess similar therapeutic objectives and target comparable therapeutic pathways. They 
structured their investigation around the concepts of nondirectional DDI relations (DDI-nd’s) and directional 
DDI relations (DDI-d’s), subsequently developing weighted complete graphs and weighted hyper-graphlets for 
their respective representation to access the similarities among sets of co-administered drugs. A notable feature 
of this research concerning drug-drug similarities in DDI-nd’s and DDI-d’s is its convolutional nature, 
specifically, the similarity between two drugs is utilized to derive the similarity of another pair of drugs. 
Following this, the authors crafted a stochastic algorithm aimed at learning drug-drug similarities based on DDI 
data. 

3.4 Data Mining Methods 

Data mining, the procedure of unearthing potentially valuable information and knowledge from a large 
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amount of random data. Due to its outstanding capabilities in evaluating patient risks, offering support for 
clinical treatment and developing predictive disease models, data mining has emerged as a cutting-edge topic 
in the study of clinical data, especially in large-scale medical public databases[53].  

Yao et al. applied a frequent itemset mining method to predict the directional effects of high-order DDIs 
using myopathy-related ADE data collected from FEARS database[49]. The authors applied Apriori algorithm 
to discover frequent drug combinations that involved up to seven drugs. By tallying the occurrences of each 
candidate drug combinations in both cases and control groups, they created a contingency table for directional 
DDI effect estimation. Their analysis not only confirmed previously reported DDIs but also uncovered a number 
of novel DDIs. Additionally, the authors further developed a scalable tool to visualize high-order DDI effects. 

BMC3PM[50] seeks to establish a protocol for treating effectively through personalized drug combination 
therapy. To achieve this, Mokhtari et al. developed the concept of the individual pattern of perturbed gene 
expression (IPPGE), which is derived from a comparative analysis of a patient’s differentially expressed genes 
(DEGs) in breast cancer relative to normal gene expression levels. By employing a network-based algorithm, 
the researchers identified one or more drug combinations tailored to each patient by concurrently analyzing the 
IPPGE and the corresponding drug signatures. Additionally, a directed differential network (DDN), which 
incorporates biological pathway data, was used to forecast the impact of the identified drug combinations on 
gene expression. The study revealed that each patient’s IPPGE was unique. 

Shi et al. apply an innovative data mining approach to discover high-risk and alternative low-risk high-order 
drug combinations[51]. They selected data of older adults who had visited emergency departments from 
Medicare fee-for-service and MarketScan Medicare supplemental information. In a case-control setting, they 
explored the associations between the drug combinations exposure and ADEs. The high-risk high-order drug 
combinations were pinpointed using a mixture drug-count response model, while the low-risk alternative drug 
combinations were identified through therapeutic class-based mining. The study found that high-risk, high-order 
drug combinations could be substituted with low-risk alternative drug combinations within similar therapeutic 
classes. 

4. Challenges and Future Directions 

Although published multi-drug prediction studies have made excellent achievements with reliable 
prediction results, there is still a long way to go. Firstly, labeled multi-drug data is in desperately limited 
availability. The number of verified data of drug pairs is much more than that of high-order drug combinations. 
In order to facilitate equitable comparison and evaluation of drug combination prediction models, a “gold 
standard" dataset should also be established. Secondly, it is essential to integrate more different types of 
informative data derived from all kinds of biomedical entities, which might improve the accuracy of prediction. 
Finally, the full potential of AI techniques in multi-drug predictive tasks has yet to be realized. It is 
recommended that researchers adopt more sophisticated AI models to advance multi-drug prediction efforts. 
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