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Abstract: The similarity measurement of time series has important application value in multiple fields. 
Among them, the approximate representation and similarity measurement of sequences are the key to 
solving similarity search. The main purpose of this study is to solve the problem that traditional 
similarity measures cannot capture the similarity between long time series well. By using segmented 
local representation and the loss function based on local representation of time series, the loss distance 
is proposed as an indicator for similarity measurement. The method proposed in this paper is to match 
the traditional point-to-point according to the time scale to the local representation matching between 
the current segments according to the morphological characteristics of the time series, which saves the 
time cost and improves the efficiency of the model. 
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1. Introduction 

A time series is a series of observations recorded in an orderly manner based on time as a node, 
which can also be understood as an ordered sequence. The similarity search of time series has always 
been a research hotspot in Time Series Data Mining (TSDM). The research on similarity measurement 
of time series not only has profound theoretical significance but also has important practical application 
value in multiple fields such as mathematical statistics, economic finance, machine learning, medicine, 
meteorology, etc. If a certain method can be found to process these data reasonably and efficiently, 
discovering their internal interrelationships, the potential information in sequence data can be fully 
mined, greatly improving the practical value of time series data. 

In recent years, the combination of symbolization and morphological features in time series 
similarity search has attracted extensive research and achieved certain research results. For example, 
literature [1] and others proposed a similarity measurement method based on curvature distance, which 
uses the curvatures of fitted curves of time series at different times to form curvature sequences and 
defines the curvature distance of the sequence as the overall similarity of the sequence. Reference [2] 
proposed a method that comprehensively considers the mean and slope of the sequence, and 
implements symbolic transformation through discourse, which can reflect more data information of the 
original sequence and objectively reflect the trend of time series changes. References [3] and [4] also 
used symbolic methods and morphological features of sequences to perform similarity searches on time 
series, and achieved certain search results. Keogh et al. [5] defined similarity based on compression and 
demonstrated its superior performance in clustering, classification, anomaly detection, and other work. 
Keogh[6]applied precise indexing based on DTW to time series mining. Gorecki et al. [7] considered 
the problem of local morphological feature processing and proposed a method of using dynamic time 
warping and differential dynamic time warping to obtain the distance of multivariate time series, and 
then combining the metrics with parameters. Keogh et al. [8] proposed an extension method called 
DDTW, select an appropriate calculation method based on the adjacent information of a certain point in 
the time series to construct a new time series, achieving the goal of no longer being sensitive to outliers 
in the new sequence. Nakamura et al. [9] first proposed the Shape Similarity Based Angular Measure 
Method (AMSS) in the literature, which is not based on a single point in the sequence, but on a vector 
representing the sequence. Wang Da proposed the concept of pattern distance in reference [10]. Pattern 
distance can overcome the shortcomings of Euclidean distance and dynamic time curvature distance, 
and can effectively calculate the similarity in the trend of changes between sequences. It is a novel 
measurement method. Reference [11] proposes a composite metric algorithm. This composite distance 
algorithm not only inherits the advantages of Minkowski distance, but also effectively describes the 
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morphological differences between sequences, that is, the differences in the morphological and 
statistical features of time series. 

2. Measurement of similarity in segmented local representations  

Similarity can fully reflect the magnitude of the difference between two objects, and similarity 
measurement in time series is the main method to determine the relationship between two sequences. 
The distance between sequences is determined by the correlation coefficient between sequences.This 
article briefly notes this method as MSSLR. 

2.1. Local representation 
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Therefore, based on reviewing literature on time series similarity, this article makes the following 
definition: 

Definition 1: For two time series S1 and S2, if S2∝ωS1, it is said that S1 and S2 are related, and 
similar in shape. ∝, a mathematical symbol that represents being directly proportional to a quantity. 

Definition 2: 
{ } { }NyNx vvvuuu ,,,,,,, 2121 ……

,The subsequence sets of sequence S1 and sequence 
S2, respectively. 

If yx NN = ( yx NN ，  represent the number of subsequences in S1 and S2, respectively) and for

iu∀ , a vj can be found to construct a representation of ijjiji bvu += ω , and ui and vj are one-to-one 
corresponding, that is, they satisfy a bijective relationship, then S1 and S2 are mutually locally 
representable. 

If yx NN < , if a subset can be found in the set of S2 subsequences, so that this subset and the set of 
S1 subsequences meet the above conditions, then S1 and S2 are said to be mutually locally representable 
subsequences. 

We understand that greedy algorithm is an algorithm that takes the best or optimal choice in the 
current state at each step of selection, hoping to result in a globally best or optimal result. Therefore, 
from the perspective of greedy algorithm, if two sequences are mutually localizable and ly represented, 
it can be considered that these two sequences are also similar globally. 

2.2. Segmentation of subsequences 

To a certain extent, morphological features can reflect the basic characteristics of a time series with 
a certain length. In reality, time series often span longer time periods, and as time increases, the 
characteristics of the series will change, which is not conducive to analysis and measurement. For the 
convenience of subsequent research work, the time series is segmented. By segmenting subsequences, 
we can transform complex time series into segmented  sequences. 

This article obtains the subsequence set of sequences through sliding windows. Here, we take the 
width of the sliding window as p and the step size of sliding as s. Therefore, for any sequence of length 
n, we can obtain a subsequence of length p. The process of extracting subsequences through window 
sliding is shown in Figure 1: 
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Figure 1: Segmentation diagram 

Assuming there are two existing sequences S1 and S2, obtain n and m subsequences respectively 
through the above steps 
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Therefore, the objective functions for the local  representations of sequences S1 and S2 can be 
obtained as 
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Where xi and yj are the ith row of matrix X and the jth row of matrix Y, respectively,

mn
ijwW ×ℜ∈= )( is a local  coefficient matrix, mn

ijbb ×ℜ∈= )( is the local deviation 

matrix, p1 is elements that are all 1’s 1 × P row vector. 

2.3. Measurement of similarity 

Due to the sensitivity of representation to outliers, if there are indeed some mutation points in the 
sequence, it is easy to affect the measurement of similarity. Therefore, this article aims to obtain local 
coefficients with stronger robustness. In regression analysis, some penalties can usually be applied to 
the coefficients, such as ℓ1 regularization and ℓ2 regularization, to constrain the values of the 
coefficients not to be overly exaggerated. Generally speaking, ℓ1 regularization is more easily used to 
obtain sparse matrices and is therefore more commonly used for feature selection; And ℓ2 
regularization can shrink coefficients with larger values to a relatively stable range, thereby enhancing 
the model's generalization ability. As a generalization of ℓ2 regularization in matrix regularization, ℓF 
regularization has similar properties. We add ℓF regularization to the objective function and obtain a 
locally representation of the objective function with regularization as follows 
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By optimizing the above equation, we can obtain the parameter matrix W and parameter matrix b, 
which can then calculate the loss of local  representation. The loss of local  representation can be 
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divided into two parts, One is distance loss
( ) mn

ijbD ×ℜ∈=1 , The difference in spatial location 

between the two; The other is shape loss
( ) mn

pijjiji bywxD ×ℜ∈−−= 12 , That is, the residual 
of the local  representation. 

Based on the background situation, sometimes we have higher requirements for shape similarity, 
while sometimes we may pay more attention to the differences in spatial positions between two 
sequences. In order to adjust the contradiction of demand, the adjustment factor ρ  is introduced to 

obtain the weighted loss matrix L, where 21 )1( DDL ρρ −+= . Normalization of datasets, especially 
non- regression datasets, is a necessary step because normalization can not only eliminate 
dimensionality and unify data on the same scale, but also improve the convergence speed of the model. 
Here, in order to reduce the impact of high or low value levels, we normalize the distance loss and 
shape loss before calculating the loss matrix. 
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We use a loss matrix as an indicator to measure the similarity between two sequences, which 
minimizes the sum of losses in the local representation when the subsequences of the two sequences are 
used at most once. The smaller the value of this loss, the more similar the two sequences will be; The 
reverse is also true. This problem can be transformed into the following planning problem, which can 
be solved using the Hungarian algorithm. Here, we define the norm of the loss matrix as the loss 
distance, which is the same as the Euclidean distance equidistance we understand, that is, the smaller 
the distance, the greater the similarity, and vice versa. 
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2.4. Optimization of loss function 
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We obtain the optimal solution for ),( bWf  by taking partial derivatives 
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For a more intuitive expression, we remember 
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Therefore, the above equation can be organized as follows 
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2.5. Algorithm implementation 

The algorithm pseudocode is shown in Algorithm 1. 

Algorithm 1: Algorithm based on similarity of morphological features 

Input Time series 21 SS ，  
Output Loss distance L ,Similarity matching result graph 

1 Enter two time series 21 SS ，  
2 Sliding Window Segments Time Series into Subsequence Sets; 
3 Construct subsequence matrix  X  Y 

4 
Objective function   
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5      For i to n 
6        For j in m 
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8            Local  deviation matrixb b  ijjiij wyxb −=
 

9           return W, b 
10        End  
11      distance = (distance - Min_dist) / (Max_dist - Min_dist); 
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    Minimizing the sum of losses in local  representations 
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14 End While 
15 Plt  show 
16 Loss distance L=||L||F 

3. Simulation experiment 

3.1. Visualization of experimental results  

Using visualization of experimental results to further illustrate the similarity measure proposed in 
this article. 

 
Figure 2: Visualization of Time Series Data 

 
Figure 3: Visual image of matching effect 

The horizontal axis represents time, and the vertical axis represents numerical values.We can see 
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from Figures 2 and 3 that the segmented time series segments are not strictly matched according to the 
corresponding time points. Instead, one segment is traversed through all segments of another time 
series, and the matching result with the smallest loss distance is selected for presentation. The 
similarity matching principle proposed in this article can be more clearly seen in the matching result 
graph during the 30-50 time period. 

The loss distance obtained from the two experimental time series in the figure is 2.753, and the loss 
distance value is relatively small. From the graph, it can be seen that the similarity between the two 
time series in the experimental data is high, which is consistent with the principle that the smaller the 
loss distance, the greater the similarity between the two time series. Further verification of the 
feasibility and effectiveness of the proposed method in this article. 

3.2. K-means clustering based on improved similarity measure 

Clustering algorithms, as an important component of temporal clustering, are one of the popular 
research theories in machine learning today. Unlike classification, clustering is an unsupervised 
learning method that does not require labels for model training. Based on similarity, data is divided into 
different clusters, ultimately achieving high data similarity within the same cluster and low data 
similarity between different clusters.  

3.2.1. Algorithm 

The algorithm pseudocode is as Algorithm 2 

Algorithm 2: Clustering Algorithm Improved Based on Loss Distance 

Input Cluster Dataset X , Nearest Neighbor Number K , Number of clusters k ,  
Iterations N  

Output Cluster results C  
1 Initialize k clusters φφφ ←←← kCCC ,,, 21  ; 

2 
Randomly select k points from X as the initial clustering center. 

kxxx 11211 ,,   
3 kk xCxCxC 1122111 ,,, ←←←  ; 
4 While( Ni < ) 
5      For j=1 to k 

6 Calculate loss matrix pijjijiij bywxbL 1)1( −−−+= ρρ  

7      The degree of dispersion is calculated by the Loss distance; 
8      End For 
9      For each Xx∈  

10 Calculate the distance from x to each cluster center ),( ij
R xxd  

11 
        

),(minarg ij
R xxdq =

; 

12         
xCq ← ; 

13      End 
14      ++i ; 
15      For j=1 to k 

16 

Update center by averaging j

Co
ij
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=

 of objects within the cluster 
17      End For 
18 End While 
19 { }kCCCS ,,, 21 =  
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3.2.2. Data preprocessing 

Due to the large amount of time series data and the presence of noise, directly measuring the 
similarity of the sequence not only requires a large amount of computation, but also may result in 
inaccurate measurement results. In order to improve computational efficiency and the robustness of the 
model and make it easy to compare, this article first preprocesses the experimental data. 

Data normalization. Data normalization is a common operation in the preprocessing process of time 
series, aimed at promoting meaningful comparisons between them. The calculation is as follows 
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This article uses interpolation to fill in missing values based on their adjacent data points and 
remove outliers. Anomalies in the description of the time series exhibit significant fluctuations, usually 
greater than 2 standard deviations, meaning that the deviation between the anomaly and the average is 
the largest. Generally speaking, the ratio of outliers in a time series is less than 5%. Therefore, for a 
simpler calculation, we delete the top 5% data with the highest deviation from the average value, and 
then perform a complete operation on it using a method consistent with filling in missing values. This 
way, extreme anomalies (usually huge peaks or valleys) are removed and replaced with their adjacent 
normal observations. Note that the size of the removal rate is related to the anomaly rate of the dataset 
and can be adjusted. For different data anomaly rates, it should be possible to cover anomalies caused 
by extreme values. Afterwards, we use moving average for noise reduction processing.The formula for 
interpolation method is 

12

1
121 )(

XX
XXYYYY

−
−

−+=
 

Specifically, for a time series sliding window T with a sliding window length of W, step=1, for each 
point xt,. The corresponding points on the baseline are represented as x*. It is the average of vector 

),,( 1 tWt xx +− .The difference between xt and x* is called residual. The baseline B and residual R can 
be calculated as: 
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Our algorithm extracts the baseline while preserving its basic shape while removing most anomalies 

and noise. The residual contains random noise and is not considered in similarity measurement and 
clustering. This baseline is used as input for our similarity measurement algorithm and subsequent 
clustering algorithms. 

3.2.3. Experiments and Indicator Analysis 

Replace the Euclidean distance in classical k-means clustering with the sum of the loss distances 
proposed in the previous chapter. This article uses electrocardiogram related data from the UCR dataset. 
In order to demonstrate the performance of the proposed method in time series clustering applications, 
this method is experimentally compared with ordinary k-means clustering to measure the clustering 
effect. 
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Figure 4: Visualization of raw data 

 
Figure 5: Visual image of clustering effect 

Figure 4 shows the visualization of the original data, while Figure 5 shows the clustering effect 
obtained using the algorithm proposed in this paper. Then we use comparative analysis of indicators to 
demonstrate the feasibility and effectiveness of the MSSLR method. 

(1)Calinski-Harabaz index 

The CH indicator is the ratio of the separation and compactness of a dataset, measured by the sum 
of the squares of the distances between various center points and the center points of the dataset, and 
the compactness of the data is measured by the sum of the squares of the distances between each point 
within the class and its class center. The better the clustering effect, the larger the inter class gap and 
the smaller the intra class gap, that is, the closer the class itself, the more dispersed the inter class. 
Therefore, the larger the CH index value, the better the clustering effect. 

The essence of the Calinski Harabasz index is the ratio of inter cluster distance to intra cluster 
distance, and the overall calculation process is similar to the variance calculation method, so it is also 
called the variance ratio criterion. Aggregate the dataset X with a capacity of N into K classes, and 
measure the compactness within the class (intra class distance) by calculating the sum of the square 
distances between each point within the class and the center of the class. Measure the separation of the 
dataset (inter class distance) by calculating the sum of the square distances between each center point 
of the class and the center point of the dataset 
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The calculation formula for CH index is  )1)((
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The CH indicators obtained by the two methods are 0.752 and 0.836, respectively. The larger the 
CH indicator value, the better the clustering effect. It can be concluded that using MSSLR clustering is 
better than using kmeans clustering with Euclidean distance. 

(2)Precision and Recall 

Method 1: Euclidean distance is directly used for k-means clustering 

Method 2: Losing distance for k-means clustering 

Table 1: Average Precision and Recall 

 Method 1 Method 2 
Average precision 0.4837 0.5514 
Average recall rate 0.6042 0.6121 

From the Table 1, it can be seen that compared with Method 1, although the average precision and 
recall of Method 2 have increased slightly, they have overall improved. Method 1: Euclidean distance 
directly calculates point-to-point time series without segmented representation, resulting in high 
computational complexity and susceptibility to noise; The method proposed in this article first 
segments the time series and reduces the data dimension. It represents time series segments with the 
same trend, which conforms to the changing trend of the sequence and reduces the impact of noise. 
Therefore, the clustering results are good. Table reflects that the clustering accuracy of this method has 
also improved. 

4. Summary and Outlook 

This article first introduces the concept of time series, the research background, significance, 
current status, and applications of time series similarity measurement technology in real life. The 
similarity measurement of time series is the foundation of time series clustering. Analyzing time series 
data and finding potential patterns have a significant impact on people's production and life. Time 
series usually exist in a high-dimensional and variable form, making it difficult to intuitively measure 
similarity. Existing similarity measures have limitations. Therefore, this paper proposes a new method 
for improving similarity measurement based on time series morphology, which is Measurement of 
similarity in segmented local representations (MSSLR). 

The method proposed in this article first performs sliding window segmentation on the time series 
to obtain two construction matrices of the subsequence. By minimizing the sum of local representation 
losses of the two matrices, the similarity matching results of the two sequences are obtained. 
Afterwards, in order to enhance the robustness of the locally represented coefficients, regularization 
was added to the objective function, ultimately obtaining the loss distance for measuring similarity. 
Compared to the kmeans clustering using Euclidean distance, the kmeans clustering using the loss 
distance in this paper has higher clustering index results, with a certain range of improvement in 
precision and recall, proving the feasibility and effectiveness of the proposed pie wise local linear 
representations a measure of similarity. 

In today's society, with the continuous deepening of research on similarity measurement algorithms 
for sequences, people have generated more accurate similarity measurement algorithms based on 
different theories. How to better segment data by combining new knowledge domains with feature 
points or key points of sequences based on research, and finally, how to use models for data query and 
prediction processes while considering time factors, is a topic that needs further research. 
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