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ABSTRACT. WebShell is a commonly used tool for network intrusion. It has the 
characteristics of high, concealment, great harm and so on. The existing WebShell 
detection method has higher detection accuracy when detecting a known WebShell, 
but the accuracy of detection is low when it faces complex and flexible unknown and 
variant WebShell. To solve this problem, a WebShell detection method based on 
Multi-Layer Perceptron (MLP) neural network is proposed. Firstly, the sample 
source code is converted into a sample byte code by a compiler tool, and then the 
sample byte code is divided into byte code sequences using Bi-Gram. Secondly, TF-
IDF is used to calculate the word frequency matrix, and on this basis, the feature 
matrix of trained sample set is selected. Finally, the detection model is obtained 
through multi-layer neural network training. The experimental results indicate that 
compared with the existing methods, the constructed detection model can 
significantly improve the detection accuracy, accuracy, and recall rate, and the 
detection, accuracy of unknown and variant samples can reach over 90%.  

KEYWORDS: multi-layer perception, WebShell, machine learning, cyber security, 
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1. Introduction 

With the continuous development of Internet technology, B/S-based Web 
applications have been widely used in e-commerce, online forums, government 
administration, and other online platforms, playing an important economic, cultural 
and political role, and their security has been directly related. To property security, 
social stability, etc. However, due to limitations in technology and security 
awareness, existing web application platforms have various types of system 
vulnerabilities or application vulnerabilities, providing an opportunity for attackers 
to illegally enter web hosts. To achieve long-term control of the web host, an 
attacker typically uploads a malicious script to the web server after entering the host 
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and hides it in the normal script folder. Through these malicious scripts, an attacker 
can create a backdoor to achieve long-term control of the web host. This type of 
malicious script that controls a web host through a web application is often referred 
to as WebShell. The 2016 China Internet Cyber Security Report [1] issued by the 
National Internet Emergency Center (CNCERT) pointed out that in 2016, CNCERT 
monitored 82,072 websites in China and was implanted into WebShell, of which 
commercial websites accounted for 62.3%. 4.8%, government websites accounted 
for 2.9%. WebShell is usually very concealed, and it is difficult to detect it in time. 
At present, traditional anti-virus software mainly uses the method of signature 
matching to detect WebShell. This method extracts its text features as malicious 
signatures by analyzing known WebShell code samples and forms a malicious 
signature database. This method can detect more than 90% of the known types of 
WebShell, but for unknown or variants of WebShell, the accuracy is even less than 
60%. Through the highly concealed WebShell, attackers can control the Web host 
for a long time and use it for information theft, commercial extortion, botnet, and 
other illegal activities, and the degree of harm depends largely on the length of time 
the Web host is controlled. Therefore, it is very important to study methods that can 
detect various types of WebShell, such as known, unknown and variants. 

2. Related research 

Traditional WebShell detection methods fall into three main categories: static 
analysis, dynamic analysis, and diary analysis. Static analysis is performed before 
the script runs. The traditional detection method mainly detects malicious scripts by 
matching the signature strings in the file (such as common malicious code blocks, 
high-risk function names eval, system, etc.). Such methods based on signature 
matching are generally implemented by regular expression matching. 

However, since the regular expression is essentially a finite state automaton, it is 
impossible to completely define the behavior characteristics and completely cover 
the risk model. Therefore, there is a bottleneck that cannot be overcome in reducing 
the false negative rate and false positive rate. In fact, Hansen et al. [2] have 
theoretically proved that there must be false negatives and false positives in the 
matching method based on regular expressions. Dynamic analysis is performed 
while the script is running. The traditional detection method mainly detects 
malicious scripts by analyzing the dynamic characteristics of the script execution 
process, such as analyzing eval execution context, file read and write operations, 
network traffic, and other dynamic behaviors. For example, Wrench et al. [3] use 
Web behavior based on behavioral similarity to dynamically detect WebShell, which 
can effectively detect malicious behaviors in active state. Du Haizhang et al [4] 
detect PHP code compilation process based on PHP extension and implement 
WebShell. Real-time dynamic detection; Ma Yanfa et al [5] use Web traffic analysis 
to detect WebShell on the WAF (Web Application Firewall) side, avoiding the 
drawbacks of traditional detection methods that require separate detection modules 
on all Web servers. The advantage of this type of method is that it can effectively 
identify various unknown samples, deformed samples, encrypted samples, etc., but 
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there are also problems of high false positive rate. The diary analysis is performed 
after the script is run. The traditional detection method mainly detects the malicious 
script by analyzing the web server log file, such as using the page request feature, 
the access statistical feature and the page association feature, etc. [6]. This detection 
method is effective when the amount of log data is large, but there is a problem of 
high false positive rate. Due to the shortcomings of traditional detection methods, 
researchers began to look for detection solutions from a new perspective. At present, 
the more advanced detection methods include text-based statistical features and text-
based semantic features. 

The method based on text statistical characteristics is mainly based on statistical 
theory, trying to use various statistics as features to detect malicious scripts, such as 
open source program NeoPI [7] using information entropy, coincidence index, 
longest word, compression ratio and other features detection of file content. 
WebShell. Hu Jiankang et al. [8] extracted content attributes (number of words, 
maximum word length, etc.), basic attributes (number of evil function calls, 
maximum length of function parameters, etc.) and advanced attributes (file 
operations, database operations) as classification features, using The decision tree 
C4.5 classifier builds the detection model and is supplemented by the integrated 
learning algorithm Boosting to implement WebShell detection. 

Methods based on text semantics attempt to discover malicious code behavior at 
the semantic level using natural language processing (NLP) techniques. For example, 
Ye Fei et al. [9] extracted the structural and content characteristics (page title, meta-
information, keywords) of the script as classification features, and used the support 
vector machine (SVM) as the classification algorithm to construct the detection 
model; Deng et al. [10] used Lexical analysis is used to extract features, and 
WebShell is identified and detected from the perspective of grammar. Yi Nan et al 
[11] proposed a semantic-based malicious code detection method to describe and 
evaluate the behavior of files from a semantic perspective. 

The method first constructs an abstract syntax tree (AST) according to the code 
file, extracts the smudge subtree from the complete tree through the node risk 
assessment table, and matches it with the malicious behavior feature map to obtain 
the risk value, and finally determines whether it is malicious through the threshold. 
Code file. The advantage of this kind of method is that the implementation is 
relatively simple, and the detection accuracy of the known malicious code is high, 
but the disadvantages are obvious, such as the detection effect on the unknown 
sample and the variant sample is poor. 

It can be seen that the existing WebShell detection algorithm is more researched 
at the source text level, and is susceptible to WebShell escape methods such as code 
annotation and code obfuscation. In addition, the existing detection models mostly 
use the traditional classifier algorithm. The generalization ability of these classifier 
algorithms is weak, which leads to a sharp drop in detection performance of the 
detection model in the face of unknown mode samples, or even no detection at all. 
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3. WebShell detection method based on multi-layer neural network 

In order to solve the above problems, this paper proposes a WebShell detection 
method based on multi-layer neural network. Compared with the traditional methods, 
it stays at the source level. This paper innovatively studies the source code 
compilation results, which can effectively avoid the impact of WebShell escape 
methods such as code annotation and code obfuscation. In addition, in the aspect of 
sample feature selection, the traditional method is mostly based on character feature 
code, so it can only cover a single code statement. The method uses bytecode 
sequence as sample feature, which effectively utilizes the context information of the 
code and greatly enhances the model. Detection accuracy. 

In order to further improve the detection accuracy, the algorithm also applies the 
neural network classification algorithm-multilayer perceptron (MLP) to the 
detection model. Compared with the traditional classification algorithm, MLP has 
stronger nonlinear fitting ability and powerful generalization ability, which can 
effectively detect unknown samples that are difficult to handle by traditional 
methods. 

According to statistics, in the known WebShell, WebShell is written in the PHP 
language. Therefore, this article focuses on the detection method of PHP type 
WebShell. This section will first analyze the PHP code compilation execution flow, 
and design the PHP code compilation results - byte code extraction method, then 
will introduce how to use the feature engineering method to extract the bytecode 
sequence as a sample feature, and finally how to use MLP The algorithm trains the 
WebShell detection model. 

3.1 Bytecode acquisition 

PHP is an interpreted language, and its code execution flow can be divided into 
Lexical Analysis stage, Syntax Analysis stage, OpCodes compilation stage and code 
execution stage. The execution flow chart is shown in the solid line in Figure 1. In 
the lexical analysis phase, Lexer reads the source character sequence in turn and 
splits it into Token sequences according to PHP syntax rules. In the parsing phase, 
Parser reads in the Token sequence and performs a syntax check to generate an 
Abstract Syntax Tree (AST). During the bytecode compilation phase, the PHP 
virtual machine Zend reads the abstract syntax tree and translates the operator nodes 
on it into the corresponding bytecode. In the code execution phase, the PHP virtual 
machine Zend loads the corresponding module according to the code requirements, 
initializes the running environment, and finally executes the bytecode and outputs 
the result. 
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Figure. 1 PHP source code byte extraction process 

From the process point of view, if you want to get the compiled bytecode of the 
PHP code, you need to add the corresponding bytecode output function to the PHP 
virtual machine Zend during the Executing phase. At this point, there are two ways 
to do this: modify the source code and add plugins. Modifying the source code 
method requires re-compilation of the PHP runtime environment, so it is rarely used 
in practical applications. 

Adding a plug-in method uses a unified plug-in framework, so you only need to 
compile the plug-in itself separately, and you can easily add the function by 
modifying the configuration file. In addition, the add-on plug-in method can also 
distribute deployments in the PHP runtime environment of different systems, which 
is extremely convenient. 

Based on the above considerations, this article uses the plug-in method to 
implement the bytecode centralized output function. After adding the bytecode 
extraction function, the original PHP virtual machine Zend will additionally output 
the bytecode samples during the execution to bytecode compilation, as shown in the 
solid box section of the dotted line in Figure 1. 
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3.2 Feature Extraction 

Before using the bytecode sample set to train the detection model, feature 
extraction of the bytecode samples is required to determine the features that best 
distinguish between normal samples and WebShell samples. 

In order to utilize the context information of the bytecode, this paper uses the 
binary syntax model (BiGram) to divide the bytecode sample set, which divides the 
adjacent two bytecodes into one phrase and counts the phrase in the word. The 
number of occurrences in the section code sample, which represents the bytecode 
sample. That is after the phrase segmentation is completed, each bytecode sample is 
represented as a word frequency vector. 

The bytecode sample set segmented in the above manner may contain a large 
number of various bytecode phrases, that is, the word frequency vector 
characterizing the bytecode samples may have a very high dimension, which will 
bring huge computational pressure to subsequent model training. Therefore, it is 
necessary to filter the bytecode phrases and filter the parts in which the classification 
of the samples is not helpful. In this paper, the word frequency threshold method is 
used to filter the features with weak classification ability, that is, the frequency of 
occurrence of each byte code phrase in the entire sample set is first counted, then the 
phrase whose frequency is less than 30% is removed, and the remaining words are 
used to form the byte code. The phrase dictionary, and according to the description 
of each sample feature, the word frequency matrix of the bytecode sample set is 
obtained. After obtaining the word frequency matrix of the bytecode sample set, this 
paper uses the TF-IDF (Term Frequency-Inverse Document Frequency) algorithm to 
perform word frequency analysis to obtain the importance of each sample in the 
sample set. The main idea of TF-IDF is that if a word or phrase has a high TF (Term 
Frequency) in a document and it rarely appears in other documents, the word or 
phrase is considered to have a good category. Differentiating ability, suitable for 
classification. Where TF refers to the number of times a word or phrase appears in a 
document, and IDF (Inverse Document Frequency) is a measure of the word or 
weight of a phrase. If a word has a low TF in multiple documents, but it appears 
frequently in a document, the word IDF value is larger. In contrast, the more 
common a word, the lower the IDF. Multiplying the TF value of a word by the IDF 
value yields the TF-IDF value. When this value is larger, it indicates that the word is 
more important in the document, and the more representative the document. 

Using the TF-IDF algorithm to process the sample set word frequency matrix, a 
bytecode feature matrix that reflects the importance of each sample is obtained. 
Each column vector in the matrix corresponds to a bytecode sample. 

A flow chart for feature extraction of bytecode samples is shown in Figure 2. 
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Figure. 2 Bytecode feature extraction process 

3.3 Model training 

After the feature extraction of the bytecode sample set is completed, the feature 
matrix can be used as an input, the labeling result is used as an expected output, and 
the classifier is used for training. 

In the selection of classifiers, existing WebShell detection models generally use 
traditional classification algorithms to train samples, such as linear regression, 
decision trees, and naive Bayes classifiers. These classification algorithms have the 
common disadvantages: it is difficult to fit complex nonlinear relationships, and the 
generalization ability is weak, that is, it is difficult or even impossible to process 
samples of unknown patterns. In order to solve such problems, this paper uses the 
Multi-layer Perceptron (MLP) neural network algorithm to learn samples. 

The MLP neural network is a forward-structured artificial neural network that 
uses a backpropagation algorithm for training. The network consists of an input 
layer, a hidden layer, and an output layer. The input layer is used to receive input 
data; the hidden layer can have multiple layers for learning data and storing training 
results, and the output layer is used for outputting results. The nodes of each layer 
are all connected to the next layer. Except for the input node, all other nodes 
multiply the input by its own weighting factor w, plus the offset b, and then the 
result of its own nonlinear activation function produces an output. The activation 
functions used by each layer are different, such as the middle layer node using the 
Sigmoid function as the activation function: 
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The output layer node uses the Softmax function as the activation function: 
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Where ix  is the input from the previous layer and N is the total number of nodes 
in the previous layer? 

MLP is a generalization of perceptrons that overcomes the weakness that 
perceptrons cannot identify linear indivisible data. MLP has been mathematically 
proven to fit nonlinear relationships of arbitrary complexity with powerful 
generalization capabilities. Due to the above advantages, the detection performance 
of the WebShell detection model will be greatly improved after the introduction of 
the MLP neural network. 

The MLP neural network constructed in this paper contains two layers of hidden 
layers.  

The first hidden layer contains 5 nodes, and the second hidden layer contains 2 
nodes. The L-BFGS algorithm is used to adjust the weight of each node. The 
network structure is shown in Figure 3. 

 

Figure. 3 MLP neural network structure 

3.4 Sample testing 

Once the model is trained, it can be used to detect unknown samples. The pre-
processing steps are required before the source code samples are entered into the 
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model. That is, the bytecode is extracted first to obtain the bytecode samples, and 
then the phrase segmentation is performed to obtain the phrase set. Finally, the 
bytecode phrase dictionary outputted by the model is used to filter and collect the 
phrase set, and the bytecode corresponding to the source code sample is formed. 
Feature Vector. The feature vector is input into the detection model and based on the 
result, it can be judged whether the input unknown sample is malicious. 

The sample testing process is shown in Figure 4. 
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Figure. 4 Detection process for unknown samples 

4. Experimental results and analysis 

In this paper, the effectiveness of the proposed method is verified by 
experimental comparison. The experimental environment is: scikit-learn 0.19; the 
training sample set size is 6,000, of which 3000 WebShell negative samples are 
from GitHub's WebShell collection project, and another 3,000 positive samples are 
from popular open source projects such as PHP Wind and PHP CMS. 

In order to accurately compare the performance of various detection methods, 
this paper uses the confusion matrix as the quantitative evaluation standard. The 
confusion matrix uses three indicators to measure the performance of the detection 
method: recall (Recall), precision (Precision), and accuracy (Accuracy). Among 
them, the recall rate indicates the proportion of the positive sample portion of the 
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test set that is correctly predicted, the accuracy indicates the proportion of the test 
sample whose prediction result is positive, and the accuracy rate indicates the 
proportion of the entire sample set that is predicted correctly. 

In the verification of the performance of each test model, this paper uses the 
cross-validation method. The source code sample set is divided into several subsets, 
some of which are used as training sets to train each detection model, and the 
remaining part is used as a validation set to perform performance verification on the 
training result model. In order to reduce the measurement error during the 
experimental test, all the test models were cross-validated 10 times, and the average 
value of each performance index was taken as the final performance result. 

Table 1 compares three types of WebShell detection models: a naive Bayesian-
based detection model at the text level, a naive Bayes-based detection model for the 
bytecode layer, and an MLP-based detection model at the bytecode level. It can be 
seen that the detection model based on Naïve Bayes is also improved when the 
detection object is changed from source code (text level) to compilation result (byte 
code level), and the detection accuracy of the model is increased from 0.797 to 
0.834, indicating bytecode. The level of detection is better. In addition, when the 
traditional naive Bayesian classification algorithm is replaced by the neural network 
classification algorithm MLP, the accuracy of the model is increased from 0.834 to 
0.944, the accuracy is improved from 0.761 to 0.932, and the recall rate is increased 
from 0.771 to 0.968, which greatly improves the detection model. The performance 
indicates that the neural network-based detection model has better fitting ability and 
better detection ability for unknown samples. 

Table 1 Performance comparison of various WebShell detection models 

Performance 
Naive Bayesian-based 
detection model at the 

text level 

Naive Bayes-based 
detection model at the 

bytecode level 

MLP-based detection 
model at the bytecode 

level 
Accuracy 0.797 0.834 0.944 
Precision 0.756 0.761 0.932 

Recall 0.781 0.771 0.968 

5. Conclusion 

This paper introduces the harm and characteristics of WebShell, analyzes the 
existing WebShell detection methods in detail, and points out two common 
problems: usually research at the source level, which is easy to be affected by 
traditional WebShell escape methods such as code comments and code confusion. 
Detection models usually use traditional classifiers such as linear regression, 
decision trees, naive Bayes, etc. to study the samples, which limits the detection 
accuracy of the model, and on the other hand, makes it difficult to deal with 
unknown types of WebShell. In order to solve the above problems, this paper 
proposes a WebShell detection method based on multi-layer neural network. This 
method extracts features in the code compilation results, effectively solving the 
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impact of the traditional WebShell escape means. In addition, using the bytecode 
sequence as a sample feature effectively utilizes the context of the code and 
improves the detection efficiency of the model. The method also uses the Multiply 
Layer Perception algorithm in the neural network classification algorithm to learn 
the samples, which effectively improves the generalization ability of the detection 
model, that is, the ability to detect unknown types of WebShell is stronger. The next 
step is to extend the detection range from bytecode to data, that is, to combine the 
instruction and data to construct a detection model to improve detection accuracy. 
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