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Abstract: Grey system theory is widely used to deal with the uncertainty caused by partially known 
information. Grey time series analysis plays an important role in decision-making and forecasting, of 
which grey forecasting is the key branch. The traditional grey multivariable model is limited to be widely 
used in practical application because of its lack of prediction accuracy and poor adaptability. Kernel 
Methods is a powerful pattern recognition algorithm in machine learning, which is particularly good at 
dealing with nonlinear multivariable models. A novel nonlinear conformable fractional accumulation 
kernel grey GM (1, N) model on account of the kernel method (abbreviated as CFAKGM (1, N)) is 
arranged in this work to improve the prediction accuracy. Furthermore, the utilization of conformable 
fractional accumulation enhances the prediction accuracy of the model, and the model's 
hyperparameters are determined through the application of the four vectors intelligent metaheuristic 
method (abbreviated as FVIM). Numerical investigations demonstrate that when processing the 
prediction of complex systems, the CFAKGM (1, N) model may capture the nonlinear dynamic properties 
of the data more effectively and enhance the prediction accuracy significantly. 

Keywords: Multivariate Grey Model, Kernel Method, Four Vector Intelligent Metaheuristic 

1. Introduction 

Theoretically more significant than GM (1,1), GM (1, N) is a multivariate grey model that takes a 
more comprehensive approach, making it more general than GM (1,1). However, Zhang [1]reported that 
the method of GM (1, N) was incorrect, and put out the GMC (1, N) first-order multivariable gray model, 
which is more accurate[2]. The modeling process of GMC (1, N) model actually represents a new 
multivariate gray model modeling method. For example, the grey models of DVCGM (1, N)[3] is similar 
to the modeling process of GMC (1, N). In the broad field of exploring multivariate grey prediction 
models, KGM (1, N) is established under the principle of structural risk minimization[4]. It is worth 
noting that KGM (1, N) contains a nonlinear function estimated by a kernel function, which can be 
theoretically approximated as any continuous function. Hence, for the regularization and kernel 
parameters [5] that influence the stability of the KGM (1, N) model, a minute alteration in these 
parameters can result in varied predictive outcomes. Consequently, the KGM (1, N) model is well-suited 
for fractional cumulative generation. 

In grey system theory, the cumulative generation operator is a way to whiten grey processes in order 
to reduce fluctuations and enhance regularity. In 2014, Khalil et al.[6]introduced a novel 
conceptualization of the fractional derivative, termed the compatible fractional derivative. This new 
definition of a derivative is significantly more straightforward compared to the conventional definitions 
of fractional derivatives, such as the Riemann-Liouville and Caputo definitions. Khalil and colleagues 
demonstrated that compatible fractional derivatives possess advantageous properties and are capable of 
addressing numerous challenges that were previously formidable or insurmountable when employing the 
traditional definitions. Owing to these substantial advancements, compatible fractional derivatives have 
garnered considerable attention from the research community in recent years, leading to the emergence 
of significant new findings. Using the fractional cumulative generation method, the disturbance boundary 
can be reduced. In addition, the contradiction between the result that new data have little impact on the 
solution and the new information priority principle is alleviated.  

The task of optimizing the optimal fractional order α  involves identifying the most suitable 
parameter to minimize the mean absolute percentage error (abbreviated as MAPE) of the model. This 
optimization task fundamentally represents a non-linear programming issue, characterized by an 
objective function and constraints that display non-linear properties. Numerous nonlinear optimization 
algorithms have been employed for grey system models in recent scholarly works. Additionally, heuristic 
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methods are frequently utilized to address analogous problems in various other domains[7]. The FVIM 
algorithm addresses prevalent challenges in optimization problems, including convergence instability, 
entrapment in local optima, and the identification of optimal solutions, as well as the complexities faced 
by real-world optimization processes. The FVIM methodology is distinguished by its dependence on the 
four most promising positions within the swarm to direct the swarm’s movement. Moreover, the 
algorithm incorporates an innovative vector position, calculated as the arithmetic mean of these four 
optimal points, which has the potential to yield solutions surpassing those previously identified. This 
method enhances the particles’ exploratory capabilities within the search domain, thereby improving 
swarm exploration and exploitation. Consequently, it increases the probability of locating the global 
optimum while mitigating the risk of converging to local minima. 

On these theoretical bases, the article proposed a novel nonlinear uniform fractional order kernel GM 
(1, N) model. The primary contributions are summarized as follows:  

(1) The FVIM method is employed to increase the generalization power and handle the overfitting 
problem by combining base learners and kernel-based nonlinear multivariate grey models in a 
conformable fractional approach to generate a composite predictor.  

(2) Experimental results show that CFAKGM (1, N) outperforms the comparison models in terms of 
predictive accuracy when forecasting different datasets. 

The structure of the remainder of this manuscript is as follows. Section 2 delineates the KGM (1, N) 
model. Section 3 presents the CFAKGM (1, N) model. Section 4 outlines the optimization of parameters. 
Section 5 showcases the empirical forecasting outcomes for various datasets and juxtaposes the 
forecasting performance of the CFAKGM (1, N) model against other models. Section 6 concludes the 
study. 

2. The KGM (1, N) model 

This part provides a succinct synopsis of the KGM (1, N) model and its associated mathematical 
underpinnings. 

The KGM (1, N) model primarily focuses on a grey system characterized by a series of n  elements
( ) ( ) ( )( )0 0 0
1 2, ,..., nX X X

, where 
( )0
1X  is designated as the output series, and 

( )0
uX  (with u elements 

ranging from 2 to n ) are considered as the input series. The first-order accumulative generation 
operation (abbreviated as 1-AGO) is defined as follows 

( ) ( )1 0

1
( ) ( ), ( 1, 2,..., ).u

k

v
uX k X v u N

=

= =∑
                       (1) 

The background value, denoted as 
( )1
1M , is also termed the mean sequence generated by consecutive 

neighbors of 
( )1
1X , as described in reference [8]. It is defined as follows 

( ) ( ) ( )( )1 1 1
1 1 1( ) 0.5 ( ) ( 1) .M k X k X k= + −

                     (2) 

It is evident that the OGM (1, N) model is inherently linear, focusing solely on the linear correlation 
between the input and output sequences. To endow the model with nonlinear characteristics, it is 
imperative to incorporate a nonlinear function of the input sequence. Consequently, the nonlinear form 
of the KGM (1, N) model can be derived as follows 

( ) ( )0 1
1 1( ) ( ) ( ) ,X k aM k k bφ+ = +                        (3) 

where ( )kφ  represents a nonlinear function of the input series
( ) ( )( )0 0
2 ,..., nX X

, and b  is a bias 
term. In accordance with the kernel method, feature mapping is employed to project the input sequence 

into a higher-dimensional feature space as 
1: .nRϕ − →Η  
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Subsequently, the nonlinear function ( )kφ  can be linearized in the feature space, expressed as  

( ) ( ( )),Tk kφ χ= w ϕ                                 (4) 

where 
( ) ( )1 1
2( ) ( ),..., ( )

T

nk X k X kχ  =   , and w∈Η  as a weight vector, respectively. 

In practical scenarios, it is often computationally impractical to ascertain the precise nonlinear 
mapping ϕ  from Eq. (4). As a result, the parameters of the KGM (1, N) model cannot be estimated 
using the least squares method. Consequently, the following regularization problem is considered 

( )

2 2
2

, , 2

1(0)
1 1

min ( , , ) ,
2 2 2

. . ( ) ( ) ( ( )) ,

m

ka w e v

T
k

a CJ a

s t X k aM k k bχ
=

= + +

= + − −

∑we e

e w

w

ϕ                  (5) 

where C  is designated as the regularized parameter, which governs the equilibrium between the 
fitting error and the smoothness of the generated series. The quadratic regularization term in Eq. (5) 
constitutes a semi-parametric approach frequently employed in partially linear Least Squares Support 
Vector Machines (LSSVMs). This formulation is analogous to that of ridge regression[9]. 

To address this issue, it is essential to initially formulate the Lagrangian function corresponding to 
Eq. (5) as 

( ) ( )
2 2

0 02
1 1

2 2
: ( ) ( ) ( ( )) ,

2 2 2

r m
T

k k k
k k

aL e X k aM k k bλ φ χ
= =

 = + + + + − − − ∑ ∑w C w e
    (6) 

where kλ  represent the Lagrangian multipliers. Subsequently, the Karush-Kuhn-Tucker (KKT) 
conditions are outlined as follows 

( )

( ) ( )

1
1

2

2

2

0 0
1 1

0 ( )

0 ( ( ))

0 .

0 0

0 ( ) ( ) ( ( ))

m

k
k
m

k
k

k k
k

m

j
k

T
k

j

L a M k
a
L k
w
L C
e
L
u
L X k aM k k b e

λ

λ ϕ χ

λ

λ

χ
λ

=

=

=

∂
= ⇒ = − ∂

 ∂
= ⇒ = ∂

∂
= ⇒ = ∂

 ∂
= ⇒ = ∂

 ∂
= ⇒ + − − =∂

∑

∑

∑

w

e

w φ
         (7) 

By eliminating the α , w  and ke , the linear system, in essence, mirrors the KKT conditions, as 
articulated below: 

1

1 1

00 1
,

1

T
m

m m

b
YC λ

−

− −

    
=    Ω + Ι                              (8) 

where 

[ ] [ ]1 1 21
1 1,1,...,1 , , ,..., ,T T

m mm
λ λ λ λ− −

= =
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( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( )

( ) ( ) ( )1 1 0 0 0
1 1 1 1 11 1

( ) , (2), (3),.., ( ) ,
T

m m
u v M u M v Y X X X mϕ χ ϕ χ

− × −
 Ω = ⋅ − =    

and 1m−Ι is an 1m − dimensional identity matrix. The parameter α  can be determined by solving 
the first equation derived from the KKT conditions, alongside the resolution of the linear system. 

It can be seen that without knowing the expression of the eigenmap ϕ , this work can use the value 

of the inner product ( ) ( )( )( )X u X vϕ ϕ⋅
 to solve the linear system. So, through the kernel function: 

( ) ( )( )( ( ), ( )) ( ) .K u v u vχ χ ϕ χ ϕ χ= ⋅
                      (9) 

In this study, the focus is on the Gaussian kernel function, which is widely used and generally 
expressed as 

{ }2 2( ( ), ( )) exp ( ) ( ) 2 ,K u v u vχ χ χ χ σ= − −
                (10) 

where 


 denotes the Euclidean norm of the vectors, and σ  represents the kernel parameter. 
Subsequently, the linear system in Eq. (8) can be resolved utilizing the Gaussian kernel. 

Given the second equation 
( ( ))

2 k

m
X k

k
λ ϕ=

=∑w
 of the KKT conditions in Eq. (7) and the 

definition of ( )kφ
 in Eq. (3), it follows 

( ) ( ) ( )( )
2

( ( )) .
m

T
j

j
k k u kφ ϕ λ ϕ χ ϕ χ

=

= = ⋅∑w
                 (11) 

A kernel function can be used to express the inner products ( ) ( )( )( )X v X kϕ ϕ⋅
. As a result, the 

nonlinear function ( )kφ
 can be represented by substituting the kernel function into Eq. (11) in the 

following manner. 

( ) ( )
2

( ( ), ( )).
m

T
j

j
k k K v kφ ϕ λ χ χ

=

= =∑w
                   (12) 

By incorporating the parameters 2 3, ,..., mλ λ λ  and an appropriate kernel function (such as the 
Gaussian kernel, as exemplified in Eq. (10)), reaching a point where it is possible to computationally 

assess the nonlinear function ( )kϕ
. 

The resolution of the KGM (1, N) model parallels that of the OGM (1, N). By integrating Eq. (2) into 
the KGM (1, N) model Eq. (3), it follows that 

( ) ( ) ( ) ( ) ( )1 1
1 1 1 ,X k X k kα ψ µ= − + +

                     (13) 

where 

( ) ( )1 0.5 , , .
1 0.5 1 0.5 1 0.5

ka bk
a a a

φ
α ψ µ−
= = =

+ + +                 (14) 

By solving the Eq. (13) recursively, the KGM (1, N) response function as shown below 

( ) ( ) ( ) ( ) ( )( )1 01
1 1

2

ˆ ˆ 1 .
k

k kX k X τ

τ

α ψ τ µ α− −

=

= + + ⋅∑
               (15) 
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As per Eq. (12), the response function enables the computation of the 1-AGO series. Subsequently, 
the reconstructed values can be retrieved by employing the 1-IAGO as 

( ) ( ) ( ) ( ) ( ) ( )0 1 1
1 1 1

ˆ ˆ ˆ 1 .X k X k X k= − −
                      (16) 

3. The proposed conformable fractional accumulation kernel grey GM (1, N) model 

This section mainly introduces the newly proposed conformable fractional accumulation kernel grey 
GM (1, N) model.  

3.1 The conformable fractional order accumulation operator 

The formulation of the conformable fractional order accumulation is derived from the definition of 
the conformable fractional derivative. This definition can be expressed as follows: 

Definition 1 (See[10]). For ∀ 0, (0,1]t α> ∈ , there exists a differentiable function 
:[0, )f R∃ ∞ → , then the α  order corresponding fractional derivative of f  can be expressed as 

( )( ) ( ) ( )1

0
lim .

f t t f t
B f t

α

α ε

ε

ε

−

→

+ −
=

                      (17) 

Definition 2.  For 
](, 0,1 ,k N α+∀ ∈ ∈

 the conformable fractional difference (CFD) of order 
f  of α  order can be expressed as 

( ) ( ) ( ) ( )1 1 1 ,f k k f k k f k f kα α α− −∆ = ∆ = − −                 (18) 

Definition 3. For 
](, 0,1k N α+∀ ∈ ∈

, the conformable fractional accumulation (CFA) of f  
with α  order can be represented as 

( )
1 1

1

( )( ) ( ) ( ),
k

i

f jf kf k
k j

α
α α− −

=

∇ = ∇ =∑
                      (19) 

Definition 4. ∀ n N∈ , the α  order (
]( , 1n nα ∈ +

) CFD can be represented as 
[ ] ( )( ) .nf k k f kα αα −∆ = ∆

                          (20) 

Clearly, when 1α =  approaches infinity, it yields the 1n +  order difference 
1n+∆ . Including 

0α = , Definition 4 constitutes a universal definition of the conformable fractional derivative (CFD), 
as it applies to all nonnegative integers α . 

It is worth noting that higher order CFA is still the inverse operator of higher order CFD, i.e. 
( ], 1n nα∀ ∈ +

, ( ) ( )f k f kα α∆ ∇ =
. Recalling Definition 4, it can be deduced 

[ ] ( ) ( ).nk f k f kα α α− ∆ ∇ =
                           (21) 

Similarly, the definition of the α  order conformable fractional average (CFA) can be derived by 

dividing Eq. (31) by 
[ ]k α α−

 and leveraging the correlation ( ) ( )n f k f kα∆ ∇ =
. 

Definition 5. The α  order ( ( ], 1n nα ∈ +
) CFA can be represented as 
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( ) ( )
[ ] .

f k
f k

k
α α

α α−

 
∇ = ∇  

                               (22) 

When 1nα = + , the (CFA yields the ( )1n +
 order accumulation 

1n+∇ . Similarly, including 
0α = , Definition 5 represents a universal definition for the CFA, as it applies to all nonnegative integers 

α . Using the uniform definition of CFA, it is easy to derive the recursive equation as 

( ) ( )
[ ] ( )( )1 1

1
, 1,

k
n

j

f k
f k f j

k
α α

α α α− −
−

=

  
∇ = ∇ ∇ = ∇ ≥     

∑
              (23) 

and [ ] 1n α= −
. The formula is very convenient for computer operation. 

3.2 The CFAKGM (1, N) model 

In this work, CFAKGM (1, N) is proposed within the context of CFA and CFD definitions, and pert
inent procedures are illustrated in this part. 

First, indicate the α  order CFA as 

( ) ( ) ( ) ( )( (1), (2),..., ( )),X x x x Nα α α α=                      (24) 

where 

( ) ( )

( )

[ ]

( )

0

10

1

1

( ) ,0 1.
( ) ( )

( ), 1.

k

j

k

j

x j
jX k x k
x j

α α
α α

α

α

α

−
=

−

=


< ≤

= ∇ = 
 >

∑

∑
               (25) 

The background value 
( )
1M α

 is expressed as 

( ) ( ) ( )( )1 1 1( ) 0.5 ( ) ( 1) .M k X k X kα α α= + −
                   (26) 

Hence, the nonlinear expression of the CFAKGM (1, N) model could formulated as 
( ) ( )0
1 1( ) ( ) ( ) ,X k aM k k bα φ+ = +                        (27) 

where ( )kφ  represents a nonlinear function of the input series
( ) ( )( )0 0
2 ,..., nX X

, and b  is a bias 

term. Subsequently, the nonlinear function ( )kφ  can be linearized in the feature space, expressed as 

( ) ( ( )),Tk kφ ϕ χ= w                                (28) 

where ∈Ηw  is a weight vector,
( ) ( )
2( ) ( ),..., ( )

T

nk X k X kα αχ  =   . 

3.3 Parameters estimation of the CFAKGM (1, N) 

In practice, it is frequently computationally intractable to determine the exact nonlinear mapping ϕ  
from Eq. (29). Therefore, the parameters of the CFAKGM (1, N) model cannot be determined using the 
least squares approach. Instead, the following regularization issue is addressed 
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( )

2 2
2

, , 2

(0)
1 1

min ( , , ) ,
2 2 2

. . ( ) ( ) ( ( )) ,

m

ka w e v

T
k

a CJ a

s t X k aM k k bα χ
=

= + +

= + − −

∑ww e e

e w ϕ                (29) 

where C  is referred to as the regularized parameter, which regulates how well the resulting series 
balances the fitting error and its flatness. To address this issue, as above, define the Lagrangian as 

( ) ( )
2 2

0 02
1 1

2 2
: ( ) ( ) ( ( )) ,

2 2 2

r m
T

k k k
k k

a CL e X k aM k k e bλ φ χ
= =

 = + + + + − − − ∑ ∑w w
   (30) 

where kλ  is the Lagrangian multipliers. The linear system, in essence, mirrors the KKT conditions, 
as articulated below 

1

1 1

00 1
,

1

T
m

m m

b
YC λ

−

− −

    
=    Ω + Ι                             (31) 

where  

( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( )1 1 1 1

( ) .
m m

u v M u M vα αϕ χ ϕ χ
− × −

Ω = ⋅ −
 

The KGM (1, N) and the CFAKGM (1, N) solutions are similar in how they work. Solving the (12) 
repeatedly yields the response function of the CFAKGM (1, N). 

( ) ( ) ( ) ( ) ( )( )01
1 1

2

ˆ ˆ 1 .
k

k kX k Xα τ

τ

α ψ τ µ α− −

=

= + + ⋅∑
              (32) 

The CFD can still be used to acquire the recovered data as 

( ) ( ) [ ] ( ) ( ) ( ) ( )( )0
1 1 1

ˆ ˆ ˆ 1 .X k k X k X kα α α α−= − −
                 (33) 

4. Determining the Conformable Fractional Accumulation Kernel Grey GM (1, N) Model With 
Four Vector Intelligent Metaheuristic Algorithm 

In this section, using an intelligent optimization method, the FVIM algorithm, to find the optimal 
solution of the nonlinear parameter α . 

4.1 Model Evaluation Criteria 

In this study use MAPE as the objective function of the FVIM algorithm and find the parameter 
combination that minimizes MAPE through iterative updates.  

Table 1: The evaluation criteria. 

MAPE (%) Prediction Performance 
< 10 Wonderful 

10 − 20 Great 
20 – 50 

>50 
Logical 

Incorrect 
In each iteration, the FVIM algorithm updates the positions of the other individuals based on the four 

best-performing individuals in the current population, while using Gaussian kernel functions to deal with 
nonlinear relationships in the input data. According to Table 1 for details. 

4.2 The Four Vector Intelligent Metaheuristic Algorithm 

Algorithm 1. Algorithm of FVIM to search for the nonlinear parameter α  of the grey model. 
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Input: Number of agents { }, 1, 2,3, 4n z =
, dimensions d , objective function ( )f x , Max iterations

r . 

Output: The best solution bestP . 

1: Initialize: the four vector population ( 1,2,..., )iX i n=  in the swarm randomly, initialize the four 

agent positions 1 2 3 4, , ,P P P P  
2: For 1i =  to n  do 

3:  |  Evaluate the fitness ( )if X of each agent 
4: End for 

5: Identify the four best-performing agents 1 2 3 4, , ,P P P P  

6: For 1j =  to n  do 
7:    For 1i =  to n  do 
8:        Update using equations (34) to (37) 

9:        Update the average position iP  using equation (38) 
10:    End for 

11:          Identify the four best-performing agents 1 2 3 4, , ,P P P P  

12:          Evaluate the fitness ( )if X  of each agent 
13: End for 

Algorithm 1 delineates a sequential process that encompasses all crucial parameters required for the 
identification of the optimal solution. The FVIM algorithm utilizes unique mathematical models to 
control how the search agents behave. These models include four different equations for how the agents 
move and position themselves (Equations 34-37). The localization update mechanism amalgamates a 
plethora of elements that influence the navigational trajectory and progression of each agent throughout 
the optimization process, as depicted by the subsequent equations. 

1, 1, 1 2 1, 3

1, 1, 1 2 1,

(2 ) , 0.5

(2 ) ,

ii i i

ii i i

X P P P if

X P P P otherwise

α ξ α ξ ξ

α ξ α ξ

 = + × × − × × − <


= − × × − × × −             (34) 

2, 2, 1 2 2, 3

2, 2, 1 2 2,

(2 ) , 0.5

(2 ) ,

ii i i

ii i i

X P P P if

X P P P otherwise

α ξ α ξ ξ

α ξ α ξ

 = + × × − × × − <


= − × × − × × −            (35) 

3, 3, 1 2 3, 3

3, 3, 1 2 3,

(2 ) , 0.5

(2 ) ,

ii i i

ii i i

X P P P if

X P P P otherwise

α ξ α ξ ξ

α ξ α ξ

 = + × × − × × − <


= − × × − × × −            (36) 

4, 4, 1 2 4, 3

4, 4, 1 2 4,

(2 ) , 0.5

(2 ) ,

ii i i

ii i i

X P P P if

X P P P otherwise

α ξ α ξ ξ

α ξ α ξ

 = + × × − × × − <


= − × × − × × −            (37) 

( )1, 2, 3, 4, 4i i i i iP X X X X= + + +
                       (38) 

In the context of the algorithm, iP  is an adaptive coefficient, represents the current average position 

of all agents in i  dimension. ,n iX
signifies the updated position for the 

thn  best agent in the i  
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dimension. ,n iP
denotes the current position of the 

thn  best agent in i  dimension. 1 2 3, ,ξ ξ ξ  

denotes random variables that are uniformly distributed within the interval[ ]0,1
. The incorporation of 

random numbers 1ξ  and 2ξ  into the algorithm introduces stochasticity, thereby ensuring that agents 
explore a wide array of regions within the search space and avoid converging to local minima. 

5. Application 

In this section, the validations are performed to examine the predictive advantage of the proposed 
CFAKGM (1, N) model through a real-world example. The first dataset in this work is the cumulative 
GDP cumulative year-on-year for Shanghai, Anhui, Jiangsu and Zhejiang from September 2018 to June 
2024. The data is illustrated in the Table 2 come from Wind. 

Table 2: The raw data. 

Date 
Shang 

Hai
( )0
2X  

An 

Hui
( )0
3X  

Jian 
Su 
( )0
4X  

Zhe 
Jiang 

( )0
1X  

Date 
Shang 

Hai
( )0
2X  

An 
Hui 

( )0
3X  

Jian 

Su
( )0
4X  

Zhe 

Jiang
( )0
1X  

18.09 6.80 8.20 6.70 7.50 21.09 9.80 10.20 10.20 10.60 
18.12 6.80 8.00 6.70 7.10 22.12 8.10 8.30 8.60 8.50 
19.03 5.70 7.70 6.70 7.70 22.03 3.10 5.20 4.60 5.10 
19.06 5.90 8.00 6.50 7.10 22.06 -5.70 3.00 1.60 2.50 
19.09 6.00 7.80 6.40 6.60 22.09 -1.40 3.30 2.30 3.10 
19.12 6.00 7.50 6.10 6.80 22.12 -0.20 3.50 2.80 3.10 
20.03 -6.70 -6.50 -5.00 -5.60 23.03 3.00 4.80 4.70 4.90 
20.06 -2.60 0.70 0.90 0.50 23.06 9.70 6.10 6.60 6.80 
20.09 -0.30 2.50 2.50 2.30 23.09 6.00 6.10 5.80 6.30 
20.12 1.70 3.90 3.70 3.60 23.12 5.00 5.80 5.80 6.00 
21.03 17.60 18.70 19.20 19.50 24.03 5.00 5.20 6.20 6.10 
21.06 12.70 12.90 13.20 13.40 24.06 4.80 5.30 5.80 5.60 

 
Figure 1: The scatter plots displaying the simulation and prediction outcomes of the two models. 

As depicted in Figure 1, the fitting curve of KGM (1, N) roughly tracks the original data trend but 
shows slight inadequacy and bias when there are sharp changes in the data. In contrast, the fitting curve 
of CFAKGM (1, N) is smoother, particularly in areas with significant data fluctuations, demonstrating 
greater adaptability and overall better fitting effect. 

In the realm of prediction, while the KGM (1, N) model can capture the fundamental trend of the data, 
it exhibits a substantial prediction error within regions of complex fluctuation. Conversely, the CFAKGM 
(1, N) model demonstrated enhanced stability, with a reduced error margin between the predicted and 
actual values, particularly in scenarios where the data experienced significant fluctuations, showcasing 
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an improved prediction performance. 

Comparing the two graphs in Figure 2, the number of iterations of CFAKGM (1, N) model (left 
picture) tends to be stable after only 30 times, while that of KGM (1, N) (right picture) requires more 
times. It is not difficult to see that the former model has a better fitting effect. 

 
Figure 2: Convergence curve of the KGM model (Left picture) and CFAKGM model (Right picture). 

Table 3: The simulation and prediction data of two models. 

Raw data CFAKGM (1, N) KGM (1, N) 
In-sample (simulation) 

7.50 7.50 7.50 
7.10 7.13 6.13 
7.70 7.76 6.75 
7.10 7.17 7.17 
6.60 6.68 7.37 
6.80 6.89 7.39 
-5.60 -5.65 1.06 
0.50 0.52 0.5 
2.30 2.35 1.13 
3.60 3.67 2.24 

19.50 19.81 10.63 
13.40 13.62 12.4 
10.60 10.79 11.87 
8.50 8.66 10.67 
5.10 5.20 8.02 
2.50 2.56 4.41 
3.10 3.17 3.19 
3.10 3.17 2.80 
4.90 5.01 3.56 
6.80 6.95 5.42 

Out-of-sample (prediction) 
6.30 6.07 5.74 
6.00 6.07 5.70 
6.10 6.07 5.61 
5.60 6.07 5.43 

Mape 
Sim-mape 1.67 15.12 
Pre-mape 3.24 6.25 

As indicated by the simulation and predictive outcomes for the two models presented in Table 3, the 
CFAKGM (1, N) model exhibits significantly superior simulation and predictive accuracy compared to 
the KGM (1, N) model, with accuracy rates of 1.67% and 3.24%, respectively. This suggests that the 
CFAKGM (1, N) model is capable of precisely forecasting the cumulative GDP growth of Zhejiang 
Province. 
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6. Conclusion 

Based on the chart data provided, this work deeply analyzes and compares the difference between 
KGM (1, N) and CFAKGM (1, N) models in the prediction performance. By objectively proving the 
consistency between the model predictions and the actual data, this work attempts to give a thorough and 
reliable basis for evaluating the performance of the two models. The chart data clearly show that 
CFAKGM (1, N) model has higher accuracy in prediction than KGM (1, N) model. The predicted lines 
are closer to the actual data, indicating that CFAKGM (1, N) has an advantage in capturing dynamic 
changes in data. The analysis based on the chart data shows that CFAKGM (1, N) model is dramatically 
better than KGM (1, N) model in forecasting performance. The discovery provides new solutions to 
prediction problems in complex systems and demonstrates the potential of the CFAKGM (1, N) model 
for practical applications. The analysis in this article is based on a specific data set, and the results may 
not apply to all types of data. In the future, it can be combined with other modeling techniques to test 
CFAKGM on different data types to further improve its performance. 
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