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Abstract: Aiming at the dynamic risk evolution problem caused by the strategic interaction of multiple 
stakeholders in complex systems, this paper proposes a hybrid risk assessment model integrating Markov 
chains and game theory. Traditional static models have limitations in depicting the nonlinear conduction 
mechanism of strategy interaction and the long-term risk trend. In this study, by embedding the game 
equilibrium strategy into the state transition process of the Markov chain, a dynamic closed-loop 
framework of "strategy selection - state evolution - benefit feedback" is constructed. The model 
incorporates the environmental risk level and the combination of participants' strategies into the state 
space together, and modifies the transition probability matrix in real time based on Nash equilibrium to 
achieve the dynamic mapping of micro-strategy interaction and macro-risk evolution. Numerical 
experiments in the supply chain scenario show that in a low/medium risk state, suppliers and purchasers 
can significantly increase long-term returns through the "expansion - additional purchase" strategy 
combination (the maximum increase in supplier returns is 46.4%). Under the high-risk state, the strategy 
synergy shifts to the "contraction - purchase reduction" combination, and the returns of both sides are 
optimized by 45.6% and 13.6% respectively, verifying the risk adaptive characteristics of the Nash 
equilibrium. The sensitivity analysis further revealed that the discount factor has a significant impact on 
the long-term value under the low-risk state (the increase of the value function reaches 28.7% when 
γ=0.95), providing a theoretical basis for the design of the dynamic discount mechanism. This model 
provides supply chain managers with a decision support tool that combines theoretical rigor and 
practical operability by coordinating strategic conflicts and optimizing risk exposure. 
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1. Introduction 

This study proposes a methodological framework integrating Markov chains and game theory to 
analyze the risk assessment problem under the strategic interaction of multiple stakeholders. In the risk 
assessment of complex systems, the strategic interaction among stakeholders has dynamic evolution 
characteristics, and traditional static models are difficult to effectively describe its nonlinear transmission 
mechanism [1]. Take the financial market as an example. Investors' decisions are not only influenced by 
the strategies of their rivals but also have a counter-effect on the evolution of the market state [2]. The 
transmission of supply chain risks also presents the networked characteristics of multi-agent strategy 
interaction, and there is an urgent need to construct a dynamic modeling method. 

The Markov chain describes the temporal evolution law of the system through the state transition 
matrix. However, its traditional application has two limitations: Firstly, the setting of the state transition 
probability ignores the policy initiative of the decision-making subject [3]; Secondly, the assumption of 
no aftereffect is difficult to reflect the driving effect of the game process on the evolution of the state [4]. 
Although game theory can analyze the interaction of multi-agent strategies, it focuses on the analysis of 
static equilibrium and lacks the description of the dynamic evolution process [5]. The collaborative 
modeling of the two can achieve complementary advantages: Game theory quantifies the immediate 
impact of strategy interaction on the system, while Markov chain characterizes the long-term risk trend 
driven by strategy. 

The existing research mainly has three deficiencies: (1) The feedback mechanism of strategy 
adjustment and state evolution has not been fully modeled [6]; (2) The correlation analysis between micro 
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behavioral logic and macro risk trends is insufficient [7]; (3) The research on the coupling mechanism 
between multi-stage dynamic games and nonlinear risk accumulation is weak [8]. To this end, this paper 
constructs a Markov - game hybrid model. The innovation point lies in: taking the game equilibrium 
strategy as the driving variable for the state transition of the Markov chain, forming a dynamic closed 
loop of "strategy selection - state evolution - benefit feedback". It is specifically achieved through a two-
stage mechanism: In the state definition stage, the combination of participant strategies is incorporated 
into the Markov chain state space; In the dynamic update stage, the transition probability matrix is 
corrected in real time based on the game equilibrium solution, thereby establishing the dynamic mapping 
relationship between the interaction of micro strategies and the evolution of macro risks. 

2. Markov Chain Model 

A Markov Chain is a mathematical model that describes Stochastic processes. Its core characteristic 
is "lack-of-memory property", that is, the state of the system at a certain moment only depends on its 
state at the previous moment and has nothing to do with earlier history [9]. 

2.1 Define the State Space 

The state space is the core framework for describing the dynamic risk evolution of a system. In this 
model, the state space is composed of the environmental risk level and the combination of participants' 
strategies, and is formally defined as: 

1 2{ ( ,{ , , , })}i i k NS s s e a a a  ∣  (1) 

Among them: ℯ𝑘𝑘 represents the environmental risk level(𝑒𝑒1 =  𝑙𝑙𝑙𝑙𝑙𝑙 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑒𝑒2 =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑒𝑒3 =
 ℎ𝑖𝑖𝑖𝑖ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), {𝑎𝑎1,𝑎𝑎2, . . .𝑎𝑎𝑁𝑁} represents the combination of strategies chosen by the participants in the 
current state. 

To enhance the predictive efficiency of environmental risk modeling, the methods of risk 
discretization and strategy integration can be adopted. Firstly, the environmental risks are discretized into 
three levels: low, medium and high, reducing the model complexity while retaining the core risk 
characteristics. Secondly, the strategy choices of the participants are integrated into the state space to 
solve the problem of prediction bias caused by the neglect of strategy interaction in traditional models. 

2.2 Transition Probability Matrix 

The transition probability matrix is the core tool for dynamic modeling of Markov chains, and its 
element 𝑝𝑝𝑖𝑖𝑖𝑖 represents the probability of transitioning from state 𝑠𝑠𝑖𝑖 to 𝑠𝑠𝑗𝑗. Different from the traditional 
model, in this model, the transition probability is driven by the combination of participants' strategies 
and is dynamically adjusted through game equilibrium. Its mathematical form is: 

1 2( , ( ), ( ))ij j i i ip P s s s sπ π  ∣  (2) 

In environmental risk modeling, the probability of state transition is determined by the strategy 
choices of the participants. For example, in a low-risk state, when suppliers and purchasers respectively 
adopt the "expansion" and "additional purchase" strategies, the probability that the system maintains the 
current risk level is significantly higher than that of other strategy combinations. This study constructs a 
dynamic update mechanism and adjusts the transition probability matrix in real time by solving the game 
equilibrium. This mechanism is implemented in two stages: Firstly, the Nash equilibrium strategy is 
solved based on the payment matrix to determine the optimal strategy combination; Subsequently, based 
on the environmental feedback generated by the implementation of the strategy, the probability 
distribution of state transition is updated, thereby dynamically representing the risk evolution process 
caused by the interaction of the strategy. 

2.3 Steady-State Analysis 

Steady-state distribution refers to the situation where a distribution vector exists: 

 1 2 1
  , , , 0, 1,N i ii

∞
π π π π π π


     (3) 
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Let the above 𝜋𝜋𝜋𝜋 = 𝜋𝜋. Steady-state analysis is a method for studying the equilibrium state achieved 
by a system during its long-term operation. In this state, the key characteristics of the system no longer 
change significantly over time, presenting stable rules or fixed patterns. In the dynamic evolution 
mechanism, the state transition probability is directly determined by the strategy combination of the 
participants and is corrected in real time through the solution of game equilibrium. 

3. Game Theory 

Game theory is a mathematical theory that studies how multiple decision-making subjects 
(participants) make the optimal decisions in strategic interactions [10]. The core lies in analyzing how 
the choices of participants influence each other in competitive or cooperative situations and predicting 
possible equilibrium outcomes. 

3.1 Define the Participants 

The model contains two types of typical participants, and their strategy choices directly affect the risk 
evolution path: 

Supplier: 

1 {Expand,Shrink}          (4) 

Buyer: 

2 {Increase,Decrease}                   (5) 

The strategy choices of the participants form a strategy linkage effect through the payment matrix. 
Take the low-risk state as an example. When suppliers adopt the "expansion" strategy and purchasers 
simultaneously choose "increase procurement", this cooperative strategy combination generates higher 
returns through the synergy of supply and demand. Conversely, if one party adopts an aggressive 
expansion strategy while the other maintains a conservative contraction, it may cause a conflict in returns 
due to strategy mismatch, reflecting the direct correlation between strategy choice and return structure. 

3.2 Strategy Space 

The strategy space is dynamically coupled through game equilibrium and state transition rules, which 
is specifically manifested as follows: There is a clear mapping correlation between the strategy 
combinations of the participants and the evolution of the system state. Each strategy combination 
corresponds to a specific state transition probability distribution, directly determining the dynamic 
change path of the risk level. For example, the strategy combination of suppliers' "contraction" and 
purchasers' "reduction of purchases" may increase the probability of the system entering a high-risk state 
through the negative feedback of the supply and demand network. When both parties adopt the 
cooperative strategies of "expansion" and "increased procurement", it is easier to maintain a low-risk 
steady state through the synergy effect. This mapping mechanism requires that the design of the payment 
matrix not only quantify the immediate benefits of strategy choices (such as reducing inventory costs), 
but also reflect their indirect impact on risks - for example, although the "reduction of purchases" by 
purchasers in a high-risk state can avoid short-term losses, it may indirectly intensify the risk of collapse 
due to the weakening of supply chain resilience, forming a multi-dimensional trade-off relationship 
between benefits and risks. 

3.3 Payoff Function 

The Payoff Function is a central tool in game theory to quantify the payoff of a player given a 
particular combination of strategies. In dynamic games, the payment Function is further expanded into a 
Value Function, which is used to measure the expected value of the long-term cumulative returns of the 
participants. The following elaborates on its definition and its application in the supplier-purchaser game. 

The value function is the expected value of the total long-term discount benefits that participants can 
obtain by adopting the optimal strategy in a dynamic system (such as a Markov decision process or game) 
under a certain state. The core idea is that the decisions made by participants in a certain state not only 
affect the current returns but also influence the future returns through state transitions: 
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1 2( ) max ( , , ) ( )
i

ia
V s r s a a V s sγ    ∣                       (6) 

Among them, 𝑟𝑟𝑖𝑖  represents the immediate gain of participant 𝑖𝑖 , and   shows the conditional 
expectation based on the current state 𝑠𝑠. 

In the supply chain game model, the construction of the supplier value function is based on three core 
elements: strategy dependence, state evolution and revenue feedback. Firstly, the revenue of the supplier 
is jointly determined by its own strategy and the optimal strategy of the purchaser, reflecting the 
interactive influence of multiple strategies. Secondly, the supply chain risk state evolves dynamically 
with the strategy combination, and the possibility of transitioning from the current state 𝑠𝑠 to the future 
state 𝑠𝑠′ is described by the transition probability. Finally, the future earnings are discounted to the 
current value through the discount factor γ to balance the short-term earnings and the long-term risks. 

The value function of the supplier measures the long-term benefits of its production strategy selection 
under different states. The form is: 

1
1 2( ) max ( , , ) ( )sup supsup a

V s r s a a V s sγ    ∣                        (7) 

The value function of the purchaser assesses the long-term benefits of its purchasing strategy in the 
form of: 

2
1 2( ) max ( , , ) ( )buy buybuy a

V s r s a a V s sγ    ∣                        (8) 

The same as the supplier, the solution of the value function of purchasers can also be based on the 
uniform distribution assumption or Nash equilibrium. 

4. Fusion Strategy 

 
Figure 1: Markov game framework. 
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This model drives state transitions through game equilibrium strategies to capture the immediate 
impact of risk evolution and relies on steady-state distribution feedback to achieve closed-loop 
optimization of "strategy selection - state evolution - return feedback". Figure 1 shows the flowchart of 
the Markov game framework. 

4.1 Nash Equilibrium Analysis 

Nash equilibrium was proposed by the mathematician John Nash in 1950 and is a core concept in 
non-cooperative game theory. The core idea is: In a game, when all participants have chosen their 
respective strategies, if no participant can increase their gains by unilaterally changing their strategies, 
then the strategy combination at this time is called Nash equilibrium [11]. 

In simple terms, Nash equilibrium is a "stable state": each participant's strategy is the optimal 
response to the strategies of other participants, and no one has the motivation to deviate unilaterally. 

4.2 Risk Quantification 

Based on Nash equilibrium analysis, the model realizes the dynamic assessment of system risks and 
the quantitative analysis of strategy effects through the risk quantification link. Figure 2 visually presents 
the complete distribution of strategy combinations under various risk states, laying a data foundation for 
the strategy analysis of Markov games [12]. 

 
Figure 2: The distribution of strategy each state. 

4.3 Sensitivity Analysis 

In addition to risk quantification, the model further introduces sensitivity analysis to explore the 
influence mechanism of key parameters (such as the discount factor 𝛾𝛾) on strategy selection and risk 
evolution. Figure 3 is the flowchart of the sensitivity analysis [13]. 

 
Figure 3: Sensitivity analysis flowchart. 
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Figure 4 reveals the dynamic influence mechanism of the discount factor 𝛾𝛾 on the value functions 
of both parties in the supply chain game. For the supplier (left figure), when γ increases from 0.7 to 0.95, 
the value functions of the three types of risk states all show a monotonically increasing characteristic. 
Among them, the increase in the low-risk state (blue curve) is the most significant, reaching 148.87 when 
𝛾𝛾 = 0.95, compared with the medium-risk (green curve, increase of 14.3%) and high-risk (red curve, 
The increase was 9.8%, which was 21.5% and 28.7% higher respectively. The purchaser value function 
(right figure) also follows a similar rule. The value in the low-risk state reaches 139.34 when 𝛾𝛾 = 0.95, 
increasing by 1.8% and 2.0% respectively compared with the medium and high-risk states. It is worth 
noting that the values of the two types of entities in the low-risk state are more sensitive to γ changes, 
and their value elasticity coefficients are 1.5-2.3 times that of the medium and high-risk states 
respectively.  

 
Figure 4: The effect of the discount factor on the participant value function. 

This differential characteristic reveals an important decision-making rule under the Markov game 
framework: When the system is in a low-risk state, participants can more effectively internalize the long-
term benefits of strategy interaction into current value by increasing the discount rate of future returns 
(i.e., increasing the γ value), thereby establishing an intertemporal decision-making advantage in 
dynamic games. This discovery provides a quantitative basis for supply chain risk management and 
control - by constructing a dynamic discounting mechanism linked to the risk status, the long-term value 
creation ability of multiple participants can be optimized. 

4.4 Result Analysis 

Table 1: The results of the strategies of both sides are evenly distributed. 

risk Supplier Buyers Supplier optimum Buyer optimum 
Low Risk Expand Increase 52.2826 66.7042 

Medium Risk: Expand Increase 48.2919 63.8621 
High Risk Shrink Increase 43.9348 59.2415 

Table 2: The result of Nash equilibrium strategy. 

risk Supplier Buyers Supplier optimum Buyer optimum 
Low Risk Expand Increase 76.5110 70.4189 

Medium Risk: Expand Increase 71.9780 67.9121 
High Risk Shrink Decrease 64.0110 67.2939 

This study compares the strategy choices and equilibrium returns of supply chain participants under 
different risk states through Tables 1 and 2, revealing the coordination mechanism of Nash equilibrium. 
At low/medium risk levels, both parties adopted a consistent "expansion - additional purchase" strategy. 
The revenue of suppliers increased significantly (low risk +46.4% to 76.51, medium risk +49.0% to 
71.98), and the revenue of purchasers increased slightly (+5.6%), achieving Pareto improvement. Under 
high risks, strategies diverged. Suppliers turned to "contraction" while purchasers adopted "reduced 
purchases" to form risk hedging, and the returns of both sides rose simultaneously (suppliers +45.7% to 
64.01, purchasers +13.6% to 67.29). The results show that Nash equilibrium has risk adaptability. When 
the risk is low, it enhances the effect through strategy synergy; when the risk is high, it diversifies the 
risk through differential combinations. Revenue optimization is asymmetric, and suppliers benefit more 
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significantly due to power advantages, verifying its theoretical value in coordinating conflict decisions 
and constructing an elastic supply chain mechanism. 

Table 3: The result of sensitivity analysis. 

gamma state policy_p1 policy_p2 value_p1 value_p2 
0.7 Low Risk Expand Increase 27.89725 24.366784 
0.7 Medium Risk Expand Increase 23.83512 22.007167 
0.7 High Risk Shrink Decrease 16.78614 21.589007 
0.8 Low Risk Expand Increase 40.15345 35.907925 
0.8 Medium Risk Expand Increase 35.86956 33.478257 
0.8 High Risk Shrink Decrease 28.38874 32.966748 
0.9 Low Risk Expand Increase 76.51098 70.418948 
0.9 Medium Risk Expand Increase 71.97801 67.912079 
0.9 High Risk Shrink Decrease 64.01098 67.293948 

0.95 Low Risk Expand Increase 148.8683 139.344127 
0.95 Medium Risk Expand Increase 144.1989 136.795562 
0.95 High Risk Shrink Decrease 135.9651 136.118321 

According to the sensitivity analysis and state transition optimization matrix results in Table 3 and 
Figure 5, it is indicated that the discount factor is an important factor influencing decisions. By adjusting 
the weight of future earnings, it affects the strategy choices and value functions of suppliers and 
purchasers. In practical applications, decision-makers can formulate corresponding strategies based on 
the degree of emphasis on future benefits (that is, the value of the discount factor). If more emphasis is 
placed on long-term returns (a higher gamma value), a strategy that can maximize the long-term value 
function should be adopted; If more attention is paid to short-term gains (a lower gamma value), the 
strategy choice may be different. In addition, the risk status is also a key factor to be considered in the 
decision-making process. The value function under high-risk conditions is relatively low, which indicates 
that decision-makers need to formulate strategies more carefully when facing high risks to reduce risks 
and maximize returns. 

 
Figure 5: State transition optimization matrix. 

5. Conclusions 

This study constructed a supply chain risk decision-making model based on the coupling of Markov 
chains and game theory, and successfully achieved the collaborative modeling of dynamic risk evolution 
and multi-agent strategy interaction. Empirical analysis shows that: (1) The Nash equilibrium mechanism 
can effectively coordinate the conflicts of interest among supply chain participants. Under low and 
medium risk conditions, it can increase the returns of suppliers and purchasers by 46.4% and 5.6% 
respectively through the "expansion - additional purchase" strategy combination. (2) In high-risk 
situations, the purchaser's strategy was adjusted to "reduced purchase" (the supplier maintained the 
"contraction" strategy), driving the returns of both parties to increase by 45.6% and 13.6% respectively, 
verifying the risk adaptability of the equilibrium strategy; (3) The sensitivity of model parameters reveals 
the decision-making leverage effect of the discount factor (γ). At low risk, a high γ value (>0.9) can 
amplify long-term returns, while at high risk, moderately reducing the γ value (0.7-0.85) can enhance the 
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flexibility of the strategy. 

This model provides supply chain decision-makers with a dynamic optimization tool: adopting an 
expansionist strategy to capture long-term benefits during the low-risk stage, and switching to a 
conservative strategy to reduce risk exposure when risks escalate. The main limitation of the research 
lies in the failure to consider the influence of random shocks in the external market. In the future, the 
multi-level supply chain network can be expanded and the random disturbance factor can be introduced. 
This model establishes an analytical framework that combines theoretical rigor and practical operability 
for supply chain management in a complex risk environment. 
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