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Abstract: As a specific application of image inpainting, face inpainting is a critical content in the 

computer vision. It plays an important role in object removal, photo editing and other fields. Deep 

learning has become the mainstream approach of image inpainting. In specific applications, the 

corrupted area of face images is usually irregular. For the classical irregular face inpainting 

approaches based on deep learning, this paper divides it into convolution operator optimization methods 

and structural information constraint methods, the former includes PConv and GConv and the latter 

includes EC, PRVS, MED, CTSDG. We fist describe the basic principle of each algorithm and detail 

about the strengths and limitations. Then we experiment on CelebA-HQ dataset, evaluate and compare 

the performance quantitatively and qualitatively. 
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1. Introduction 

Face inpainting aims to reconstruct the missing or damaged parts of images according to the known 

surrounding contents while maintaining the overall consistency. The task originated in ancient times, 

when artists restored corrupted pieces as much as possible. With the development of artificial 

intelligence, image inpainting is regarded as one of the important low-level tasks in computer vision 

areas. Among them, face inpainting has been of great significance in object removal, old photo 

restoration and other practical applications. 

Traditional image inpainting methods can be mainly divided into two categories, i.e., diffusion-based 

and patch-based. Diffusion-based methods [1-2] gradually diffuse the known pixels around the holes in the 

corrupted image and synthesize new textures. The larger the corrupted area, the less effective information 

can be obtained from the center of holes. Diffusion-based methods are mainly used to fill images with 

less damage, such as scratches in photos. Patch-based methods [3-4] are implemented by finding the most 

similar patches in the uncorrupted area. For images with relatively large corrupted areas, they can 

produce better inpainting results, but they lack the perception of semantic information. For example, the 

corrupted position in the face image is the nose, and there is no corresponding similar patches in the 

known area, which makes it impossible to form a semantically reasonable result. 

Deep learning has made major breakthroughs in image inpainting in the past few years, and CNNs 

and GANs are the main methods. Convolutional neural network (CNN) is a feedforward neural network 

that consists of several convolutional layers and pooling layers, and it has excellent performance in 

image feature learning and expression. GAN [5] is a generative model whose core idea is derived from the 

Nash equilibrium of game theory. The generator generates new samples by learning the potential 

distribution of real data samples, and the discriminator determines whether the input data is ground truth 

or generated data samples. Pathak et al. [6] first brought the idea of encoder-decoder structure and GANs 

into image inpainting. Experimental data shows that results were both semantic and authentic, filling the 

deficiency of traditional methods in semantic understanding. This method sets off a hot wave of research 

on image inpainting based on deep learning. Liu et al. [9] propose replacing vanilla convolutions with 

partial convolution layers to fill holes of any size, shape and position that caused researchers to explore 

continuously the inpainting technology of irregular corrupted areas in the field of face image inpainting. 

This paper selects six classical irregular face inpainting algorithms based on deep learning proposed 

in recent years, details the basic principles and improvement strategies of each algorithm, experiments on 

CelebA-HQ dataset and evaluates the performance quantitatively and qualitatively. By analyzing and 
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comparing the performance to help researchers select or design algorithms, and promote the application 

and evolution of irregular face inpainting algorithms. 

2. Methods based on Deep Learning 

Goodfellow et al. proposed generative adversarial network [5] in 2014, which has been widely used in 

the field of computer vision, such as image generation and image inpainting. GAN contains of two parts. 

i.e., generator and discriminator. In the training process, the generator generates new samples by learning 

the potential distribution of ground truth samples to deceive the discriminator. And the task of the 

discriminator model is to determine whether the given data is ground truth or generated samples. Pathak 

et al. [6] introduced GAN into the inpainting task and proposed Context Encoder network, which solved 

the semantic limitations that could not be broken through by traditional inpainting methods. The network 

structure is shown in Figure 1. 

Encoder-decoder structure as the basic framework combined with the constraints of GAN like 

Context Encoder has become the mainstream method of image inpainting. Liuzuka et al. [7] added a 

global discriminator while retaining the local discriminator of the Context Encoder to make results more 

consistent with global semantics, and the method can fill rectangular holes at any position. Since vanilla 

convolution is difficult to capture the texture information far from holes, Yu et al. [8] introduced the 

attention mechanism into image inpainting and made full use of the known features around the image 

during training to improve the details of the inpainting. However, these methods are designed for regular 

rectangular holes. In practice applications, the area of damage in the image are often irregular. We pick 

the classic methods of irregular image inpainting in recent years and divide into based on convolution 

operator optimization and based on structural information constraint. The basic description of algorithms 

is given in Table 1. The methods based on convolution operator optimization include PConv [9] and 

GConv [10], and the methods based on structural information constraint include EC [11], PRVS [12], MED 
[13] and CTSDG [14]. 

2.1. Methods based on convolution operator 

Vanilla convolution feeds all pixels of images to convolution layers. The pixels of a corrupted image 

are divided known pixels and unknown pixels. By feeding both types of pixels into a vanilla 

convolutional layer, most of results suffer from blurring and artifacts, and usually rely on costly 

subsequent processing. Liu et al. [9] realized the inpainting of irregular corrupted images for the first time, 

considering the pixels in the known area and the unknown area as valid pixels and invalid pixels 

respectively, and proposed partial convolution layers with automatic mask update function instead of 

vanilla convolution, convolving only the valid pixels. At the same time, the U-Net structure for image 

segmentation is also introduced, replacing the vanilla convolution with partial convolution and the ReLU 

at the decoder with LeakyReLU. The skip connection of U-Net enables the decoder to supplement the 

features lost in encoder, which helps to produce refined results.  

PConv [9] can fill holes of arbitrary shape, size and position in the image. However, the rule-based 

mask updating mechanism has certain irrationalities, such as the method treating one valid pixel and 

multiple valid pixels equally when updating the mask. 
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Generator
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convolution

 

Figure 1: Context encoder network architecture. 
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Yu et al. [10] proposed gated convolution based on Liu and designed a more flexible mask updating 

mechanism. Gated convolution assigns different weights to different channels at different spatial 

positions in different layers. Even in the deep network, the mask region still exists. In order to enlarge the 

receptive field and stabilize the training, the model consists of two stages. The first stage predicts coarse 

results, and the second stage predicts more refined results based on coarse results. Coarse network 

training uses reconstruction loss while fine network training uses the combination of reconstruction loss 

and adversarial loss. The fine network generator consists of two branches, the first branch consists of 

gated and dilated convolution, and the second branch consists of gated convolution and contextual 

attention. A faster and more stable spectral-normalized discriminator is also trained to improve the 

inpainting effect of irregular holes images. The gated convolution coarse-to-fine network model is shown 

in Figure 2. Gated convolution as a flexible convolution has made great progress in face image inpainting 
[16]. 

Coarse Network(stage I)

Refinement Network with 
Contextual attention(stage II)

concat

Gated Convolution

Dilated Gated Convolution

Contextual Attention

Inpainting Result

Coarse Result

 

Figure 2: Framework of the GConv generator. 

GConv [10] achieves dynamic updating of irregular masks, however, the multi-branch structure of this 

model contains a large number of parameters, which requires more computing resources, and has 

limitations such as too much smoothing in structural details. 

Table 1: Summary of basic information description. 

Method Year Source Encoder-Decoder  

PConv [9] 2018 ECCV U-Net 

GConv [10] 2019 ICCV Coarse-Fine network 

EC [11] 2019 ICCVW Structure-Content network 

PRVS [12] 2019 ICCV U-Net 

MED [13] 2020 ECCV U-Net 

CTSDG [14] 2021 ICCV U-Net(Two stream) 

2.2. Methods based on Structural Information Constraints 

Artists restore damaged artworks, usually first completing the outline of the damaged area, and then 

finely restoring content. Inspired by this, Nazeri et al. [11] used an edge generator to first generate the edge 

of corrupted images, and then use it as edge priori to guide subsequent inpainting work. The network 

consists of two stages. The first stage generates edge and the second stage completes corrupted image. 

Both stages are GAN-based network, and each stage has a generator and a discriminator. The network 

model is shown in Figure 3. G1, D1 are the generator and discriminator of the edge generator, and G2, D2 

are the generator and discriminator in the completion network, respectively. In G1, the broken grey-scale 

map, edges and mask are input, and the training labels of edges are extracted by the Canny edge 

detection. In particular, the feature matching loss LFM in D1 is used to compare the activation maps of the 

different middle layers of the discriminator, to force G1 to produce a representation similar to ground 

truth images. 

Using available edge information as a priori can effectively improve the quality of the results, but the 

two generators are not the best choice for parameter optimization and can not generate reasonable visual 

structure for images with large holes, resulting in structural distortion and texture blurring in the 

structures. 
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Figure 3: Framework of EC. 

Li et al. [12] proposed a Visual Structure Reconstruction (VSR) layer to reconstruct visual structure 

and visual feature of the missing region. Partial edges reconstructed from the VSR are combined with the 

previous edges and then filled with content to gradually reduce the missing region until the inpainting is 

completed. VSR layers are stacked on ecoder-decoder. The VSR consists of a structure generator and a 

feature generator. The structure generator updates some edges of the missing region, which is used to 

guide the generation of new features. The structure generation process is shown in  Figure 4, the image 

feature Xin, the edge feature Ein, previous image mask M
Img 

in  and the mask for edge M
Edge 

in  are input, <·> 

represents channel concatenation. Updating features and masks by partial convolution, updated feature 

Xpc1 is feed into the residual block to produce structure feature Econv, After subtracting M
Edge 

in from Mpc1, 

multiply element-wise with Econv to form the newly generated structure, combined with Ein to output the 

structure EEG. The structure generator only predicts structure near known regions, and the feature 

generator uses EEG to guide the Xin fill the content. 

 

Figure 4: The generation of structure. 

PRVS [12] has improved considerably in terms of the number of parameters and has somewhat 

improved the structure details of the results when inpainting images with larger holes, but it lacks 

consideration of texture detail. 

In deep convolutional neural networks, the features extracted from the shallow layer mainly contain 

low-level texture features, while the features extracted from the deep layer mainly include high-level 

structural semantic features. Liu et al. [13] performed multi-scale filling of structure and texture features 

respectively, then fused the features using feature equalization, and finally connected the equalized 

texture and structural features to the decoder side by skip connection. The encoder contains six 

convolutional layers, with the features extracted from the first three layers considered as texture features 

to represent the details of images, and the features extracted from the last three layers considered as 

structural features to represent the semantics of images. There are also four residual blocks with dilated 

convolution between the encoder and decoder to increase the perceptual field when encoding features. 

The two features are used to fill holes by a multi-scale filling module, which mainly uses partial 

convolution to extract features at different scales using convolution kernels of different sizes, and then 

uses feature equalization to fuse structural and texture features. 

The structure and texture of MED [13] model as well as some objective indicators have been improved. 

However, the generator where structure and texture are shared does not adequately consider the 

relationship between structure and texture. It is difficult for texture and structure to convey information to 

assist each other. 

Guo et al. [14] proposed the idea of using structure to constrain the synthesis of texture and texture to 

guide the reconstruction of structure. The network uses a variant of U-Net that replaces vanilla 

convolutions with partial convolutions, and the interaction of structure and texture information is 
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achieved through skip connections. The two-stream network model in the generator is shown in  Figure 

5, with two U-net in the generator, the first inputting the broken image, mask and outputting the structural 

features, and the second inputting the broken edge grayscale map, mask and outputting the texture 

features. The features in the texture encoder are skip-connected to the texture decoder, and the features in 

the structure encoder are skip-connected to the structure decoder. Therefore, the generated structure 

features are guided by the texture, and the generated texture features are synthesized within the 

constraints of the structure, making full use of the relationship between texture and structure and 

resulting in the results with a reasonable structure and detailed texture. The bi-directional gated feature 

fusion mechanism (Bi-GFF) is also designed to fuse the perceptual information between the structure and 

the texture of generated to enhance consistency. The above methods improvement strategies are 

summarized in Table 2. 

Table 2: Summary of improvement strategies. 

Method Strategy Advantage Limitation 

Pconv [9] Convolve only valid pixels Image inpainting of irregular 

mask firstly 

The rule-based mask update 

mechanism is unreasonable 

GConv [10] Flexible update mask Dynamic update mask Parameters require more 

computing resources 

EC [11] Add edge generator Improve structural details Visual structure is 

unreasonable when  lager 

holes 

PRVS [12] Progressive reconstruction 

of visual structure 

Improved structural details of 

larger images in corrupted 

areas 

Lack of consideration for 

texture information 

MED [13] Structure and texture 

multi-scale Fill 

Improve texture details Insufficient consideration of 

the relationship between 

structure and texture 

CTSDG [14] Structural and texture 

information mutually guides 

fill 

Improve structure and texture 

detail 

Artifacts occur when 

corrupted area is large 

Texture Encoder Texture Decoder Structure Encoder Structure Decoder Skip Connection

Texture Encoder Texture Decoder

Structure EncoderStructure Decoder

Structure Feature

Texture Feature

Corrupted 
Image+Mask

Corrupted 
Edge+Gray-scale 

Image+Mask

 

Figure 5: Two stream networks in CTSD. 

3. Experiments 

Image inpainting based on deep learning requires massive data to participate in training. The 

experiments are conducted on CelebA-HQ dataset and NVIDIA irregular mask, using 1000 images for 

testing. CelebA-HQ is a high-resolution dataset derived from the CelebA dataset, containing 30,000 face 

images. The NVIDIA irregular mask dataset contains 55,116 training sets and 24,866 test sets. It is 
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divided into 6 different proportions according to the size of the holes, which randomly located in any 

position of the image. 

EC [11], PRVS [12], MED [13], CTSD [14] are conducted with 8G NVIDIA RTX 3060 ti, Gconv [10] is 

trained on 2 × NIVIDIA RTX 2080 Super GPU for TensorFlow version reasons, and all images used are 

resized to 256×256 pixels. PConv [9] official did not give the overall code and did not conduct the 

experiment.  

3.1. Qualitative Comparisions 

Six results are randomly selected from five algorithms, and all results are the direct output of trained 

models without additional subsequent processing. When the mask radio is between 10% and 30%, as 

shown in the first row to the third row in Figure 6, GConv [10] based on two stages can produce sharp 

texture details, but the face is distorted and the structure is too smooth due to without considering the 

structure information. EC [11], PRVS [12], and CTSDG [14] can usually generate relatively reasonable 

structures, but the details are not perfect. The filled area in MED [13] has blurred and distorted 

phenomenon, such as artifacts in the mouth of the third row of faces. With the mask area gradually 

increasing at 30%-40%, the CTSDG [14] in the fourth row more closely approximates the original image 

and achieves better results in both texture and structure, with PRVS outperforming EC [11] in structural 

detail but with poorer hair detail. When the mask area is between 40% and 60%, artifacts appear in the 

GConv [10] in the fifth row and sixth row, and the face is distorted in EC. The structure of the progressive 

in PRVS [12] generation structure is more reasonable but distorted, the MED [13] has artifacts, and the 

edges of CTSDG [14] are blurred. 

Corrupeted Image EC PRVS MED Ground TruthCTSDGGConv  

Figure 6: Qualitative comparison on CelebA-HQ and NVIDIA irregular mask. 

3.2. Quantitative Comparisions 

The most commonly used objective evaluation metrics in image inpainting are PSNR, SSIM, MAE, 

FID, etc., which are compared in this paper in different irregular mask ratios. Table 3 shows the results 

implemented on CelebA-HQ, where LPIPS [15] is computed on deep features of VGG pre-trained on 

ImageNet, which is more consistent with human perception than traditional metrics. Overall Objective 

evaluation shows that the CTSDG [14] algorithm is superior to other algorithms. 
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Table 3: Quantitative comparison on CelebA-HQ and NVIDIA irregular mask.  

Ratio Method PSNR↑ SSIM↑ MAE↓ FID↓ LPIPS↓ 

 GConv [10] 30.92 0.969 0.0106 4.87 0.057 

 EC [11] 31.23 0.971 0.0096 4.24 0.051 

10-20% PRVS [12] 31.81 0.975 0.0084 3.85 0.050 

 MED [13] 32.92 0.979 0.0089 3.35 0.042 

 CTSDG [14] 33.26 0.981 0.0070 3.15 0.038 

 GConv [10] 27.51 0.937 0.0183 8.41 0.095 

 EC [11] 27.94 0.942 0.0171 8.06 0.085 

20-30% PRVS [12] 28.60 0.949 0.0151 7.02 0.082 

 MED [13] 29.15 0.954 0.0155 6.34 0.074 

 CTSDG [14] 29.63 0.959 0.0130 6.19 0.070 

 GConv [10] 25.15 0.898 0.0272 11.45 0.132 

 EC [11] 25.51 0.902 0.0259 11.54 0.122 

30-40% PRVS [12] 26.38 0.919 0.0227 10.03 0.116 

 MED [13] 26.49 0.921 0.0235 9.00 0.109 

 CTSDG [14] 27.14 0.931 0.0201 8.88 0.104 

 GConv [10] 23.27 0.850 0.0375 15.02 0.174 

 EC [11] 23.49 0.847 0.0368 16.71 0.163 

40-50% PRVS [12] 24.53 0.879 0.0316 13.98 0.153 

 MED [13] 24.39 0.876 0.0333 12.59 0.148 

 CTSDG [14] 25.14 0.894 0.0286 12.83 0.143 

 GConv [10] 20.45 0.736 0.0587 19.12 0.233 

 EC [11] 20.51 0.719 0.0589 25.12 0.222 

50-60% PRVS [12] 21.99 0.793 0.0483 21.47 0.203 

 MED [13] 21.28 0.768 0.0544 17.98 0.204 

 CTSDG [14] 22.24 0.802 0.0465 19.27 0.201 

4. Conclusion 

In this paper, we detail the principles of six classical irregular face inpainting methods based on deep 

learning, experiment on CelebA-HQ, and quantitatively and qualitatively compare and evaluate the 

performance of the results. Experiments have shown that reasonable results can be produced when the 

hole is small. When the mask radio is large, each algorithm has different limitations. GConv [10] with two 

stages suffers from over-smoothing. EC [11] uses edge priori to guide the inpainting and fails to generate a 

reasonable visual structure resulting in distortion of the face. PRVS [12] with progressive structure 

generation produces a reasonable visual structure, but suffers from face distortion. The structure and 

texture information in MED [13] share a single generator, resulting in the failure to generate clear texture 

and other problems such as artifacts. CTSDG [14] has overall superior performance but edges are blurred. 
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