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Abstract:The federated self-supervision framework can solve the problem of large amounts of unlabeled 
data in traditional federated learning and achieves good results in the entire learning process. However, 
self-supervised learning increases communication overhead. The limitation of communication 
capabilities increases the time cost of training and also affects the convergence and accuracy of the 
model. This paper proposes a method that combines quantization and threshold adaptive aggregation 
(Adaptive Lazily Aggregate Quantization, ALAQ) to reduce the communication overhead of the federated 
self-supervised framework. Experimental results prove that ALAQ can effectively reduce the number of 
communication bits and communication rounds between the client and the server in the federal self- 
supervision framework. Achieved the purpose of reducing communication overhead. 

Keywords: Federated Learning, Communication Optimization, Federated Self-Supervision, Gradient 
Compression 

1. Introduction 

In recent years, with the continuous development of machine learning, artificial intelligence and other 
technologies, the establishment of data models has become an effective data mining solution, which has 
greatly reduced the cost of manual data mining. Data mining technology based on machine learning has 
been widely used. Federated learning (FL) is an emergent collaborative framework. In 2017, Google 
implemented privacy-preserving collaborative model training in a decentralized learning method [1]. In 
federated learning, because there is a large amount of original unlabeled data on the client side, manual 
labeling of data requires a huge amount of work and is very costly. Self-supervised learning (SSL) has 
the ability to learn high-quality data representations from large amounts of unlabeled data, and can 
effectively utilize unlabeled data for model training, thereby reducing the cost and time of manually 
labeling data. Chen et al. combined the results of the two research fields of self-supervised learning and 
federated learning, and based on this, proposed a general federated self-supervised learning (FedSSL) 
framework, which includes existing SSL methods based on siam networks. And provides the flexibility 
to adapt to future methods [2] The use of the federated self-supervision framework not only solves the 
sensitive data protection issue in self-supervised learning, but also solves the problem that the client 
needs to process a large amount of original unlabeled data in federated learning. But the use of more 
available data increases a lot of communication overhead and communication costs. Due to the current 
computing and communication capabilities of the client, the learning performance under the training time 
budget is reduced [3]. Communication overhead has become an important problem that the overall 
training effect is too high. Reducing the communication expenditure of federal self-supervision and 
improving communication efficiency are the main directions of federal self-supervision optimization.  

For the optimization of traditional federated learning communication overhead, researchers have also 
proposed a variety of solutions. These include local update and compression communication, model 
aggregation optimization, model and data selection, and more. Among them, the quantization scheme is 
the simplest and most effective compression scheme. The purpose of quantization is to compress 
gradients and reduce the number of bits in a single communication by limiting the number of bits 
representing floating point numbers during communication, and has been successfully applied to multiple 
projects using wireless sensor networks[4]. In the context of distributed machine learning, a 1-bit binary 
quantization method [5] and a multi-bit quantization scheme [6] have been applied. In terms of model 
aggregation optimization, Jun Sun et al[7]. proposed a novel aggregation gradient idea, which first 
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quantifies the calculated gradient, and then skips the less informative quantized gradient communication 
by reusing the outdated gradient. On this basis, Chen developed a new Lazily Aggregated Gradient (LAG) 
algorithm [8], which can adaptively calculate gradients and skip part of the gradient communication, 
thereby reducing communication bandwidth and relieving server pressure. 

Aiming at the problems of high communication overhead and low communication efficiency for 
federal self-supervision. We propose Adaptive Lazily Aggregated Quantized algorithm (ALAG) based 
on federated self-supervision. ALAG uses a dynamic quantization method to process model parameters 
and gradients uploaded by the client, reducing the number of transmission bits. Then gradient filtering is 
performed through the Adaptive Lazily Aggregated solution to reduce communication rounds during 
uploading. The two are combined to optimize communication in the federated self-supervised learning 
process. This enables the existing federal self-supervision framework to reduce the total number of 
communication bits. 

2. Methods and Model 

2.1. Dynamic quantification 

Dynamic quantification is similar to the encryption and decryption process in an asymmetric 
cryptosystem. It is encoded on the client and decoded when uploaded to the server. Because there is an 
additional decoding process, the error of dynamic quantization is much smaller than that of static 
quantization. The specific dynamic quantification scheme is as follows. 

We uses INT8 to set Xsf as the scale factor, Zq as the zero point in the quantized value, 
[ , ]min max

f f fW W W∈
and [ , ]i min maxW Q Q∈ represent the floating point number before quantization 

and the integer weight after quantization respectively. It can be known from the literature [9] that Xsf and 
Zq can be expressed as : 
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The weight quantification formula from 32-bit floating point type (FP32) to 8-bit integer type (INT8) 
is as follows: 
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After receiving the quantized weight, the server can restore the 8-bit integer (INT8) to the 32-bit 
floating point (FP32) through the following formula: 

( )f sf i qW X W Z′ = −
                              (4) 
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2.2. Lazily aggregated algorithm 

He main idea of lazy aggregation is: before uploading this gradient, the local end first compares it 
with the gradient uploaded in the previous round, and calculates the difference between the two. If the 
difference is too small to meet the "lazy" condition. The client accumulates this gradient without 
uploading it, while the server uses the client's old gradient from the previous round. 

During model training, it is assumed that the server communicates with the m client, and M represents 
the set of clients selected by the server. At the k-th loop iteration, the server will deliver the current global 

model ( ),o p
g g gW W W=

 to all clients. Then the client calculates the local parameters ( ( 1))mF kθ∇ −  , 
and after quantification, it is judged through lazy aggregation and uploaded to the server. The sum of the 

model parameters is defined as 
1k

MF −∇ . 

η is the learning rate of the client. The average gradient parameter of the client after multiple iterations 
is defined as: 

1
( ) ( 1) ( ( 1))l l l

i i K k iW k W k F W kη ∇= − − −
                    (5) 

Let ML represent lazy nodes and MH represent diligent nodes. The total node M=ML +MH, the sum of 
parameters is expressed as: 

L H
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For lazy nodes, this article defines: 
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Substituting the average gradient parameters of the client after multiple iterations into formula (7): 
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Among them, 
kθ represents the k round parameter of the server, the model parameter

( )= ( ( ))k F kg θ θ∇ . Therefore, the sum of model parameters in round k–1 can be expressed as: 
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From the mean inequality, we can get: 
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Therefore, if the device node is a Lazy node, that is, when m∈ML, if the node parameters satisfy 

Equation (11), then the update parameters satisfy the gradient descent algorithm
1 1k k k

MFθ θ η− −= − ∇  
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We set as the proportion coefficient of lazy and all nodes, indicating the proportion of lazy nodes: 

LM Mµ=                                    (12) 

Substituting equation (12) into equation (11) 
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It is difficult to calculate the difference between the k round model parameters and the k-1 round 

model parameters separately 
1k kθ θ −− , because the iteration difference of the model itself does not 

change significantly, so we sum up the parameter differences of each round and take the average, which 
can be Approximately: 
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d  and D are constant proportions, and the settings do not affect the formula results. Set
1/d Dε =  ,d=1 to simplify the calculation .Substituting equation (14) into equation (12), we can get the 

lazy node determination formula, that is: 
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Use (15) to determine the existing upload gradient. When the conditions are met, it is proved that the 
gradient change is not enough, and it is an inert node. It will no longer upload, and will continue to 
dormant and accumulate gradients. If the inertia determination is not met, it will be a normal node and 
participate in the server. End aggregation. 

2.3. System Model 

 
Figure 1: Lazily Aggregated Quantized algorithm based on federated self-supervision. 

First, the server delivers the original model (the encoder and predictor in the server replace the 
encoder and predictor in the client respectively), secondly, the client's own local data performs self-
supervised learning iterative calculation to obtain the weights of the model, and then Dynamic 
quantization and lazy aggregation schemes are used for node selection, and the processed local weights 
are uploaded to the server. Finally, the server restores and aggregates the received quantized weights, and 
updates the global model (encoder and predictor) and broadcasts it to each client(Figure 1). 

3. Experimental design and Results 

3.1. Basic Settings 

Implementing FedSSL in Python using the popular deep learning framework PyTorch This article 
uses ResNet-18 as the default network for the encoder, using the first convolutional layer with a kernel 
size of 3 × 3, and a kernel size of 4 before the last linear layer. A × 4 average pooling layer replaces the 
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adaptive average pooling layer. The predictor is a two-layer multilayer perceptron (MLP) starting from 
a fully connected layer of 4096 neurons. This is followed by 1D batch normalization and ReLU activation 
function, and finally another fully connected layer with 2048 neurons. By default, this article trains R = 
100 epochs, K = 5 clients, E = 5 local epochs, batch size B = 128, Initial learning rate η = 0.032, and 
cosine decay. Experimental settings GD, QGD, LAQ, LAG, ALAQ experimental comparison, this paper 
sets the gradient quantization b in the neural network to 8 bits. 

3.2. Bvaluation Metrics 

The experiments in this chapter focus on the two data sets of CIFAR-10 and CIFAR-100 to conduct 
related experiments to evaluate model accuracy, compression rate, comprehensive compression index, 
convergence speed, number of transmission bits, etc. 

The purpose is to observe the optimal ratio of model parameters and gradient compression under 
different data sets. Excessive compression will affect the accuracy, and a small amount of compression 
will not minimize the communication overhead. What is the overall effect of compression? Can model 
parameters and gradient compression be completed without affecting model accuracy to reduce 
communication overhead.The final sentence of a caption must end with a period.  

3.2.1. Top-1 Accuracy (Acc)  

Model effect judgment is the ratio of the number of correct classifications in the test sample to the 
total number of samples in the test set, that is, the accuracy of the model prediction. The higher the better. 

3.2.2. Compression Ratio(CR) 

The compression ratio is used to measure the gradient compression effect. The compression rate 
represents the degree of compression of the gradient. The smaller the compression rate, the higher the 
degree of compression. The definition of compression rate: the ratio of communication rounds after 
compression communication to before communication. 

3.2.3. Composite Compression Index(CCI) 

The comprehensive compression index is a calculation method that dynamically measures the balance 
between compression rate and accuracy. The higher the compression rate, the fewer communication 
rounds and the lower the accuracy. Reducing the compression rate can improve the accuracy to a certain 
extent, resulting in local contradictions, but it is of great help in comprehensively considering the effect 
of the entire model. CCI is defined as follows: 

1 2CCI Acc (1 CR)β β= × + × −                           (16) 

β1 and β2 represent the proportional coefficients of Acc and CR respectively, β1 > 0, β2 > 0, and β1 
+ β2 = 1. The higher the CCI, the better the gradient compression effect of the model. 

3.3. Gradient compression experiment 

The compression ratio is used to measure the gradient compression effect. The compression rate 
represents the degree of compression of the gradient. The smaller the compression rate, the higher the 
degree of compression. The definition of compression rate: the ratio of communication rounds after 
compression communication to before communication. 

Table 1: Model detection accuracy and compression rate under different values CIFAR-10. 

μ N1  N2 Accuracy(%) CR(%) 
0.1 500 42 83.11 8.40 
0.2 500 220 84.23 44.00 
0.3 500 242 84.11 48.40 
0.4 500 260 84.29 52.00 
0.5 500 312 84.04 62.40 
0.6 500 325 83.71 65.00 
0.7 500 357 83.79 71.40 
0.8 500 418 83.14 83.60 
0.9 500 456 82.99 91.20 
1.0 500 500 83.25 100 
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In order to determine the value of the optimal coefficient in gradient compression, this article uses 
80% of the CIFAR-10 and CIFAR-100 data sets for training and 20% for random testing, and uses the 
ALAQ quantified lazy aggregation method for model compression. Conduct multiple experiments, set 
the proportion parameter to different values according to intervals, observe the communication rounds 
and accuracy through experiments, and use experimental methods to obtain the optimal effect. μ 
represents compression factor, N1 represents the communication round before compression, N2 
represents the communication round after compression, Accuracy is the model accuracy, and CR is the 
compression rate. 

Table 1 shows that, In the CIFAR10 data set, after setting different compression coefficients, the 
accuracy and compression rate changes, and the best effect is around the compression coefficient of 0.1. 

Table 2: Model detection accuracy and compression rate under different values CIFAR-100. 

μ N1  N2 Accuracy(%) CR(%) 
0.1 500 46 58.65 9.20 
0.2 500 221 59.55 44.20 
0.3 500 248 58.98 49.60 
0.4 500 264 59.26 52.80 
0.5 500 301 59.04 60.20 
0.6 500 334 59.71 66.80 
0.7 500 377 58.89 75.40 
0.8 500 430 59.14 86.00 
0.9 500 455 58.68 91.00 
1.0 500 500 58.63 100 

Table 2 shows that, In the CIFAR100 data set, after setting different compression coefficients, the 
accuracy and compression rate changes, and the best effect is around the compression coefficient of 0.1. 

Experimental results show that maintaining the compression coefficient at 0.1 has the best 
compression effect for the overall model. Therefore, the subsequent experiments in this chapter will 
uniformly set the compression coefficient of the algorithm to 0.1 to ensure the best effect of the algorithm. 

3.4. Accuracy evaluation experiment 

There are two general experimental methods used to measure the performance of self-supervised 
models on image classification tasks, Linear Evaluation [10] and Semi-supervised Learning [11]. 

Table 3: The accuracy of different compression schemes on different datasets(Linear Evaluation). 

Method network CIFAR-10 CIFAR-100 
GD Resnet-18 78.61 57.51 

QGD Resnet-18 76.32 56.95 
LAQ Resnet-18 83.16 58.54 
LAG Resnet-18 78.22 57.56 

ALAQ Resnet-18 84.11 58.45 

Table 3 shows that,In linear evaluation method,ALAQ has higher accuracy when tested on different 
data sets. 

Table 4: The accuracy of different compression schemes on different datasets(Semi-supervised 
Learning). 

 CIFAR-10 CIFAR-100 
 1% 10% 1% 10% 

GD 70.48 76.23 30.63 47.25 
QGD 70.36 76.12 30.55 46.32 
LAQ 74.22 80.42 31.66 46.77 
LAG 70.39 76.66 30.68 47.05 

ALAQ 74.78 77.13 31.87 47.44 
Table 4 shows that,In the Semi-supervised Learning experiment, whether in the CIFAR-10 data set 

or the CIFAR-100 data set. The ALAQ algorithm has better accuracy for compressing less labeled data, 
and the accuracy of the model is improved compared to the best existing LAQ method.  
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Table 5: The accuracy of different compression schemes on different datasets LE CIFAR10. 

CIFAR-10 iterations round Bit accuracy 
GD 500 5000 2.543x1010 78.61 

QGD 500 5000 6.375x109 76.32 
LAQ 500 1125 2.531x109 83.16 
LAG 500 1016 9.501x109 78.22 

ALAQ 500 420 0.864x109 84.11 

Table 6: The accuracy of different compression schemes on different datasets LE CIFAR100. 

CIFAR-
100 iterations round Bit accuracy 

GD 500 5000 3.241x1011 57.51 
QGD 500 5000 8.126x1010 56.95 
LAQ 500 1125 3.189x1010 58.54 
LAG 500 1016 1.198x1011 57.56 

ALAQ 500 450 1.088x1010 58.45 
Table 5 and Table 6 shows that, ALAQ algorithm has lower communication rounds and fewer 

communication bits, Linear evaluation on different data sets(CIFAR10 and CIFAR100) proved this. 

4. Conclusion 

In the experiments on the two data sets CIFAR-10 and CIFAR-100,GD and QGD only compressed 
the number of transmission bits, but the number of communication rounds was not reduced. Compared 
with LAQ, LAG had fewer communication rounds. But the total number of transmitted bits is not as 
good as LAQ. Compared with the GD method, ALAQ compresses 90% of the communication rounds 
and nearly an order of magnitude more communication bits without affecting the accuracy of the model. 
The ALAQ method performs well on the federated self-supervision framework FedBYOL. It has lower 
communication overhead than LAQ and higher model accuracy than the original framework. 
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