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Abstract: Fluid transmission pipelines, especially curved pipes, are widely used in industrial systems. 

Vibration characteristics of pipes are highly correlated with the reliability and safety of industrial 

systems. Therefore, in this paper, a new dynamic stiffness method is proposed to solve the above 

vibration characteristics of the curved pipes conveying fluid. The dynamic stiffness method can be used 

to calculate the vibration characteristics of the pipes conveying fluid under arbitrary boundary 

conditions, By comparing the results of finite element method with those of this method, the correctness 

of this method is verified. Finally, the vibration characteristics of the pipeline at different angles are 

calculated by this method. The results show that with the increase of θ value of radian angle in the 

pipes conveying fluid, both the frequency and critical velocity of in-plane and out-of-plane of the 

corresponding order decrease, and the natural frequency decreases greatly when θ is small, while the 

natural frequency decreases little when θ is large. 
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1. Introduction 

Fluid transmission pipelines are widely used in aircraft, ship and ocean fields. For example, the role 

of the ship cooling water system is to transport cooling water to the equipment that needs cooling 

through pipes to meet the cooling demand of the equipment; Fuel, hydraulic oil and lubricating oil 

systems in aircraft are of vital importance to the safe flight of aircraft, whose role is to satisfy the use of 

various hydraulic actuators on aircraft[1]. When the pipeline system is in operation, the fluid interacts 

with the structure in the pipeline, resulting in vibration of the pipeline system[2]~[4].For the pipeline 

system, on the one hand, excessive vibration will produce large vibration noise, which will affect the 

concealment of ships, the comfort of aircraft and automobile; on the other hand, it may cause pipeline 

damage, so that the system failure, affecting the safety of aircraft and ships. Therefore, it is necessary to 

comprehensively analyze the vibration characteristics of the pipeline system in order to improve the 

safety and reliability of the pipeline system [3]. 

Piping systems generally include straight pipes conveying fluid and curved pipes conveying fluid. 

At present, most of the fluid-solid coupling vibration of pipelines is mainly considered in the vibration 

of straight pipes conveying fluid, and its research is relatively mature. For the study of curved pipes 

conveying fluid, Misra[8]~[9] et al. proposed the non-telescopic theory and the telescopic theory in the 

calculation of curved pipes conveying fluid, and calculated the influence of pipeline velocity on the 

natural frequency of curved pipes conveying fluid and the critical velocity for instability by using the 

finite element method. Han Tao [10] considered curved pipes as a basic unit to study the vibration 

characteristics of complex pipelines. 

In the above studies, the influence of boundary conditions of curved pipe should be considered, and 

different curved pipe dynamic models or different Galerkin discrete forms are given under different 

boundary conditions, thus increasing the complexity of modeling and derivation. The traditional finite 

element method or transfer matrix method is faced with two problems in solving the above problems: 

first, it cannot be extended to the pipeline system with complex spatial direction; second, the pipeline 

supports that can be analyzed are limited to the common rigid supports, and the elastic supports are 

rarely involved. Therefore, most of the studies are limited to the straight pipes conveying fluid or the 

curved pipes conveying fluid with rigid supports. 
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In order to solve the boundary consistency problem in the above research and derivation process, a 

dynamic stiffness method is proposed to solve the vibration problem of curved pipes conveying fluid 

under arbitrary supporting boundary conditions at specified positions, and this method is used to 

analyze the vibration of curved pipes with common angles (90°-180°) in industry and ships. Firstly, the 

4-DOF dynamics model of straight pipes conveying fluid was established by Euler-Bernoulli beam 

model. Secondly, Galerkin discrete method of improved Fourier series was used to simulate the 

harmonic response equation of straight pipe element under arbitrary boundary conditions, and the 

response dynamic stiffness matrix of complex straight pipes conveying fluid was obtained by local 

coordinate transformation and element assembly. Then the correctness of the method is verified by 

simulation of semicircular curved pipes conveying fluid and finite element method. Finally, the relation 

between the angles between the two supporting points and the center of the curved pipe and the 

vibration of the curved pipes conveying fluid is studied. 

2. Solution of Dynamic Characteristics of Curved Pipes Conveying Fluid  

2.1 Straight Pipe Linear Model Derivation 

Euler-Bernoulli beam model was used to analyze the straight pipes conveying fluid. In order to deal 

with boundary conditions at both ends of different straight pipe in the traditional Euler-Bernoulli beam 

model, linear springs are used to replace the supporting surfaces at both ends of the pipe, and springs 

with different stiffness were used to simulate different types of pipe boundary conditions. Fig. 1 shows 

the dynamics solution model of straight pipes conveying fluid and related physical parameters of pipe 

fluid: 

 

Figure 1: Schematic diagram of straight pipe conveying fluid model calculation 

Suppose there is a point in the center line of the pipe whose displacement Ψ is represented by the 

displacement vector: 

   
T T

1 2 3 4 5 6, , , , , , , , , ,u v w          Ψ                (1) 

In the formula, u､v and w represent the corresponding axial X displacement, lateral Y displacement 

and vertical Z displacement at this point in a unit pipeline in the local coordinate system respectively. Φ, 

θ and φ are the angular displacements in the three directions of the cross section at that point in the 

center line. The above model is a beam model of unit length. 

The lateral and vertical displacements correspond to the angular displacements are as follows:  

;w v                                 (2) 

According to the extended Hamilton principle, the controlling differential equation of 

Euler-Bernoulli beam pipeline vibration is obtained in the following form: 

 
2 2 2

1 1 1 0

d d d( ) 0
lt t t

f
t t t

T U t W t m V V t        
    R                     (3) 

In the formula, T and U represent the kinetic and potential energy of the pipeline, δW is the virtual 

work done by the external force, mf is the corresponding unit fluid mass, τ is the unit normal vector of 
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the section of the Euler Bernoulli beam, R is the displacement vector, V is the flow velocity of the fluid 

in the pipe, and l is the unit pipe length, which can be set as 1m. 

Assuming that the load exists only at both ends of the pipe , and the dead weight and external 

pressure are neglected, the differential equation can be solved by discretization with Galerkin method. 

In the solution, the displacement needs to be discretized. According to Equation (2), the Euler-Bernoulli 

beam takes into account the motion in four directions (u､v､w and ϕ). In this paper, a discrete improved 

Fourier series method is adopted, which regards the displacement in each direction as a linear 

superposition of a series of basis functions: 
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The transposition basis function φi in Equation (4) represents the combination of functions of 

equation (5) : 
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Where N is the number of basis functions of the series, and the definition of the boundary function 

f of the Fourier series is referred to Reference[11]. The linear governing equation of vector coordinate q 

can be obtained by using the variational method: 

  Mq Cq Kq f                    (6) 

Laplace transform is used to represent the relationship between the response of the pipeline system 

and the excitation in the frequency domain, and Equation (6) can be written as follows: 
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In the frequency domain transformation, the nonlinear term is not considered and there is no 

displacement coupling in each direction. Combined with Equation (4), the harmonic response equation 

with 12 degrees of freedom at both ends of the straight pipe model can be obtained, and its harmonic 

response displacement ψ(s) is related to h(s) as follows: 

( ) ( ) ( )s s sψ h F                    (8)  

In the formula: 

   
T
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   ψ r q r q r q r q r q r q r q r q r q r q r q r q     (8) 

h(s) is the harmonic response matrix, representing the pipeline response function, which is defined 

as follows. The displacement at the ith degree of freedom caused by the unit force or moment at the jth 

degree of freedom can be represented by the value of the ith row and j column in the matrix. 

The frequency response function h(s) is considered damping as a non-singular matrix, and the 

above frequency response function and dynamic stiffness matrix are reciprocal:  

         
1

; ?s


 F z s ψ s z s h s                         (9) 

Where, z(s) is the dynamic stiffness matrix. The dynamic stiffness matrix can be used to describe 

the pipeline response considering damping. Different from FEM method, the analysis frequency of 

dynamic stiffness method can be determined according to the actual situation, and the dynamic 

characteristics of high frequency band of pipe conveying fluid can be obtained. 
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2.2 Dynamics Solution of Curved Pipes Conveying Fluid 

The shape of fluid pipeline is highly correlated with the field space of industrial system, and there 

are not only straight pipe segments, but also various curved pipe segments with complex shapes. It is 

convenient to adopt the above analysis method for dynamics analysis. The reason is that FRF response 

matrix of straight pipe can be transformed into  a combined FRF matrix of the whole element by 

coordinate transformation. For a pipe with complex shape, it can be divided into several straight pipe 

segment units (pipe unit) and then assembled separately to obtain the overall FRF matrix. 

Firstly, coordinate transformation is carried out. Transformation matrix T can be defined through the 

global geometric coordinates , and the response matrix of  pipe unit is transformed into the response 

matrix Hi in the overall coordinate system. Then the whole unit response matrix H can be assembled by 

means of pipe unit assembly. The piping system arbitrarily arranged in the overall coordinate system 

can be decomposed into N pipe units, and the response matrix Hi of each pipe unit can be expressed in 

the following form: 

00 01

10 11

, 1,...,
i i

i i i
i N

 
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 

h h
H

h h
                       (10) 

In the formula, the superscript is the serial number of pipe unit in the pipeline system, the subscript 

‘0’ represents the left end of the pipeline, and ‘1’ represents the right end. Finally, the dynamic stiffness 

matrix of each pipe unit was obtained: 
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According to the dynamic stiffness matrices of each pipe unit, the total dynamic stiffness matrix Z 

of the pipeline system was obtained by merging them: 
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In the formula, ‘p’ and ‘q’ represent the number of rows and columns corresponding to the dynamic 

stiffness matrix of each pipeline element in the whole system. Finally, the overall FRF response matrix 

can be obtained from the above combined dynamic stiffness matrix, as shown in Equation (13). The 

overall corresponding matrix can be obtained to analyze the vibration characteristics of curved pipe: 

1H Z                         (10) 

3. Calculation and Verification of Curved Pipes Conveying Fluid 

In this paper, vibration of semicircular curved pipe exists in two directions: the plane direction 

where the axis is located (XZ plane as shown in Fig. 2) and the plane direction perpendicular to the 

curved pipe axis. It is assumed that the angle between the two supporting points and the curved pipe 

center line is θ, then for the semicircular curved pipe, θ=180 degrees. Fig. 2 shows the structure 

diagram of the semicircular curved pipe conveying fluid model. In order to verify the accuracy of this 

calculation model, the parameters in Mirsa[8] paper are used for calculation and comparison. The 

specific parameters are as follows: Water density ρf=1000kg/m3, pipeline density ρp=7900kg/m3, curved 

pipe geometric radius R=0.7m, outer diameter D=100mm, inner diameter d=94mm, Young's modulus 

E=200GPa, shear modulus G=76.9GPa. By using the method in Section 1.2, the curved pipe is 

decomposed into N straight pipe elements, and the convergence of N is shown as follows. For the 

convenience of comparison, the dimensionless results are used to represent the calculation results. 

Formula(14) defines its dimensionless frequency and speed: 
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Fig. 2: Schematic diagram of analysis model of semicircular curved pipe conveying fluid (θ=180 °) 

* 2 *,
p f fm m m

R V VR
EI EI

 


                   (11) 

In the above formula, EI is the curvature stiffness,  

mf is the liquid mass, mp is the curvature mass, V is the flow rate in the pipe, ω is the dimensional 

frequency. 

In addition, in order to simulate the fixed boundary conditions, the stiffness of the supporting spring 

at the head and tail of the pipeline is set as 108 in the dynamic stiffness matrix. If the pipeline is 

supported by elastic support, the dynamic stiffness of the support can be measured through the test and 

substituted into the dynamic stiffness matrix.  

Table 1 calculates the dimensionless frequency convergence results of the curved pipe in the static 

state filled with liquid:  

Table 1: Dimensionless frequency convergence of the curved pipe in the static state filled with liquid 

N 
In-plane frequency Out-of-plane frequency 

ω1 ω2 ω3 ω1 ω2 ω3 

2 6.2518 9.0376 20.1160 1.6844 6.5434 9.4911 

5 4.4378 9.6855 17.7513 1.8788 5.3124 11.0136 

8 4.4054 9.6531 17.9456 1.8464 5.2800 11.0784 

10 4.4054 9.6531 17.9456 1.8464 5.2800 11.0460 

Mirsa[8] 4.39 9.64 17.95 1.83 5.28 11.10 

It can be seen that, with the increase of component N, the modes in both directions of semicircular 

curved pipe both converge to the finite element results of Mirsa[8], indicating that the proposed method 

can simulate the dynamics characteristics of complex pipelines. Calculation resources and calculation 

accuracy are balanced, the number of units is taken as 10, and the error of the result is less than 1%. 

4. Study on Vibration Characteristics of Curved Pips Conveying Fluid with Different Angles 

 

Figure 3: The dimensionless frequency ω* of the curved pipe conveying fluid at θ=90 degrees varies 

with the dimensionless flow rate V* under the fixed support boundary at both ends 
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In Section 3, the correctness of the proposed dynamic stiffness matrix function in solving the 

vibration modes of the curved pipe with flow input θ=180 degrees is verified. In this section, the 

vibration characteristics of the curved pipe with θ at other angles (90~180) are studied. Fig.3 shows the 

dimensionless frequency ω* of the curved pipe conveying fluid at θ=90 degree varies with the 

dimensionless flow rate V* under the fixed support boundary at both ends. It can be seen from the 

figure that the dimensionless frequencies of the corresponding orders at θ=90 ° are larger than those at 

θ=180 degree, and the first-order critical flow velocities both in and out of the plane are larger than 

those at θ=180 degree. This is because the stiffness of the current-carrying pipeline when θ=90 degrees 

is much greater than that when θ=180 degrees, while the pipeline mass is less than that when θ=180 

degrees. According to the frequency calculation formula, the correctness of the above calculation can 

be verified. 

According to the above conclusions, when θ=135 degrees, the dimensionless frequency and 

first-order critical flow rate of the corresponding order are both larger than those of θ=180 degrees, but 

smaller than those of θ=90 degrees. Fig. 4 shows that the dimensionless frequency ω* of curved pipe 

conveying fluid at θ=135 ° varies with the dimensionless flow rate V*, which verifies the correctness of 

the above conclusions. 

 

Figure 4: The dimensionless frequency ω* of curved pipe conveying fluid at θ=135 ° varies with the 

dimensionless flow rate V* under the fixed boundary at both ends 

Curved pipe θ is roughly from 90 degrees to 180 degrees in industry. The dynamic stiffness method 

can be used to calculate the relation between the in-plane and out-of-plane critical dimensionless 

velocity and θ of the above-mentioned current-carrying curved pipes. As shown in figure 5, with the 

increase of value of θ, the first order dimensionless critical velocity decreases, and the drop is larger 

when θ is small, but smaller when θ is large. For a type of curved pipe conveying fluid with large flow 

velocity, small pipe diameter and thin wall thickness, if θ is large, considering the stability and 

vibration characteristics of the pipe, supporting conditions can be added in the pipe to enhance the 

stability of the piping system. However, as for the intermediate support of pipeline system, it is difficult 

to adopt rigid support because of the limited installation conditions and application scenarios. Most of 

them adopt elastic support. As shown in Fig.6, an elastic support condition with vertical support 

stiffness of 58000N/m and lateral support stiffness of 14260N/m were added in the middle of the 

pipeline to increase the first-order dimensionless critical velocity, thus increasing the stability of the 

pipeline and reducing the vibration of the pipeline. 

The pipeline vibration frequency after increasing support conditions changes with the flow velocity 

is shown in figure 7, as you can see, all in-plane and out-of-plane frequencies are larger than those 

without intermediate support conditions. And the critical dimensionless flow velocity corresponding to 

the first order frequency in the plane increases from 3.00 to 4.21, and the critical dimensionless flow 

velocity corresponding to the first order frequency outside the plane increases from 1.58 to 2.40. The 

stability of the piping system has been greatly improved.  
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Figure 5: Relationship between the first-order in - plane and out-of-plane critical dimensionless 

velocity and θ of curved pipe conveying fluid 

 

Figure 6: Schematic diagram of analysis model of semicircular curved pipe conveying fluid with 

middle support (θ=180 °) 

 

Figure 7: The dimensionless frequency ω* varies with the dimensionless flow velocity V* of the curved 

pipe conveying fluid with middle support at θ=180 ° 

Similarly, it can also be used to calculate and analyze the curved pipe conveying fluid under other 

supporting conditions, including the dynamic stiffness characteristics of the elastic support which can 

be measured according to the actual pipe support. The dynamic stiffness method proposed in this paper 

can be used to calculate the vibration characteristics of a curved pipe conveying fluid under the above 

arbitrary supporting conditions. 
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5. Conclusion 

Straight pipe elements were combined into curved pipe conveying fluid by the dynamic stiffness 

method, and any supporting boundary conditions could be simulated. The vibration calculation method 

of curved pipe conveying fluid based on the dynamic stiffness method was established. Through 

comparison and verification, and the following conclusions were obtained: 

(1) The calculation results of the proposed new dynamic stiffness method are in good agreement 

with those of Misra finite element method, and the calculation error is less than 5%. 

(2) With the increase of radian Angle θ, the frequency and critical flow velocity both in and out of 

the plane of the corresponding order in the curved pipe conveying fluid decrease, and the first-order 

dimensionless critical flow velocity decreases, and the decrease is larger when θ is small and smaller 

when θ is large. 

(3) When the stability of curved pipe conveying fluid can not meet the requirements, the stability of 

the pipeline system can be increased by adding intermediate supports. The calculation method proposed 

in this paper can be used to solve the vibration characteristics problem the pipeline system under 

arbitrary elastic supports. 
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