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Abstract: Underwater environments present unique and challenging conditions for target detection.
Factors such as light attenuation, suspended particles, and water turbulence contribute to significant
color distortion, low contrast, complex target morphology, and dense background clutter. To address
these issues, this paper proposes UWYOLQO, a specialized model based on the YOLOVS framework that
incorporates the Large Separable Kernel Attention (LSKA) module. Designed to enhance detection
performance in such difficult conditions, UWYOLO improves the extraction of shape features and
increases robustness, particularly for detecting small targets in cluttered backgrounds. By emphasizing
shape information over texture, the model also demonstrates improved applicability in practical
underwater tasks such as biodiversity monitoring and environmental surveys. Experimental results show
that UWYOLO achieves a mean average precision (mAP) of 84.9% on a specialized underwater dataset,
exceeding the baseline YOLOvVS by 1.0%, confirming its advanced accuracy in underwater target
detection.

Keywords: Underwater object detection; Large separable kernel attention; Deep learning; Shape feature
extraction; UWYOLO

1. Introduction

In recent years, with the extensive exploitation and utilization of marine resources, underwater target
detection has received increasing attention as a key technology in this field. From studying marine
biodiversity to inspecting underwater structures and navigating autonomous underwater vehicles,
accurate detection of underwater targets is essential for these applications. However, compared to
terrestrial environments, underwater settings present challenges such as low visibility, low contrast,
complex background noise, texture distortion, and variations in target shape and texture!'*l, all of which
significantly increase the difficulty of detection tasks.

The emergence and development of artificial intelligence (AI) have made deep learning a major driver
of technological innovation. In particular, convolutional neural networks (CNNs) have demonstrated
powerful capabilities in image recognition and object detection. With continuous improvements in
network architectures and training strategies, deep learning models have achieved substantial
performance gains in underwater target detection, in some cases matching or even surpassing human-
level performance. Among these models, one-stage detectors such as SSDP! and the YOLO series!®)
directly predict target locations and categories in a single forward pass, offering relatively low
computational complexity and better real-time performance. In contrast, two-stage detectors such as Fast
R-CNN!Y and Faster R-CNN!! incorporate a Region Proposal Network (RPN) to first generate
candidate regions, then classify and refine each proposal. While these tend to achieve higher accuracy
by leveraging full-image convolutional features, their speed is limited by the additional processing of
region proposals.

To address the various challenges in underwater environments, researchers have proposed numerous
methods for underwater image object detection. Liu et al.'? introduced TC-YOLO, a lightweight
framework based on YOLOvVS5s, which incorporates a Transformer self-attention module (CSP-TR Block)
at the end of the backbone to enhance global feature extraction, and a coordinate attention mechanism
(CSP-CA Block) in the neck to improve localization of small targets. Luo et al.'3 proposed YOLO-
DAFS, an improved version based on YOLOv11, which replaces standard bottleneck blocks with a
lightweight DualConv structure combining group and pointwise convolutions, and introduces the C2PSF
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module to enhance multiscale context fusion through attention mechanisms. Hu et al.'¥ developed an
enhanced sea urchin detection algorithm based on SSD, incorporating a multidirectional edge detection
algorithm to extract spine features and a cross-level feature fusion strategy to improve detection of small
targets. Hu!'> proposed a marine organism detection model based on Faster R-CNN, which utilized both
VGG16 and ResNet50 as backbones and was trained on the FathomNet 2023 dataset. The experimental
results showed that ResNet50 performed better in complex seabed environments. Additionally, Liu et
al.l'® improved Faster R-CNN by replacing the backbone with a Swin-Transformer structure and
changing Rol pooling to Rol alignment to enhance localization accuracy.

YOLOVS is a new target recognition network model in the current YOLO series, with high detection
accuracy and fast detection speed. In this context, this paper uses the YOLOv8 model to incorporate the
Large Separable Kernel Attention (LSKA)!"! into the neck of the network, which enhances the ability of
the model to detect small targets and complex backgrounds, improves its robustness against challenging
underwater conditions, and ultimately boosts overall detection performance.

2. Methods

2.1. The Overview of YOLOvVS
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Figure 1: The structure of YOLOVS.

YOLOVS adopts an encoder-decoder architecture composed of three core components: backbone,
neck and head, as shown in Figure 1. The Backbone is constructed using an enhanced CSPDarknet
structure, which introduces the C2f (CSP-to-fused) module as its fundamental building block. This
module reduces parameter redundancy and strengthens gradient propagation efficiency. Furthermore,
depthwise separable convolutions and dilated convolutions are incorporated to expand receptive fields
and refine multi-scale feature representation. The Neck integrates a hybrid structure combining a Feature
Pyramid Network (FPN) and a Path Aggregation Network (PAN), facilitating bidirectional feature fusion
across different semantic levels. This design enhances the model's capacity to detect objects at various
scales. For the detection Head, a decoupled architecture is employed, separating classification and
regression branches. The regression component utilizes an integral representation method inspired by
Distribution Focal Loss, contributing to more precise bounding box localization. The entire model
operates in an anchor-free manner, which simplifies the detection pipeline and improves generalization
across diverse object shapes and sizes. To support deployment under different computational constraints,
YOLOVS offers scaled variants including Nano, Small, Medium, Large, and Extra Large, each balancing
accuracy and efficiency for specific application scenarios.
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2.2. Large Separable Kernel Attention (LSKA)

(2d-1)x1
DW-Conv

Figure 2: The structure of Large separable kernel attention(LSKA).

As illustrated in Figure 2, the LSKA module operates by decomposing the two-dimensional
convolution kernel of the depthwise convolution layer into cascaded horizontal and vertical one-
dimensional kernels. The calculation process is detailed in the following formulas. With this working
principle, we can directly use large size convolution kernels without adding the computational amount,
effectively reducing the number of parameters and computational complexity.

The local feature extraction is computed as follows:

Z¢ = YuwWha-1yx1 * Cuw Wika-1) * F) (1)
The global feature extraction is calculated using the following expression:
26 = B Wiy * Conw Wiy 7 @
The final output is obtained through the merged BN computation:
AC =Wy *Z°¢ (3)
FC=A°“QF¢ 4)

In the above formula: d is the expansion rate; * represents convolution; & represents the Hadamard
product; Z¢ represents the output of the depth convolution with two cascade kernel sizes and (2d-1)x
(2d-1), which captures local spatial information and is then processed by the following two cascade

kernel sizes and the depth expansion convolution of EJ EJ [e|Represents the floor operation. Dilated

depthwise convolution is responsible for capturing the global spatial information output by depthwise
convolution. A 1x1 convolution kernel W, is used to perform convolution operations on the
intermediate features Z¢, thereby obtaining the output feature maps A¢. The output FC¢ of LSKA is
obtained from the Hadamard product of the attention map A and the input feature map FC.

2.3. The Overview of UWYOLO

In the architecture of YOLOVS, the Neck layer is responsible for merging multiscale features
extracted by Backbone to enhance the ability of the model to detect targets of different sizes. In this paper,
the LSKA module was introduced after the last C2f module in the Neck layer to further enhance the
feature fusion and expression ability of the model. The improved overall structure is shown in Figure 3.
This design enables the model to maintain efficient performance when processing large cores, more
effectively capture and integrate features from different scales, and is more inclined to extract shape
features of objects rather than texture features, so as to improve the generalization ability of the model.
In addition, the introduction of LSKA module also helps to reduce the GFLOPs of the model, making
the model have better real-time processing power while maintaining high performance.
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Figure 3: The structure of UWYOLO.

3. Experimental Results
3.1. Experimental Deployment Details

In this study, the model was trained using an NVIDIA GeForce RTX 2080 SUPER GPU. The network
parameters were initialized from a normal distribution. Stochastic gradient descent (SGD) was employed
as the optimizer, with a momentum of 0.9 and a weight decay of 0.0001. Training was conducted with a
batch size of 4 and an initial learning rate of 0.01 over 300 epochs.

During both training and testing, all input images were resized to 640x640 pixels. To improve the
generalization capability of the model, data augmentation techniques were applied, including random
horizontal and vertical flipping with a probability of 0.5. In summary, the deep learning model was
optimized through carefully tuned parameter initialization, high-performance GPU acceleration, and
effective image preprocessing strategies.

3.2. Experimental Deployment Details

The dataset used in this experiment was a self-built underwater dataset, and the images were labeled
by Labellmg. The dataset has four categories of 5177 images, including starfish, echinus, holothurian
and scallop. The data set was divided into training set, test set and validation set in a ratio of 7:2:1.3623
images were randomly selected from the data set as training sets, 1036 images as test sets and 518 images
as validation sets. The dataset sample plot is shown in Figure 4.
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Figure 4: The images of self-build underwater dataset.

In order to comprehensively measure the performance of the model, this study mainly used the metric
of Mean Precision (mAP), which is calculated based on a confidence threshold of 0.5 to obtain the
Average Precision (AP) value. In addition, to evaluate the performance of the model in more detail, we
also introduced recall rate, accuracy (precision), and F1 score as supplementary indicators. Through these
comprehensive evaluation indicators, we can conduct in-depth analysis of the model's detection
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capability from multiple perspectives.
3.3. Ablation Analysis

As presented in Table 1,the proposed UWYOLO model demonstrates consistent improvements over
the baseline YOLOVS across all evaluation metrics. Specifically, UWYOLO achieves a recall of 79.6%,
surpassing YOLOVS by 2.0%. It also attains a precision of 85.5%, which is 2.3% higher than YOLOVS.
Furthermore, the mAP reaches 84.9%, reflecting an improvement of 1.0 percentage points. These results

indicate enhanced detection completeness, prediction accuracy, and overall performance compared to
YOLOVS.

Table 1: Ablation analysis

Models Recall Precision mAP
YOLOv8 77.6 83.2 83.9
UWYOLO 79.6(+2.0) 85.5(+2.3) 84.9(+1.0)

3.4. Performance Analysis of UWYOLO

According to the comparative analysis results in Table 2, UWYOLO demonstrates significant
advantages in multiple detection indicators. The recall rate of this model reaches 79.6%, outperforming
other comparison models and demonstrating a stronger target coverage capability. In terms of precision,
UWYOLO achieved the highest value of 85.5%, indicating that its prediction results have higher
accuracy. Meanwhile, this model maintains a leading position with an average accuracy of 84.9%, and
its comprehensive detection performance is the most outstanding. Overall, UWYOLO comprehensively
outperforms the comparison models in the three key indicators of recall rate, precision rate and mAP,
demonstrating balanced and powerful detection capabilities. It can be seen from this that UWYOLO has
greater potential in underwater target detection tasks with complex backgrounds, low visibility and high
occlusion.

Table 2: Contrast analysis

Models Recall Precision mAP
YOLOVS5s 79.4 82.4 83.7
YOLOvVS8s 77.6 83.2 83.9
YOLOv10s 77.1 83.7 84.3

SSD 75.8 82.7 82.2
UWYOLO 79.6 85.5 84.9

4. Conclusions

To enhance the detection accuracy of underwater targets, this study proposes an improved detection
model named UWYOLO. The approach incorporates the LSKA module into the Neck layer of the
YOLOVS architecture, enabling more precise capture of fine-grained target characteristics. Furthermore,
the global knowledge aggregation mechanism integrates contextual information across the entire image,
which assists the model in distinguishing between target and background regions in complex underwater
environments, thereby improving detection precision. Comparative experiments with other state-of-the-
art algorithms confirm that UWYOLO achieves higher average precision and overall detection
performance, demonstrating strong adaptability and robustness in challenging underwater scenarios.
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