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Abstract: Underwater environments present unique and challenging conditions for target detection. 
Factors such as light attenuation, suspended particles, and water turbulence contribute to significant 
color distortion, low contrast, complex target morphology, and dense background clutter. To address 
these issues, this paper proposes UWYOLO, a specialized model based on the YOLOv8 framework that 
incorporates the Large Separable Kernel Attention (LSKA) module. Designed to enhance detection 
performance in such difficult conditions, UWYOLO improves the extraction of shape features and 
increases robustness, particularly for detecting small targets in cluttered backgrounds. By emphasizing 
shape information over texture, the model also demonstrates improved applicability in practical 
underwater tasks such as biodiversity monitoring and environmental surveys. Experimental results show 
that UWYOLO achieves a mean average precision (mAP) of 84.9% on a specialized underwater dataset, 
exceeding the baseline YOLOv8 by 1.0%, confirming its advanced accuracy in underwater target 
detection. 
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1. Introduction 

In recent years, with the extensive exploitation and utilization of marine resources, underwater target 
detection has received increasing attention as a key technology in this field. From studying marine 
biodiversity to inspecting underwater structures and navigating autonomous underwater vehicles, 
accurate detection of underwater targets is essential for these applications. However, compared to 
terrestrial environments, underwater settings present challenges such as low visibility, low contrast, 
complex background noise, texture distortion, and variations in target shape and texture[1-4], all of which 
significantly increase the difficulty of detection tasks. 

The emergence and development of artificial intelligence (AI) have made deep learning a major driver 
of technological innovation. In particular, convolutional neural networks (CNNs) have demonstrated 
powerful capabilities in image recognition and object detection. With continuous improvements in 
network architectures and training strategies, deep learning models have achieved substantial 
performance gains in underwater target detection, in some cases matching or even surpassing human-
level performance. Among these models, one-stage detectors such as SSD[5] and the YOLO series[6-9] 
directly predict target locations and categories in a single forward pass, offering relatively low 
computational complexity and better real-time performance. In contrast, two-stage detectors such as Fast 
R-CNN[10] and Faster R-CNN[11] incorporate a Region Proposal Network (RPN) to first generate 
candidate regions, then classify and refine each proposal. While these tend to achieve higher accuracy 
by leveraging full-image convolutional features, their speed is limited by the additional processing of 
region proposals. 

To address the various challenges in underwater environments, researchers have proposed numerous 
methods for underwater image object detection. Liu et al.[12] introduced TC-YOLO, a lightweight 
framework based on YOLOv5s, which incorporates a Transformer self-attention module (CSP-TR Block) 
at the end of the backbone to enhance global feature extraction, and a coordinate attention mechanism 
(CSP-CA Block) in the neck to improve localization of small targets. Luo et al.[13] proposed YOLO-
DAFS, an improved version based on YOLOv11, which replaces standard bottleneck blocks with a 
lightweight DualConv structure combining group and pointwise convolutions, and introduces the C2PSF 
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module to enhance multiscale context fusion through attention mechanisms. Hu et al.[14] developed an 
enhanced sea urchin detection algorithm based on SSD, incorporating a multidirectional edge detection 
algorithm to extract spine features and a cross-level feature fusion strategy to improve detection of small 
targets. Hu[15] proposed a marine organism detection model based on Faster R-CNN, which utilized both 
VGG16 and ResNet50 as backbones and was trained on the FathomNet 2023 dataset. The experimental 
results showed that ResNet50 performed better in complex seabed environments. Additionally, Liu et 
al.[16] improved Faster R-CNN by replacing the backbone with a Swin-Transformer structure and 
changing RoI pooling to RoI alignment to enhance localization accuracy. 

YOLOv8 is a new target recognition network model in the current YOLO series, with high detection 
accuracy and fast detection speed. In this context, this paper uses the YOLOv8 model to incorporate the 
Large Separable Kernel Attention (LSKA)[17] into the neck of the network, which enhances the ability of 
the model to detect small targets and complex backgrounds, improves its robustness against challenging 
underwater conditions, and ultimately boosts overall detection performance. 

2. Methods  

2.1. The Overview of YOLOv8 

 
Figure 1: The structure of YOLOv8. 

YOLOv8 adopts an encoder-decoder architecture composed of three core components: backbone, 
neck and head, as shown in Figure 1. The Backbone is constructed using an enhanced CSPDarknet 
structure, which introduces the C2f (CSP-to-fused) module as its fundamental building block. This 
module reduces parameter redundancy and strengthens gradient propagation efficiency. Furthermore, 
depthwise separable convolutions and dilated convolutions are incorporated to expand receptive fields 
and refine multi-scale feature representation. The Neck integrates a hybrid structure combining a Feature 
Pyramid Network (FPN) and a Path Aggregation Network (PAN), facilitating bidirectional feature fusion 
across different semantic levels. This design enhances the model's capacity to detect objects at various 
scales. For the detection Head, a decoupled architecture is employed, separating classification and 
regression branches. The regression component utilizes an integral representation method inspired by 
Distribution Focal Loss, contributing to more precise bounding box localization. The entire model 
operates in an anchor-free manner, which simplifies the detection pipeline and improves generalization 
across diverse object shapes and sizes. To support deployment under different computational constraints, 
YOLOv8 offers scaled variants including Nano, Small, Medium, Large, and Extra Large, each balancing 
accuracy and efficiency for specific application scenarios. 
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2.2. Large Separable Kernel Attention (LSKA) 

 
Figure 2: The structure of Large separable kernel attention(LSKA). 

As illustrated in Figure 2, the LSKA module operates by decomposing the two-dimensional 
convolution kernel of the depthwise convolution layer into cascaded horizontal and vertical one-
dimensional kernels. The calculation process is detailed in the following formulas. With this working 
principle, we can directly use large size convolution kernels without adding the computational amount, 
effectively reducing the number of parameters and computational complexity. 

The local feature extraction is computed as follows: 

𝑍̅𝑍𝐶𝐶 = ∑ 𝑊𝑊(2𝑑𝑑−1)×1
𝐶𝐶 ∗ (∑ 𝑊𝑊1×(2𝑑𝑑−1)

𝐶𝐶 ∗ 𝐹𝐹𝐶𝐶)𝐻𝐻,𝑊𝑊𝐻𝐻,𝑊𝑊                     (1) 

The global feature extraction is calculated using the following expression: 

𝑍𝑍𝐶𝐶 = ∑ 𝑊𝑊
�𝑘𝑘𝑑𝑑�×1
𝐶𝐶 ∗ (∑ 𝑊𝑊

1×�𝑘𝑘𝑑𝑑�
𝐶𝐶 ∗ 𝑍𝑍�𝐶𝐶)𝐻𝐻,𝑊𝑊𝐻𝐻,𝑊𝑊                         (2) 

The final output is obtained through the merged BN computation: 

𝐴𝐴𝐶𝐶 = 𝑊𝑊1×1 ∗ 𝑍𝑍𝐶𝐶                              (3) 

𝐹𝐹�𝐶𝐶 = 𝐴𝐴𝐶𝐶 ⊗ 𝐹𝐹𝐶𝐶                                (4) 

In the above formula: d is the expansion rate; * represents convolution; ⊗ represents the Hadamard 
product; Z�C represents the output of the depth convolution with two cascade kernel sizes and (2d-1)× 
(2d-1), which captures local spatial information and is then processed by the following two cascade 
kernel sizes and the depth expansion convolution of �k

d
� �k

d
�. ⌊•⌋Represents the floor operation. Dilated 

depthwise convolution is responsible for capturing the global spatial information output by depthwise 
convolution. A 1×1 convolution kernel W1×1 is used to perform convolution operations on the 
intermediate features ZC, thereby obtaining the output feature maps AC. The output F�C of LSKA is 
obtained from the Hadamard product of the attention map AC and the input feature map FC. 

2.3. The Overview of UWYOLO 

In the architecture of YOLOv8, the Neck layer is responsible for merging multiscale features 
extracted by Backbone to enhance the ability of the model to detect targets of different sizes. In this paper, 
the LSKA module was introduced after the last C2f module in the Neck layer to further enhance the 
feature fusion and expression ability of the model. The improved overall structure is shown in Figure 3. 
This design enables the model to maintain efficient performance when processing large cores, more 
effectively capture and integrate features from different scales, and is more inclined to extract shape 
features of objects rather than texture features, so as to improve the generalization ability of the model. 
In addition, the introduction of LSKA module also helps to reduce the GFLOPs of the model, making 
the model have better real-time processing power while maintaining high performance. 
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Figure 3: The structure of UWYOLO. 

3. Experimental Results  

3.1. Experimental Deployment Details 

In this study, the model was trained using an NVIDIA GeForce RTX 2080 SUPER GPU. The network 
parameters were initialized from a normal distribution. Stochastic gradient descent (SGD) was employed 
as the optimizer, with a momentum of 0.9 and a weight decay of 0.0001. Training was conducted with a 
batch size of 4 and an initial learning rate of 0.01 over 300 epochs. 

During both training and testing, all input images were resized to 640×640 pixels. To improve the 
generalization capability of the model, data augmentation techniques were applied, including random 
horizontal and vertical flipping with a probability of 0.5. In summary, the deep learning model was 
optimized through carefully tuned parameter initialization, high-performance GPU acceleration, and 
effective image preprocessing strategies. 

3.2. Experimental Deployment Details 

The dataset used in this experiment was a self-built underwater dataset, and the images were labeled 
by LabelImg. The dataset has four categories of 5177 images, including starfish, echinus, holothurian 
and scallop. The data set was divided into training set, test set and validation set in a ratio of 7:2:1.3623 
images were randomly selected from the data set as training sets, 1036 images as test sets and 518 images 
as validation sets. The dataset sample plot is shown in Figure 4. 

    
Figure 4: The images of self-build underwater dataset. 

In order to comprehensively measure the performance of the model, this study mainly used the metric 
of Mean Precision (mAP), which is calculated based on a confidence threshold of 0.5 to obtain the 
Average Precision (AP) value. In addition, to evaluate the performance of the model in more detail, we 
also introduced recall rate, accuracy (precision), and F1 score as supplementary indicators. Through these 
comprehensive evaluation indicators, we can conduct in-depth analysis of the model's detection 
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capability from multiple perspectives. 

3.3. Ablation Analysis 

As presented in Table 1,the proposed UWYOLO model demonstrates consistent improvements over 
the baseline YOLOv8 across all evaluation metrics. Specifically, UWYOLO achieves a recall of 79.6%, 
surpassing YOLOv8 by 2.0%. It also attains a precision of 85.5%, which is 2.3% higher than YOLOv8. 
Furthermore, the mAP reaches 84.9%, reflecting an improvement of 1.0 percentage points. These results 
indicate enhanced detection completeness, prediction accuracy, and overall performance compared to 
YOLOv8.  

Table 1: Ablation analysis 

Models Recall Precision mAP 
YOLOv8 77.6 83.2 83.9 

UWYOLO 79.6(+2.0) 85.5(+2.3) 84.9(+1.0) 

3.4. Performance Analysis of UWYOLO 

According to the comparative analysis results in Table 2, UWYOLO demonstrates significant 
advantages in multiple detection indicators. The recall rate of this model reaches 79.6%, outperforming 
other comparison models and demonstrating a stronger target coverage capability. In terms of precision, 
UWYOLO achieved the highest value of 85.5%, indicating that its prediction results have higher 
accuracy. Meanwhile, this model maintains a leading position with an average accuracy of 84.9%, and 
its comprehensive detection performance is the most outstanding. Overall, UWYOLO comprehensively 
outperforms the comparison models in the three key indicators of recall rate, precision rate and mAP, 
demonstrating balanced and powerful detection capabilities. It can be seen from this that UWYOLO has 
greater potential in underwater target detection tasks with complex backgrounds, low visibility and high 
occlusion. 

Table 2: Contrast analysis 

Models Recall Precision mAP 
YOLOv5s 79.4 82.4 83.7 
YOLOv8s 77.6 83.2 83.9 

YOLOv10s 77.1 83.7 84.3 
SSD 75.8 82.7 82.2 

UWYOLO 79.6 85.5 84.9 

4. Conclusions  

To enhance the detection accuracy of underwater targets, this study proposes an improved detection 
model named UWYOLO. The approach incorporates the LSKA module into the Neck layer of the 
YOLOv8 architecture, enabling more precise capture of fine-grained target characteristics. Furthermore, 
the global knowledge aggregation mechanism integrates contextual information across the entire image, 
which assists the model in distinguishing between target and background regions in complex underwater 
environments, thereby improving detection precision. Comparative experiments with other state-of-the-
art algorithms confirm that UWYOLO achieves higher average precision and overall detection 
performance, demonstrating strong adaptability and robustness in challenging underwater scenarios. 
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