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Proof of the Collatz Conjecture 
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Abstract: The Collatz Conjecture primarily explores whether a sequence of positive integers, generated 

by a specific iterative rule, ultimately converges to 1. The study of its proof is not only aimed at answering 

a specific mathematical question but also at delving into the essence and boundaries of mathematics, 

thereby advancing the development of mathematical science. The conjecture encompasses all positive 

integers, focusing on understanding and proving that when performing the following operations on any 

positive integer: if it is odd, multiply by 3 and add 1; if it is even, divide by 2, after a finite number of 

iterations, each sequence of operations inevitably reaches the number 1 and forms a trivial cycle: {4, 2, 

1}. By introducing the concept of roots and utilizing constructive methods and mathematical induction, 

we explore and analyze related issues of the Collatz Conjecture, leading to an in-depth investigation that 

proves the conclusion that the Collatz Conjecture transforms any positive integer into 1.   

Keywords: Collatz Conjecture; branch number; transformation symbols; transformation paths; roots 

1. Introduction 

The Collatz Conjecture, commonly referred to as the 3n + 1 problem, states: For any positive integer 
+

n n,
, if n is even, repeatedly divide it by 2 until it becomes an odd number; if n is odd, multiply it 

by 3 and then add 1. This process is repeated indefinitely, and after a finite number of steps, one will 

inevitably reach 1. Its proposition is: 

 
                 if  n 0  (mod 2)

2

3 1           if   n 1  (mod 2)

n

f n

n




 
    

n


 
, there exists a positive integer

k



, and there is always

  1kf n 
. 

The Collatz Conjecture operates under very simple rules. Taking the number 13 as an example: since 

13 is an odd number, multiplying it by 3 gives 39, and adding 1 results in 40. Dividing by 2 gives 20; 

since 20 is even, dividing by 2 again results in 10. Then, since 10 is even, dividing by 2 gives 5. Now, 5 

is odd, so we multiply by 3, add 1, and halve the result to get 8. Since 8 is even, dividing by 2 gives 4; 4 

is even as well, and dividing by 2 results in 2; finally, dividing 2 by 2 leads us to 1. 

The Collatz Conjecture was proposed by German mathematician Lothar Collatz in the 1930s [1]. It 

states that regardless of which positive integer is chosen as the starting point, applying the 

aforementioned rules will ultimately lead to 1. However, the simplicity of the operations starkly contrasts 

with the difficulty of proving the conjecture. The famous mathematician Paul Erdős once remarked, 

"Mathematics is not ready for such problems" [2]. Jeff Lagarias also stated, "This is an exceptionally 

difficult problem that lies completely beyond the current scope of mathematics" [3]. To date, with the help 

of computer networks, all integers below 10201020 have been verified to converge to 1 [4]. The Collatz 

Conjecture is one of the most intriguing problems in mathematics and is also known by various names 

such as the odd/even conjecture, hailstone conjecture, 3n + 1 conjecture, and Kakutani conjecture, among 

others. 

In 2019, the renowned mathematician Terence Tao published a paper proving that the conjecture holds 

for almost all positive integers [5]. For the sake of clarity in this article, non-negative integers will be 

represented as , and positive integers will be represented as 


. Since any even positive integer will, 

through a series of Collatz transformations involving division by 2, eventually become an odd integer, 

we can focus solely on the sequences of transformations involving odd integers. 
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2. Related Definitions and Conclusions 

2.1 Odd Numbers 

Integers that cannot be divided by 2 are called odd numbers. Positive odd integers can be represented 

as 2 +1  k k， . 

Positive odd integers of the form 4 1k   can be further subdivided into three categories:

12 1,12 5,12 9k k k   . Similarly, k   can be subdivided into four categories: 

16 1,16 5,16 9,16 13k k k k    . 

Positive odd integers of type 4 3k   can be subdivided into: 12 3k  , 12 7k  , 12 11k  , k  . 

2.2 Branching Numbers 

Positive odd integers that are divisible by 3 are referred to as branching numbers. These branching 

numbers can be represented as 
 3 2 1 ,k k  

. Characteristics of branching numbers include: 

branching numbers are terminal numbers, and they cannot undergo the inverse Collatz transformation. 

2.3 Multiplicity of Integers 

For an odd integer that belongs to type 12 1m , 12 5m , 12 9m , it can also be classified as a 

type 16 1k  , 16 5k  , 16 9k  , 16 13k   odd integer. 

The relationship between positive odd integers of type 12 1m , 12 5m , 12 9m  and positive 

odd integers of type 16 1k  , 16 5k  , 16 9k  , 16 13k   is as follows: 

12 1

16 1 12 5      

12 9

m

k m

m




 
                         , 

12 1

16 5 12 5       

12 9

m

k m

m




 
   

12 1

16 9 12 5     

12 9

m

k m

m




 
             , 

12 1

16 13 12 5       ,

12 9

m

k m k m

m




   
   

2.4 Transformation Symbols 

The Collatz transformation symbol is denoted as  . 

2.5 Transformation Path 

The chain formed by connecting all the positive odd integers encountered during the Collatz 

transformation process using the Collatz transformation symbol is referred to as the Collatz 

transformation path. 

The transformation path is denoted as: 0 1 2 ... nx x x x   
 

(1) Two Types of Transformation Paths. 

① Existential Single Transformation Path: 

0 1 2x ... nx x x   
 

② Existential Composite Transformation Path: 
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0 1 2

0

...

         

          

nx x x x   




 

③ Non-existent, Violating Uniqueness: 

0 1 2

0

         

          

x x x 




 

(2) Two Important Properties of the Collatz Transformation Path: Uniqueness of the Transformation 

Path; Transitivity of the Transformation Path. 

2.6 Image and Preimage 

If the positive odd integer a  is transformed into the positive odd integer b  through one iteration 

of the Collatz operation, then b  is called the image of a , and a  is called the preimage of b . 

(1) Descending Number: According to the definition of image and preimage, if a b  is true, we 

call a  a descending number. 

(2) Ascending Number: According to the definition of image and preimage, if a b  is true, we call 
a  an ascending number. 

2.7 Relativity of Image and Preimage 

In the process of the Collatz transformation path, the concepts of image and preimage are relative. 

For example: In the transformation path, 0 1 2 ... nx x x x   
 and 0x

 are the preimages of 

1x
, and 1x

 is the image of 0x
; 1x

 is the preimage of 2x
, and 2x

 is the image of 1x
; similarly, 

1nx   is the preimage of nx
, and nx

 is the image of 1nx  . 

2.8 Mapping and Inverse Mapping 

The Collatz mapping transformation is denoted by C , and the inverse mapping transformation is 

denoted by C . 

2.9 Same Root 

The same root is denoted by Y. If two positive integers A  and B  have at least one common 

number in their respective Collatz iteration processes, then these two numbers are said to have the same 

root, which is denoted as A Y B . Having the same root implies that there is an intersection in their 

transformation sequences. 

2.9.1 Rules of Same Root Operation 

Self-same root rule: A Y A  is the same root with any number as itself. 

Same root equivalence rule: If A Y B , then B Y A  is in the same root relation. The same root 

relation is symmetric. 

Same root transitive rule: If A Y B  and B Y C , then A Y C  is in the same root relation. The 

same root relation is transitive. 

2.9.2 Two Different Representations of the Same Root 

Indirect same root: If A  transforms into B  through a single Collatz transformation ( A  B ), 

then A Y B . If C  transforms into B  through another single Collatz transformation ( C  B ), then 
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C Y B . Thus, A Y C  signifies that A  and C  are indirectly related through transformation rules 

and the concept of same root. Indirect same root can also be referred to as same-level same root, 

characterized by the ability to classify positive odd integers into layers based on the Collatz 

transformation rules, ensuring that odd integers within the same layer have the same transformation path. 

The composite transformation path is the combination of both indirect same root and direct same root. 

Direct same root: If A  transforms into B  through a single Collatz transformation ( A Y B ), then 
A Y B . Here, A  and B  are directly related through transformation rules and the concept of same 

root. Direct same root can also be referred to as inter-level same root, characterized by the ability to 

associate same root sequences between different layers based on the reverse Collatz transformation rules. 

The single transformation path is the representation of direct same root. 

2.9.3 Significance of Same Root 

By introducing the concept of the same root, we can apply the Collatz transformation rules in reverse, 

allowing different types of positive odd integers, which were originally distinct, to be associated through 

the same root. This results in them sharing the same transformation path. 

3. Lemmas and Corollaries 

3.1 Lemma: 4 1k   Odd numbers are descending numbers, k   

Proof: Since 

 4 1 3 1
3 1 4 1

4

k
k k

  
   

, k  , When k  is an odd number, 3 1k   can also 

be divisible by 2, and the result after division will keep getting smaller, thus the conclusion holds. 

Inference: Let m  be an odd number of type 4 1k   and k  , and let a  be transformed into an 

odd number b  after one iteration of the Collatz operation through a continuous division by 2. According 

to Lemma 2.1, we have m ≥2, m  . Conversely, let m  be a positive integer odd number a that is 

transformed into an odd number b  after one iteration of the Collatz operation through a continuous 

division by 2. If m ≥2, then a  is of types 4 1k   and k  , which can be proven by contradiction. 

3.2 Lemma: Odd number 4 3k   is an ascending and descending number, k   

"Proof: Since 

 4 3 3 1
6 5 4 3

2

k
k k

  
   

 and k  , the conclusion holds." 

"Corollary: Let m  be a 4 3k  -type odd number and k   be an odd number a  that becomes 

an odd number b  after one Collatz iterative operation, with the number of times it is continuously 

divided by 2. From Lemma 2.2, we can obtain 1m   and m  . Conversely, let m  be a positive 

integer odd number a  that becomes an odd number b  after one Collatz iterative operation, with the 

number of times it is divided by 2. If 1m  , then a  is 4 3k  , and k  -type odd numbers can be 

proved by contradiction." 

3.3 Lemma: For any 4 3k  , k  -type odd number 0x
, there exists a smallest positive integer 

0n 
 such that the 0n

-th Collatz mapping transformation must result in an 4 1k  -type odd 

number, denoted as 
 0

0 4 1,
n

f x k k  
 

Proof: Using the construction method, for any given one 4 3k  , k   "For an h-type odd number 

x0, we can construct this odd number as follows." 
2

0 2 2 3 1m nk    
, 0k 

, m , n . 

The construction steps are as follows: first, add 1 to get 4 4k   and k  , which can obviously be 

divided by 
22 . Then, continuously divide the resulting number by 3 to obtain 3n

. When it cannot be 
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divided by 3 even once, let it be 0n  . Next, continuously divide the resulting number by 2 to obtain 

2m
. When it cannot be divided even once, let it be 0m  . Finally, we find that the coefficients 0k

 and 

0k
 are odd numbers. The proof is divided into two cases: 

When 0m  , 
2

0 0 2 3 1nx k   
. 

The first Collatz iterative operation: 
1 1

1 0 2 3 1nx k    
 continuously divided by 2 only once; 

The second Collatz iterative operation: 
2

2 0 3 1nx k   
 continuously divided by 2 only once; 

Since 0k
 is an odd number, it is evident that 2x

 is an even number and can still be continuously 

divided by 2. Thus, 1x
 can be transformed through the Collatz operation to obtain an odd number 2x

, 

which can be continuously divided by 2 more than twice. From Corollary 2.1.1, it can be inferred that 

1x
is an 4 1k  -type odd number. At this point, the smallest positive integer 0 =1n

obtained confirms the 

proposition. 

When 0m  , 
2

0 0 2 2 3 1m nx k    
. 

The first Collatz iterative operation: 
1 2 1

1 0 2 2 3 1m nx k      
 continuously divided by 2 only 

once.; 

The second Collatz iterative operation: 
2 2 2

2 0 2 2 3 1m nx k      
 continuously divided by 2 only 

once.; 

... 

The m-th Collatz iterative operation: 
2

0 2 3 1n m

mx k    
 continuously divided by 2 only once.; 

The m+1-th Collatz iterative operation: 
1 1

1 0 2 3 1n m

mx k  

    
 continuously divided by 2 only 

once.; 

The m+2-th Collatz iterative operation: 
2

2 0 3 1n m

mx k  

   
 continuously divided by 2 only once. 

Since 0k
 is an odd number, it is clear that 2mx   is an even number, which can also be continuously 

divided by 2. Thus, 1mx   undergoes the Collatz transformation to yield the odd number 2mx  , which 

can be divided by 2 more than two times. By Corollary 2.1.1, it can be concluded that 1mx   is of classes 

4 1k   and k   as odd numbers. At this point, the minimum positive integer 0 1n m 
 is obtained, 

and the proposition is established. 

In summary, the original proposition is established. 

(1) Equivalent Proposition: For any odd positive integer of class 4 1k  , if the Collatz conjecture holds, 

then the Collatz conjecture must necessarily hold for any odd positive integer. 

From Lemma 2.3, it can be inferred that any odd positive integers of classes 4 3k   and k  , 

after a finite number of Collatz mappings, must result in odd integers of classes 4 1k   and k  . 

Therefore, the equivalent proposition is established. 

(2) Lemma: There are three types of Collatz transformation path models (see Figure 1-3) for odd 

positive integers of class 4 3k  . 



Academic Journal of Mathematical Sciences 

ISSN 2616-5805 Vol. 6, Issue 1: 27-44, DOI: 10.25236/AJMS.2025.060104 

Published by Francis Academic Press, UK 

-32- 

 

Figure 1: The First Transformation Path Model 

 

Figure 2: The Second Transformation Path Model 

 

Figure 3: The Third Transformation Path Model 

Prove that for positive integer odd numbers of classes 12 3k   and k  , using the Collatz 

mapping transformation formula 

 3 1

2r

a
b

 


, let a =12 3k   and k   be positive integer odd 

numbers. Then, there exists 18 5b k  . When k  is an even number, 36 5b m   is 12 5m  and 

m  are positive integer odd numbers. When k  is an odd number, 36 23b m   is 12 11m  and 
m  are positive integer odd numbers. 

For positive integer odd numbers of classes 12 7k   and k  , using the Collatz mapping 

transformation formula 

 3 1

2r

a
b

 


, let 16 9a k   and k   be positive integer odd numbers. 

Then, there exists a positive integer odd number of class 12 7b k  . When 12 7a k   and k   

are positive integer odd numbers, using the Collatz mapping transformation formula 

 3 1

2r

a
b

 


, 

there exists a positive integer odd number of class 18 11b k  . When k  is an even number, 

36 11b m   is 12 11m , and m  are positive integer odd numbers. When k  is an odd number, 

36 29b m   is 12 5m , and m is a positive integer odd number. 

For positive integer odd numbers of classes 12 11k   and k  , using the Collatz mapping 
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transformation formula 

 3 1

2r

a
b

 


, let 12 11a k   and k  be positive integer odd numbers. 

Then, there exists a positive integer odd number of class 18 17b k  . When k  is an even number, 

36 17b m   is12 5m , and m  is a positive integer odd number. When k is an odd number, 

36 35b m  is 12 11m , and m  is a positive integer odd number. According to Lemma 2.3, it is 

known that the positive integer odd numbers of classes 12 11m  and m  will eventually lead to 
12 5m  and m , which are positive integer odd numbers, after a finite number of Collatz iterations. 

Based on this, the original proposition is established. 

(3) Corollary: For any class 4 3,k k   of positive integer odd numbers, there must exist a 

positive integer of class 12 5,m m   that shares the same root. 

Proof: Based on Lemma 2.3 and Definition 1.9 of the same root, as well as the transitive rule of the 

same root in 1.9.1, the conclusion is established. 

Proof: Based on Lemma 2.3 and Definition 1.9 of the same root, as well as the transitive rule of the 

same root in 1.9.1, the conclusion is established.  

(4) Corollary: For any class 4 3,k k   of positive integer odd numbers 0x
, there exists a 

smallest positive integer 0n 
 such that 

 0

0 12 5,
n

f x m m  
. Therefore, 

 0 1

0 8 3,
n

f x m m


  
 must hold. 

Proof: When 
 0

0 12 5,
n

f x m m  
, utilizing the Collatz inverse mapping to transform 

(12 5) 2 1
8 3

3

m
m

  
 

 leads to the conclusion 
 0 1

0 8 3,
n

f x m m


  
being established. 

4. Algorithm 

4.1 Algorithm 1: Constructing Interconnected Root Sequences Based on Original Symbols 

For any given positive odd integer a , taking a  as the original element, we use the Collatz mapping 

transformation formula 

 3 1

2k

a
b

 


, k   to obtain a unique image b . Then, using the Collatz 

inverse mapping transformation formula 

 
0

2 1

3

nb
x

 


, let n  take the smallest positive integer m  

that makes the equation hold, and m   obtains the smallest unique original element 

0

3 2 1

3 2

k m

k m

a
x





 


 . Let the sequence nx
 be 

1 1

0 0 4 4 ... 4 1n nx x      
, n  , then the sequence 

nx
 is the interconnected root sequence. 

Reliability of the algorithm: 

Proof: Clearly, the odd integer 0x
Y b . Let jx

 be any term 
1 j n 

 in the sequence nx
. Since: 

03 1 2mx b   
, m   

then: 
 03 1 3 1 4 2 4j m j

jx x b        
,

j 
 

Therefore, jx
Y b  is reliable. 

Completeness of the algorithm: We prove this using proof by contradiction as follows. 

Assuming there exists a positive odd integer 0k
 that does not belong to the interconnected root 
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sequence nx
, but shares a root with the odd integer b . From the above, it can be concluded that the odd 

integer 0x
 is the Collatz inverse mapping transformation formula 

 
0

2 1

3

nb
x

 


, and n  is chosen to 

make the equality hold at the smallest positive integer m . m   obtains the smallest unique odd 

integer, and jx
 is any term in the sequence nx

. According to the Collatz transformation rules, we have: 

1 j n 
. 

 03 1 3 1 4 j

jx x     
, j                              (1) 

03 1 2mx b   
, m                                (2) 

03 1 2rk b   
, r                               (3) 

r m                                        (4) 

From equation (1), we obtain the equivalent transformation:  

0

3 1
4

3 1

j j
x

x

 


 
                                  (5) 

Equation (3) subtracting equation (2): 

   0 03 2 2 1m r mk x b      
                           (6) 

Equation (3) divided by equation (2):  

0

0

3 1
2

3 1

r mk

x

 


 
                                  (7) 

For equation (6), since b  is not a branch number, if the equality holds, then 2 1r m   must be 

divisible by 3. 

Thus, 2r m k  , k  are gotten, substituting in Equation (7), and reorganizing Equation (7): 

0

0

3 1
4

3 1

kk

x

 


 
                                  (8) 

Therefore, the odd integer 0k
 is the k -th term of sequence nx

, shares the same root with the odd 

integer b , and contradicts the hypothesis, thus establishing completeness. 

4.1.1 Uniqueness of Interrelated Same-Root Sequences 

Based on the uniqueness of the Collatz transformation rules, the interrelated same-root sequence nx
 

is unique. 

4.1.2 Purpose and Significance 

To effectively and reasonably categorize the disordered positive odd integers according to the Collatz 

transformation rules, ensuring that the odd integer sequences at the same level share the same 

transformation path. 

For example, for 11a  , the Collatz transformation yields 17, and by taking the smallest positive 

integer 1 for the inverse mapping, we obtain 11. Thus, we can derive the interrelated same-root sequence 

nx
 

 1 111 11 4 4 ... 4 1n n     
, n  . 

For example, for 53a  , the Collatz transformation yields 5, and by taking the smallest positive 

integer 1 for the inverse mapping, we obtain 3. Thus, we can derive the interrelated same-root sequence. 
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nx
:

 1 13 3 4 4 ... 4 1n n     
, n  . 

4.1.3 General Term Formula and Sequence Matrix for Type 4 1k   and k   Positive Odd Integers 

Interrelated Same-Root Sequences. 

① Construct the interrelated same-root sequence matrix of type 4 1k   and k   positive odd 

integers using the constructive method, starting from the smallest positive odd integer, 1, and sequentially 

constructing the interrelated same-root sequences according to the 3.1 algorithm.   

② Remove all constructed interrelated same-root sequences of 4 3k   and k   class positive 

odd integers. 

③ Remove duplicates by keeping one instance of all constructed interrelated same-root sequences 

and organizing them.   

④ From the steps of constructing the above interrelated same-root sequences, it can be concluded 

that all odd integers in this array are initially generated by traversing all positive odd integers and then 

removing the 4 3k   and k   class positive odd integers. Therefore, the union of all interrelated 

same-root sequences corresponds one-to-one with the 4 1k   and k  class positive odd integers, 

and the interrelated same-root sequences do not intersect, with an empty intersection.   

The general term formula is: 

1 1

1 1

1 1

(16 1) (16 1) 4 4 4 1

(16 9) (16 9) 4 4 4 1      ,

(16 13) (16 13) 4 4 4 1

n n

n n

n n

m m

m m m n

m m



 



       


        


                    (9) 

The interrelated same-root sequence matrix of type n rows, m  columns, and 4 1k  , k 

positive odd integers is as follows: 

1      5      21      85      341      1365      5461      

9    37    149    597    2389      9557     38229     

13   53    213    853    3413     13653    54613    

17   69    277   1109   4437     17749    70997     

25  101   405   1621   6485     25911  103765    

29  117   469   1877   7509     30037  120149    

                                            

 
 
 
 
 
 
 
 
 
 
   

From the multiplicity of integers, the characteristics of the row and column elements are as follows: 

Row Characteristics: 

(1) The first row consists of all positive odd integers that share the same root with 1. 

(2) Each row contains all positive odd integers as interrelated same-root sequences. 

(3) The positive odd integers in each row are classified as types 12 1m , 12 9m , and 12 5m  

odd integers, as well as m . 

It can be seen that different classified odd integers are distributed on the interrelated same-root 

sequence, sharing the same transformation path. 

Column Characteristics: 

(4) The first column is.16 1m , 16 9m , 16 13m  class positive odd integers, m ; 

(5) The second column and all subsequent columns are16 5m  class positive odd integers, m . 

Row and Column Characteristics: 

From the perspective of the row and column characteristics of the above square matrix, the positive 

odd integers 4 1k   and k   reflect the features of the Collatz transformation sequence from 

different classification angles based on the multiplicity of integers, specifically combining interrelated 

same-root and directly related same-root sequences. 
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4.2 Algorithm 2: Directly Related Same Root Based on Pre-image Inverse Mapping Transformation 

Let a  be any element (non-leaf number) in the interrelated same-root sequence nA
. Using a  as 

an image and applying the Collatz inverse mapping transformation formula 
0

2 1

3

na
x

 


, take the 

smallest positive integers k  and k   that satisfy the equation. Obtain the smallest positive odd 

integer 0x
 and let the sequence nx

 be 
1 1

0 0 4 4 ... 4 1n nx x      
 and n  . It is clear that 

sequence nx
 and sequence nA

share the same root. 

Proof: The conclusion can be established similarly to the proof process of Algorithm 3.1. 

4.2.1 Purpose and Significance 

To connect the originally distinct interrelated same-root sequences, allowing them to share the same 

transformation path. 

For example, interrelated same-root sequences. nA
: 

 1 117 17 4 4 ... 4 1n n     
, n  . 

Choose any odd number from the sequence, such as 17, and take the smallest positive integer, which 

is 1. According to Algorithm 3.2, the inverse mapping transformation yields the pre-image 11, thus 

obtaining the sequence. nx
: 

 1 111 11 4 4 ... 4 1n n     
, n  .  

Directly related to sequence nA
 through the same root. 

4.2.2 Image and Original Inverse Mapping Transformation Same Root Model   

Using the odd numbers of type 12 5m  in the interleaved same root sequence as the image, based 

on the three transformation path models of the Collatz conjecture in section 3.3.2 and the rules of the 

Collatz inverse mapping transformation in Algorithm 4.2, they can be categorized into the following four 

types of inverse mapping transformation models. 

(1) Odd numbers of type 12 3k   share the same root, based on the inverse mapping transformation 

algorithm in Algorithm 4.2, which involves multiplying by 2, subtracting 1, and dividing by 3. 

The traversal period of a complete Collatz inverse mapping transformation (see Figure 4): 

12 5 12 3m k    

There is only one type corresponding to the same root sequence: 16 13,k k   

According to Section 3.2, the general term formula for the same root sequence is: 

  1 116 13 16 13 4 4 ... 4 1n nm m        
, ,m n    

 

Figure 4: Collatz Inverse Mapping Transformation Same Root Connection Model 

For example, for the odd number of type 12 5m , 5, according to the inverse mapping 

transformation algorithm in Algorithm 3.2, multiplying by 2, subtracting 1, and dividing by 3 yields the 

odd number 3.Thus, the 4 1k   type odd number same root sequence is {13, 53, ...} (excluding the type 

k odd number 3).  

(2) Odd numbers of types 12 7k  , 12 11k  , and 16 9k   are of the same root, based on the inverse 
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mapping transformation algorithm in Algorithm 3.2, which involves multiplying by 2, subtracting 1, 

dividing by 3, and multiplying by 4, then subtracting 1, and dividing by 3. 

The traversal period of a complete Collatz inverse mapping transformation (see Figure 5): 

  repeated

12 5 12 11...2 11 12 7 12 9
finitely

m k k k k       

 

There are only two types corresponding to the same root sequence: 16 916 13,k k k  ，  

According to 4.2, the general term formula for the same root sequence is:  

  1 116 13 16 13 4 4 ... 4 1n nm m        
, ,m n    

  1 116 9 16 9 4 4 ... 4 1n nk k        
, ,k n    

 

Figure 5: Collatz Inverse Mapping Same Root Connection Model 

For example, for the odd number of type 12 5m , 17, according to the inverse mapping 

transformation algorithm in Algorithm 3.2, multiplying by 2, subtracting 1, and dividing by 3 

sequentially yields the odd numbers 11 and 7. Multiplying by 4 and subtracting 1, then dividing by 3, 

yields the odd number 9.  

Thus, the 4 1k   type same root sequences are {45, 181, ...}, {29, 117, ...}, and {9, 37, ...} (excluding 

the type 4 3k   odd numbers 11 and 7). 

(3) Odd numbers of type 12 7k   and type 16 9k   are of the same root, based on the inverse 

mapping transformation algorithm in Algorithm 3.2, which involves multiplying by 2, subtracting 1, 

dividing by 3, and multiplying by 4, then subtracting 1, and dividing by 3. 

The traversal period of a complete Collatz inverse mapping transformation (see Figure 6): 

12 5 12 7 12 9m k k      

There are only two types corresponding to the same root sequence: 16 916 13,k k k  ，  

According to 4.2, the general term formula for the same root sequence is:  

  1 116 13 16 13 4 4 ... 4 1n nm m        
, ,m n    

  1 116 9 16 9 4 4 ... 4 1n nk k        
, ,k n    
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Figure 6: Collatz Inverse Mapping Transformation Same Root Connection Model 

For example: For the odd number of type 12 5m  which is 29, based on Algorithm 3.2, the inverse 

mapping transformation algorithm involves multiplying by 2, subtracting 1, and dividing by 3 to obtain 

the odd number 19. Similarly, multiplying by 4, subtracting 1, and dividing by 3 yields the odd number 

25. 

Thus, the odd root sequences of type 4 1k   are {77,309,….} and {25,101,….} (with the odd 

number of type 4 3k   which is 19 excluded). 

(4) For odd numbers of types 12 3k   and 12 11k   that share the same root, based on Algorithm 

3.2, the inverse mapping transformation algorithm involves multiplying by 2, subtracting 1, and dividing 

by 3 (see Figure 7). 

A complete Collatz inverse mapping transformation traversal cycle:  

  repeated

12 5 12 11...2 11 12 3
finitely

m k k k     

 

There is only one type corresponding to the same root sequence: 16 13,k k   

Based on 4.2, the general term formula for the same root sequence is:  

  1 116 13 16 13 4 4 ... 4 1n nm m        
, ,m n    

 

Figure 7: Collatz Inverse Mapping Same Root Connection Model 

For example: For the odd number of type 12 5m , which is 53, based on Algorithm 4.2, the inverse 

mapping transformation algorithm involves multiplying by 2, subtracting 1, and dividing by 3 in 

succession to obtain the odd numbers 35, 23, and 15. Thus, the odd root sequences of type 4 1k   are 

{141,565,….}, {93,373,….}, and {41,165,….} (with the odd numbers of type 4 3k  , which are 35, 23, 

and 15, excluded). 

4.2.3 For interlinked same-root sequences of types 12 1m  and m  , based on Algorithm 3.2, an 

associated direct-link same-root model is obtained 

For odd numbers of type 16 1k   that share the same root, based on Algorithm 3.2, the inverse 
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mapping transformation algorithm involves multiplying by 4, subtracting 1, and dividing by 3. 

A complete traversal cycle of the Collatz inverse mapping transformation (see Figure 8): 

12 1 16 1m m    

There is only one type corresponding to the same root sequence: 16 1,k k   

The general term formula for the same root sequence is obtained based on 4.2.:  

  1 116 1 16 1 4 4 ... 4 1n nm m        
, ,m n    

 

Figure 8: Collatz Inverse Mapping Same-Root Connection Model 

For example: For the odd number of type 12 1m , which is 13, the inverse mapping algorithm 

involves multiplying by 4, subtracting 1, and dividing by 3 to obtain the odd number 17. 

Thus, the same-root sequence of type 4 1k   is {17,69,….}. 

4.2.4 Completeness 

Based on the completeness of the inverse mapping transformation in Algorithm 4.2, for any given 

class 12 1m  odd number or class 12 5m  odd number, the indirectly associated same root sequence 

obtained through the inverse mapping transformation of the given image according to Algorithm 4.2 is 

complete, with no omissions. 

4.2.5 Characteristics of the Same-root Connection Model of Image and Original Object in Inverse 

Mapping Transformation 

Consider the interrelated same-root sequence matrix of types 4 1k   and k   constructed using 

the algorithm from 4.1. According to the algorithm in 4.2, for the first column of odd numbers 16 1m  

and m  in the matrix, the distribution of odd numbers in that row is classified into positive integer 

odd numbers of types 12 1m , 12 9m , 12 5m , and m  For the initial value of odd numbers of 

type 12 5m , based on the inverse mapping transformation same-root model in 4.2.2, there exists a one-

to-many interconnected same-root sequence of type 16 9m , 16 13m , or 16 9m  with the odd 

number sequence of type 16 13m  sharing the same root. For the initial value of odd numbers of type 
12 1m , according to the inverse mapping transformation same-root model in 4.2.3, there exists a one-

to-one interconnected same-root sequence of odd numbers of type 16 1m  sharing the same root. 

Similarly, for the first column of odd numbers 16 9m  and m , the distribution of odd numbers 

in that row is classified into positive integer odd numbers of types 12 1m , 12 9m , 12 5m , and 
m . For the initial value of odd numbers of type 12 5m , according to the inverse mapping 

transformation same-root model in 4.2.2, there exists a one-to-many interconnected same-root sequence 

of type 16 9m , 16 13m , or 16 9m  with the odd number sequence of type 16 13m  sharing the 

same root. For the initial value of odd numbers of type 12 1m , based on the inverse mapping 

transformation same-root model in 4.2.3, there exists a one-to-one interconnected same-root sequence of 

odd numbers of type 16 1m sharing the same root. 

Similarly, for the first column of odd numbers 16 13m  and m , the distribution of odd 

numbers in that row is classified into positive integer odd numbers of types 12 1m , 12 9m , 12 5m , 

and m . For the initial value of odd numbers of type 12 5m , according to the inverse mapping 

transformation same-root model in 4.2.2, there exists a one-to-many interconnected same-root sequence 
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of type 16 9m , 16 13m , or 16 9m  with the odd number sequence of type 16 13m  sharing the 

same root. For the initial value of odd numbers of type 12 1m , based on the inverse mapping 

transformation same-root model in 4.2.3, there exists a one-to-one interconnected same-root sequence of 

the odd number sequence of type 16 1m  sharing the same root. 

4.2.6 Same-root Connection Method of Image and Original Object in Inverse Mapping 

Transformation 

(1) Existence:
16 +1 16 +13

12 5

C
k m

m  

(2) Existence: 
16 +13 16 +9

12 5

C
k m

m  , 
16 +9 16 +13

12 5

C
k m

m  

(3) Non-existence:
16 +9 16 +1

12 5

C
k m

m  , 
16 +13 16 +1

12 5

C
k m

m  

(4) Non-existence:
16 +9 16 +1

12 1

C
k m

m  , 
16 +13 16 +1

12 1

C
k m

m   

(5) Existence: 
16 +1 16 +1

12 1

C
k m

m  

(6) Non-existence:
16 +1 16 +9

12 1

C
k m

m , 
16 +1 16 +13

12 1

C
k m

m   

Proof: Based on Lemma 4.2.5 and Definition 2.8, it can be concluded that the proposition holds true. 

4.2.7 Equivalent Proposition: For any sequence of indirectly associated same root odd integers of class 

16 1k   that are positive integers, if the Collatz conjecture holds true for 1, then the Collatz conjecture 

must necessarily hold for any class of positive odd integers 

Proof: For any sequence of positive odd integers of class 16 9m , 16 13m , or m , based on 

Lemma 4.2.5, it can be established that for any odd integer 12 1m  or m  from the sequence, there 

exists a one-to-one correspondence to the original integers 16 1k   and k  that also share the same 

root. Therefore, the equivalent proposition holds true. 

5. Lemma 

(1) Lemma: The root nodes of a matrix of n  rows and m  columns consisting of odd positive 

integer sequences of types 4 1k   and m  are odd positive integers of types 12 5m  and m . 

Proof: According to Corollary 3.3.3, for any odd positive integers of types 4 3k   and k  , there 

exists a unique image of odd positive integers of types 12 5m  and m  corresponding to their 

Collatz mapping transformation, and the mapping relationship is surjective. Conversely, based on 

Algorithm 4.2, using odd positive integers of type 12 5m  as images to perform a complete traversal 

of the Collatz inverse mapping transformation yields all the corresponding pre-images of odd positive 

integers of type 4 3k  ; the inverse mapping relationship is one-to-many, and the resulting odd positive 

integers of types 4 3k   and k   are complete, with no omissions. Therefore, the root nodes are 

odd positive integers of types 12 5m  and m . Thus, the proposition holds. 

(2) Lemma: For a matrix of n  rows and m  columns consisting of odd positive integer sequences 

of type 4 1k  , with all odd numbers of types 16 9m , 16 13m , and m  as root nodes, and odd 

numbers of types 12 1m  and m  on the root node sequence as images, a complete Collatz inverse 

mapping transformation can be performed, traversing the same-root model according to 4.2.3. Based on 

the characteristics of the same-root model in the inverse mapping transformation outlined in 4.2.5, it can 
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be concluded that the odd sequences of types 16 1m  and m  that meet this condition will 

ultimately be merged into the odd root node sequences that share the same root. 

Similarly, by using all odd sequences of types 12 1m  and m  on the obtained same-root 

sequences of odd types 16 1m  and m  as images, a complete Collatz inverse mapping 

transformation can be performed, traversing the same-root model according to the inverse mapping 

transformation of 4.2.3. Based on the characteristics of the same-root model in the inverse mapping 

transformation outlined in 4.2.5, the resulting odd sequences of types 16 1m  and m  that meet 

this condition can be merged into the odd root node sequences that share the same root. 

By extension, the following conclusion can be drawn regarding the same-root sequences constructed 

with odd sequences of types 16 9m , 16 13m , and m  as root nodes: 

① Distinct root node sequences do not intersect with each other;   

② The same root node sequence does not produce cycles;   

③ In a matrix of n  rows and m  columns, there exist odd sequences of types 16 1m  and 

m  that have not been merged into the odd root node sequences of types 16 9m  and 16 13m  

that share the same root. 

Proof: ① Using proof by contradiction, assume that there exists a root node sequence that intersects 

with another root node sequence. Conversely, taking the intersecting odd number as the initial value for 

the Collatz transformation would result in the 2.5 Collatz transformation path, violating the uniqueness 

of the Collatz transformation. Therefore, the original proposition holds. 

② Since the root nodes are odd numbers of types 16 9k  , 16 13k  , and k  , the root node 

sequences consist of odd positive integers of types 16 9k  , 16 13k  , 16 5k  , and k  . By using 

constructive inverse mapping transformations, the merged same-root odd sequences are all of types 
16 1m  and m ; therefore, the odd sequences merged through this constructive method cannot 

produce cycles with odd sequences of types 16 9k  , 16 13k  , 16 5k  , and k  . On the other hand, 

if there exist odd numbers of types 16 1m  and m  that generate cycles between each other, then 

there would be a cyclical odd number as the initial value for the Collatz transformation, which would 

result in the 2.5 Collatz transformation path, violating the uniqueness of the Collatz transformation path. 

Thus, the original proposition holds. 

③ The first row of the 1-cycle sequence and the sequences that share the same root as the 1-cycle 

sequence have not been merged, thus the proposition holds. Using proof by contradiction, we can 

demonstrate that if there exists a sequence sharing the same root as the 1-cycle sequence that has been 

merged, then the Collatz mapping transformation for that sequence would not be unique, which 

contradicts the uniqueness of the Collatz mapping transformation. 

(3) Lemma: The root nodes of a matrix of odd positive integer sequences consisting of types n and 
m  with n  rows and m  columns are odd positive integers of types 16 1m  and m . 

Proof: According to Lemma 5(1), it is known that the root nodes are odd positive integers of types 
12 5m  and m . Since odd positive integers of types 12 5m  and m  are distributed among 

the odd positive integer sequences of types 16 1k  , 16 9k  , 16 13k  , and k  . According to 

Lemma 5(2), if odd numbers of types 16 9k  , 16 13k  , and k   are taken as root nodes, with odd 

numbers of types 12 1m  and m  on the root node sequences as images, the odd positive integer 

sequences of types 16 1m  and m  obtained via the inverse mapping transformation 4.2.3 are 

incomplete. Therefore, odd number sequences of types 16 9k  , 16 13k  , and k   cannot serve as 

root node sequences, leading to the conclusion that the original proposition holds. On the other hand, 

from the inverse mapping relations of 4.2.6(1), 4.2.6(2), and 4.2.6(3), it can be concluded that odd 

positive integer sequences of type 16 1m , m  serve as root nodes. 

(4) Lemma: For a matrix of odd number sequences consisting of positive integers of types 4 1k  and 

k   with n  rows and m  columns, according to Lemma 5(3), taking all odd number sequences of 

types 16 1k   and k   as root nodes, and all odd numbers of types 12 5m  and m  on the 
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odd number sequences of type 16 1k   as images, a complete Collatz inverse mapping transformation 

cycle traversal is performed based on the same-root model of inverse mapping transformation 4.2.2. 

According to the characteristics of the same-root model of inverse mapping transformation 4.2.5, the 

obtained odd number sequences of types 16 9m , 16 13m , and m  will be merged with the root 

node odd number sequences of types 16 1k   and k  . 

Similarly, the odd number sequences of types 16 9m , 16 13m , and m  obtained, with all 

odd numbers of type 12 5m  as images, undergo a complete Collatz inverse mapping transformation 

cycle traversal based on the same-root model of inverse mapping transformation 4.2.2. According to the 

characteristics of the same-root model of inverse mapping transformation 4.2.5, the obtained odd number 

sequences of types 16 9m , 16 13m , and m  will be merged with the root node sequences of 

types 16 1k   and k  . 

By this analogy, the following conclusions can be drawn regarding the same-root sequences 

constructed through inverse mapping with odd number sequences of types 16 1k   and k   as root 

nodes: 

① Distinct root node sequences do not intersect;   

② The same root node sequence does not produce cycles. 

③In the matrix with n  rows and m  columns, all odd number sequences of types 16 9m , 

16 13m , and m  are ultimately merged into the same-root odd number sequences of types 

16 1k   and k  , with no omissions. 

Proof: ① Based on the proof process of the conclusion in Lemma 5(2)①, a similar argument can be 

used to prove that the proposition holds true. 

② Since the root nodes are odd numbers of types 16 1k   and k  , the sequences above them 

consist of odd numbers of types 16 1k  , 16 5k  , and k  . Through the construction method of 

inverse mapping transformations, the merged same-root odd number sequences are of types 16 9m  or 
16 13m  and m . Therefore, the odd number sequences merged through the construction method 

will not produce cycles with odd numbers of types 16 1k  , 16 5k  , or k  . On the other hand, if a 

cycle were to occur between odd numbers of types 16 9m  or 16 13m  and m , it would imply 

that the odd number at the cycle point is used as the initial value for the Collatz mapping transformation, 

leading to a Collatz transformation path as stated in 2.5. This would violate the uniqueness of the Collatz 

transformation path. Thus, the original proposition holds true. 

③According to Lemma 5(3), it is evident that the positive integer odd numbers of types 16 1m  

and m  serve as root node sequences. Therefore, the same-root sequences of types 16 9m , 
16 13m , and m  constructed from the root node sequences are complete, with no omissions. On 

the other hand, based on the completeness of algorithms 4.1 and 4.2, the characteristic initial values of 

the interleaved same-root sequences constructed on all root node sequences using algorithm 4.1, which 

are odd numbers of types 12 5m  and m , are complete. Furthermore, for any given positive 

integer odd numbers of types 12 5m  and m , the interleaved same-root sequences obtained 

through the Collatz inverse mapping transformation traversal of the given image's completeness using 

algorithm 4.2 are also complete. Thus, the conclusion of completeness holds. 

(5) Lemma: The Collatz conjecture transformation of any positive integer odd numbers of types 

4 1k   and k   must be 1. 

Proof: Using the construction method and mathematical induction. 

①In the first step, the construction method is used. For the matrix of positive integer odd number 

sequences of type 4 1k   in n  rows and m  columns, the same-root sequences of root nodes are 

constructed using all odd number sequences of types 16 1k   and k  , based on Lemma 5(4). 

It can be seen that after the first step of construction, each root node sequence of types 16 1k   and 
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k   has infinitely many odd number sequences of types 16 9m  or 16 13m  and m  

sharing the same root. Conversely, any odd number on the same-root related sequences of types 16 9m , 
16 13m , and m , after a finite number of Collatz transformations, will have the same 

transformation path as the odd numbers of types 12 5m  and m  on the root node sequences of 

types 16 1k   and k  . The matrix of root node sequences after the first step of construction and 

merging is as follows: 

1      5      21      85      341      1365      5461      

17   69    277   1109   4437    17749    70997     

33  133  533   2133   8533     34133   136533    

49  197  789   3157 12629     50517   202069     

65  261 1045  4181 16725     66901   267605    

                                            

 
 
 
 
 
 
 
 
    

②The second step continues to employ the construction method. Using all odd number sequences of 

types 16 9m  or 16 13m  and m  merged in the first step as root nodes, the same-root 

sequences are constructed based on Lemma 5(2). 

Based on the multiplicity of integers, odd numbers of types 12 1k   and k   can be divided into 

odd numbers of types 16 1k  , 16 5k  , 16 9k  , 16 13k  , and k  . After the second step of 

construction, the merged sequences of odd numbers, 16 1k   and k  , undergo Collatz 

transformations resulting in odd numbers of types 12 1k   and k   The odd numbers 12 1k   and 

k   are represented as same-root sequences of odd numbers 16 9k  , or 16 13k   and k  , 

which are merged by the root node sequence. Therefore, for all unmerged root node odd number 

sequences that underwent the second-step same-root construction, their Collatz mapping transformation 

(resulting in odd numbers of types 12 1k   and k  ) must be odd number sequences of types 
16 1m  and m  that are less than themselves. Thus, the matrix of the root node sequences after the 

second step of the construction and merging is as follows: 

1           5          21        85        341        1365          5461        

113     453     1813     7253     29013    116053     464213      

2417  9669   38677  154709  618837   2475349  9901397     

                                                                 

 
 
 
 
 
   

③To prove the unmerged odd sequences of types 16 1k   and k   after the second step of the 

same root construction using mathematical induction. 

①When 1n   is considered, the first row of odd sequences is rooted in 1, and thus the proposition 

holds true. 

②Assuming that when n k  is in consideration, the proposition holds true. That is, after the second 

step of the same root construction, the unmerged odd sequences of types 16 1k   and k   in the k

-th row are rooted in 1. 

③When n k  is considered, it can be inferred from the above that after the second step of the same 

root construction, the k -th row of odd sequences 16 1k   and k   that have not been merged will, 

after a finite number of Collatz transformations, become odd sequences of types 16 1m  and m  

that are less than themselves. Therefore, the k -th row 16 1k   of odd sequences is rooted in 1. In 

summary, the original proposition holds true. 

6. Conclusion 

The application of constructive methods and mathematical induction is extensive; both methods are 

indispensable proof tools in both elementary and advanced mathematics. This paper has conducted an 

in-depth and detailed study and analysis of the Collatz conjecture. By introducing the concept of same 
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roots and employing the idea of constructing before proving, we have utilized constructive methods and 

mathematical induction to demonstrate that the conjecture holds true for any odd positive integer greater 

than 1. 
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