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Abstract: In the domain of renewable energy, the pronounced variability inherent in wind and solar 
power generation poses substantial challenges to the stable functionality of electrical grids. This study 
acknowledges the significant variability inherent in wind and solar energy, which can affect the stability 
of power grids. This paper proposes a comprehensive model that integrates Copula sampling, K-means 
and hierarchical clustering, and Particle Swarm Optimization (PSO) algorithms to analyze and optimize 
the performance of hybrid wind-solar-pumped storage systems. This model accurately captures the 
dependency structures between wind and solar outputs, using clustering techniques to classify diverse 
energy production scenarios. Additionally, this paper employs the PSO algorithm to address a multi-
objective optimization problem, balancing both operational and environmental costs in hybrid wind-
solar-pumped storage systems. This paper findings reveal notable improvements in reducing energy 
waste due to uncertainties in renewable resource availability and achieving lower operational costs 
through the optimization of the hybrid wind-solar-pumped storage system. This research provides 
insights into the sustainable integration of renewable energies into power grids, with a particular focus 
on economic and environmental benefits. 
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1. Introduction 

The global energy consumption landscape is undergoing profound changes, prominently featuring 
wind and solar energy. Despite their environmental benefits, these sources exhibit significant variability 
and uncertainty, presenting challenges for grid stability and necessitating efficient energy management 
solutions. This variability is particularly evident under suboptimal conditions, often resulting in unstable 
power supplies and emphasizing the importance of energy storage systems [1-3]. This paper aims to 
address these challenges by analyzing and optimizing the performance of hybrid wind-solar-pumped 
storage systems [4].  

In response to the challenges posed by the volatility of renewable resources, researchers and engineers 
are actively exploring various solutions aimed at enhancing the stability and economic viability of energy 
systems. Energy storage technologies, particularly electrochemical storage, mechanical storage, and 
chemical storage, are considered among the most effective strategies. These storage systems can store 
excess electricity during times of surplus and release it during peak demand periods, effectively balancing 
supply-demand discrepancies and strengthening the grid's regulatory capacity [5]. A comprehensive 
review identifies electrochemical energy storage, hydrogen storage, and optimal system configuration as 
research hotspots. It also examines future challenges, such as managing transient shocks affecting power 
grid stability [6]. Meanwhile, the Turgut M. Gür emphasizes that despite the prevalence of pumped-
hydro storage, a diverse portfolio of electrical energy storage technologies is necessary to meet the 
varying needs of large-scale grid storage. Their review underscores the importance of mechanical, 
thermal, and advanced electrochemical storage in improving grid reliability and fully integrating 
renewable energy into the power grid [7]. Additionally, current research is investigating how to further 
optimize the operational efficiency and cost-effectiveness of storage facilities by integrating advanced 
control systems and intelligent algorithms. Cost-effectiveness analyses of wind and solar power systems 
indicate that, with technological advancements and scale economies, the costs associated with wind and 
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solar power are expected to decrease further. Moreover, by integrating with storage technologies, not 
only is their market competitiveness enhanced, but the overall reliability and flexibility of the power 
system are also significantly improved [8]. 

In addressing the economic and technological maturity challenges faced by storage systems, this 
study adopts a comprehensive approach to optimize the design and operation of wind-solar-pumped 
hydro storage systems, effectively dealing with the uncertainties and fluctuations of renewable resources. 
Firstly, the Copula method is utilized to simulate the dependency relations between wind and solar 
outputs, enhancing understanding and predictive capability of these variable energy interactions. Then, 
through K-means clustering and hierarchical clustering techniques, electricity production scenarios are 
meticulously categorized to identify and manage various patterns and characteristics in the production 
process. Additionally, the Particle Swarm Optimization (PSO) algorithm is employed for multi-objective 
system design optimization, addressing complex decision-making problems that include operational 
costs and environmental protection costs. The integration of these methods not only increases the energy 
utilization efficiency of the system but also reduces operational costs. A review of the relevant literature 
indicates that this approach is closely aligned with current academic discussions and technological 
advancements. For instance, Miao X explored operational optimization control principles and strategies 
for wind-solar complementary generation systems, providing specific strategies for optimizing electricity 
production and storage utilization [9]. Sun Y offered insights into capacity optimization methods for 
hybrid storage systems in wind-solar complementary generation systems, demonstrating the potential to 
enhance system efficiency through simulation and optimization techniques [10]. Zhou Y discussed trends 
in the development of wind and solar power generation and storage technologies, emphasizing the 
importance of cost reduction and technological maturity in enhancing market competitiveness [11]. Liang 
J highlighted the application value of an improved particle swarm optimization algorithm in the multi-
objective optimization scheduling of microgrids [12]. 

While numerous optimization methods for wind-solar complementary generation systems have been 
proposed, many remain limited in fully addressing the high uncertainties of energy outputs and the 
intricate environmental factors. Consequently, these methods are often ill-suited for managing energy 
fluctuations in extreme weather conditions. Furthermore, conventional optimization algorithms 
frequently lack efficiency and optimization capability when confronted with large-scale or complex 
problems, impeding the attainment of an optimal balance between cost, reliability, and environmental 
impact. In response, this paper introduces a novel approach integrating an enhanced PSO algorithm with 
a multi-objective optimization model. By incorporating dynamic adjustment strategies and adaptive 
parameter tuning mechanisms, the model significantly improves global search capabilities and 
convergence speed, allowing for effective mitigation of energy output uncertainties while dynamically 
adapting optimization objectives to shifting environmental and economic conditions. These 
advancements offer promising avenues for enhancing economic and stability metrics in renewable energy 
systems while contributing new perspectives and practical applications to the field. 

2. Wind-solar-pumped storage hybrid power generation system 

2.1 Power Generation System Structure  

The wind-solar-pumped storage hybrid energy system comprises four main components: the wind 
power generation unit, the solar power generation unit, the Pumped Storage System (PSS), and the 
Battery Energy Storage System (BESS). These components collaborate to provide a comprehensive 
energy supply and regulation. The wind power generation unit captures wind energy via wind turbines 
and converts it into electrical energy; similarly, the solar power generation unit utilizes photovoltaic 
panels to convert sunlight directly into electricity. These sources can supply power directly or store 
excess electricity in the PSS and BESS when production exceeds demand. 

The PSS, as a crucial hydraulic energy storage component within the system, uses surplus electricity 
during periods of low demand to pump water to a higher elevation reservoir and releases it through 
turbines to generate electricity during peak demand periods. Additionally, the BESS, as an 
electrochemical storage component, stores energy in efficient lithium-ion batteries, providing the system 
with more flexible energy management and emergency response capabilities. 

To achieve effective balancing of wind and solar outputs and maximize the utilization of these 
renewable resources, this paper introduces an Electrical-to-Storage (E2S) technology. This technology 
converts excess electricity generated by wind and photovoltaic power into stored energy within the PSS 
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and BESS. By employing this strategy, surplus wind and solar energy is preserved as stored energy during 
low-demand periods and converted back to electrical energy during peak demand, thus achieving peak 
shaving and valley filling functions within the system. 

Through efficient energy management, the optimized wind-solar-pumped storage hybrid generation 
system significantly enhances the flexibility of energy utilization. This system not only ensures the 
continuity of energy supply but also enhances grid responsiveness through precise load management. 
Compared to traditional single-source systems, this integrated system effectively combines the 
advantages of wind and solar energy, achieving temporal optimization of energy resources. This 
integrative strategy aims to enhance the complementary benefits of wind and solar resources while 
potentially improving the overall operational efficiency and reliability of the power system. It offers 
promising approaches to address energy absorption challenges. 

2.2 Wind-Solar-Pumped Storage System Optimization Model 

2.2.1 Wind Turbine (WT) Unit Model 

The power output of wind turbines is critically dependent on wind speed, which influences their 
operational efficiency through a series of thresholds [13]. Below the cut-in threshold, turbines do not 
generate electricity, resulting in zero output. Between the cut-in and rated wind speeds, output increases 
linearly with wind speed. At speeds above the rated but below the cut-out threshold, output stabilizes at 
the rated power. Above the cut-out speed, the turbines shut down, and power output drops to zero. The 
power output of a wind turbine can be mathematically represented by the following piecewise function: 

𝑃𝑃𝑤𝑤𝑤𝑤 = �

                  0,     𝜈𝜈 < 𝜈𝜈1
𝑎𝑎𝜈𝜈3 + b𝜈𝜈2 + 𝑐𝑐𝑐𝑐 + d,    𝜈𝜈1 ⩽ 𝜈𝜈 ⩽ 𝜈𝜈2
                  𝑃𝑃r,     𝜈𝜈2 < 𝜈𝜈 < 𝜈𝜈3
                  0,     𝜈𝜈 ⩾ 𝜈𝜈3

                     (1) 

Where: 𝑃𝑃𝑤𝑤𝑡𝑡 represents the output power of the wind turbine. 𝑃𝑃𝑟𝑟 is the rated power, which the turbine 
maintains as long as the wind speed is between the rated wind speed (ν2) and the cut-out wind speed (ν3). 
The terms ν1, ν2, and ν3 are the cut-in wind speed, rated wind speed, and cut-out wind speed, respectively. 
These thresholds define the operational limits within which the turbine can safely and effectively generate 
power. The coefficients a, b, c, and d are parameters that describe the polynomial relationship between 
the wind speed. 

2.2.2 Photovoltaic (PV) Power Plant Model 

In the wind-photovoltaic-water storage system model, the power of photovoltaic power generation 
needs to be predicted. The power of PV generation is [14]:  

𝑃𝑃pv = 𝑅𝑅pv𝑞𝑞pv
𝐼𝐼𝑅𝑅
𝐼𝐼STC

[1 + 𝛼𝛼(𝑇𝑇c − 𝑇𝑇stc)]                        (2) 

Where: 𝑃𝑃pv is the output power of photovoltaic; 𝑅𝑅pv  is the output power of photovoltaic under 
standard conditions; 𝑞𝑞pv is the reduction coefficient of photovoltaic, which is generally 0.8; 𝐼𝐼𝑅𝑅 is the 
actual solar radiation intensity; 𝐼𝐼STC is the solar radiation intensity under standard conditions; α is the 
temperature coefficient of the photovoltaic panel; 𝑇𝑇c is the photovoltaic panel temperature of the current 
time step; 𝑇𝑇stc is the temperature under standard conditions. 

2.2.3 Pumped Storage Model 

Pumped hydro storage, as a form of energy storage, releases stored hydraulic energy when the 
combined generation from wind and solar sources is insufficient to meet demand. This release provides 
stable energy to users and ensures the continuous and stable operation of the system. The Pumped hydro 
storage generation is: 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) = �
𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡 − 1) + 1

𝜂𝜂−
𝑃𝑃𝑠𝑠(𝑡𝑡),𝑃𝑃𝑠𝑠(𝑡𝑡) ⩽ 0

𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡 − 1) + 𝜂𝜂+𝑃𝑃𝑠𝑠(𝑡𝑡),𝑃𝑃𝑠𝑠(𝑡𝑡) > 0
                     (3) 

Where: 𝑃𝑃𝑆𝑆𝐸𝐸(𝑡𝑡) represents the remaining capacity of the hydroelectric station at time 𝑡𝑡. 𝑃𝑃𝑠𝑠(𝑡𝑡) denotes 
the charging or discharging power of the hydroelectric station at time 𝑡𝑡, where a positive value indicates 
charging and a negative value indicates discharging. 𝜂𝜂+ and 𝜂𝜂− respectively represent the charging and 
discharging efficiencies. 
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3. Uncertainty Management 

3.1 Scenario Generation 

To address the inherent uncertainties in wind and photovoltaic power outputs, this study introduces a 
scenario generation methodology that incorporates kernel density estimation and Copula functions. 
Initially, this approach utilizes non-parametric kernel density estimation to accurately model the 
distribution characteristics of extensive wind and solar power data samples. This initial fitting ensures 
the realistic representation of the dataset distributional properties. 

Upon establishing the kernel density profile, a joint distribution model for wind and solar outputs is 
constructed using Copula functions. According to Song and Li, various common Copula functions such 
as Frank, Clayton, and Gumbel were assessed using Kendall's tau and Spearman's rho correlation 
coefficients to evaluate the models’ fit and comparative effectiveness. From these, the Copula that best 
represented the goodness of fit and correlation coefficients was selected to model the joint probability 
distribution of wind and photovoltaic outputs. This optimal Copula function ensures that the generated 
scenarios not only reflect the independent nature of the energy sources but also effectively capture their 
interdependencies [15]. 

The selected optimal Copula function is then employed to generate a multitude of scenarios using the 
Monte Carlo simulation method. These scenarios represent potential combinations of output under 
varying wind speeds and solar irradiance conditions, thus providing essential data for the power system’s 
reliability analysis and planning. Through inverse transformation techniques, Copula-based samples are 
converted back into actual wind and photovoltaic output values, yielding detailed scenarios suitable for 
further analytical pursuits. 

This paper will address relevant case problems using this methodology, demonstrating high 
consistency with actual output data and affirming the model's advantage in generating scenarios with 
relevant correlations between wind and solar outputs. Furthermore, these scenarios exhibit a high level 
of accuracy in depicting the real-time outputs specific to geographical regions, thereby offering 
substantial insights for subsequent analyses on power system reliability and grid planning. 

3.2 Scenario Reduction 

Following the generation of wind and solar power output scenarios, the sheer number of scenarios 
can become computationally burdensome when directly applied to optimization and decision-making 
processes. To address this, this paper explores two different scenario reduction techniques: hierarchical 
clustering and K-means clustering, aiming to effectively reduce the number of scenarios while preserving 
essential information. 

3.2.1 Hierarchical Clustering 

Hierarchical clustering is a method that merges individual data points into clusters step by step. Its 
principal concept involves building a hierarchy of clusters either by progressively merging smaller 
clusters into larger ones until a single cluster remains, or by starting with one cluster containing all data 
points and successively splitting it until each cluster contains only one data point. Hierarchical clustering 
does not require a predetermined number of clusters. The general process is outlined as follows [16]: 

1) Initialization: Treat each point as a cluster. 

2) Merging: Find the two closest clusters and merge them. 

3) Repetition: Repeat the merging step until all objects are grouped into a desired number of clusters 
or a single cluster is left. 

The measure of distance or similarity typically used is the Euclidean distance. If the centers of clusters 
𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑗𝑗 are 𝜇𝜇𝑖𝑖 and 𝜇𝜇𝑗𝑗 respectively, the distance 𝐷𝐷 (𝐶𝐶𝑖𝑖, 𝐶𝐶𝑗𝑗) can be calculated as:  

𝐷𝐷�𝐶𝐶𝑖𝑖 ,𝐶𝐶𝑗𝑗� =∥ 𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑗𝑗 ∥                                (4) 

3.2.2 K-means Clustering 

K-means is a partitioning method that assigns data points to K clusters in such a way that the variance 
within each cluster is minimized. The steps of the K-means clustering algorithm are as follows [17]: 

1) Select Initial Centers: Randomly pick K data points as the initial cluster centers. 
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2) Assign Data Points: Assign each data point to the closest cluster center. 

3) Update Centers: Recalculate the center of each cluster, typically using the mean of all points in the 
cluster. 

4) Repeat: Repeat steps 2 and 3 until the cluster centers no longer change. 

The calculation formula for the variance within a cluster is: 

𝑆𝑆𝑆𝑆𝑆𝑆 = ∑  𝑘𝑘
𝑖𝑖=1 ∑  𝑥𝑥∈𝐶𝐶𝑖𝑖 ∥ 𝑥𝑥 − 𝜇𝜇𝑖𝑖 ∥2                            (5) 

Where: 𝑥𝑥 represents a data point, 𝜇𝜇𝑖𝑖 is the center of cluster 𝐶𝐶𝑖𝑖, and 𝑆𝑆𝑆𝑆𝐸𝐸 denotes the sum of squared 
errors within the clusters. The objective of the K-means algorithm is to minimize 𝑆𝑆𝑆𝑆𝐸𝐸. 

In the analysis of wind turbine and photovoltaic power output scenarios, hierarchical clustering was 
applied to reduce and organize the data. The hierarchical clustering technique systematically groups data 
points into clusters to identify typical scenarios in the power output. As shown in Figure 1. The wind 
turbine output scenarios illustrate variations in wind power generation over time, reflecting diverse 
conditions and operational patterns. Meanwhile, the photovoltaic power output scenarios capture 
variations in solar energy output throughout the day. 

 
Figure 1: Reduction of Typical Scenarios Using Hierarchical Clustering 

In addition to hierarchical clustering, the k-means clustering method was also employed to reduce the 
typical scenarios of wind and photovoltaic power outputs. This approach involves partitioning the data 
into a predefined number of clusters based on similarity, thereby reducing the total number of scenarios 
while retaining key characteristics. Figure 2 demonstrates the results of applying k-means clustering to 
reduce typical photovoltaic power scenarios and the wind turbine output scenarios, clearly highlighting 
patterns in solar power generation throughout the day. This method provides an effective way to 
categorize and manage scenarios for further analysis and optimization. 

 
Figure 2. Reduction of Typical Scenarios Using K-means Clustering 

3.2.3 Method Comparison and Selection 

K-means clustering displayed superior computational efficiency, providing consistent clustering 
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outcomes with reduced processing times, especially when handling large datasets. This efficiency is 
crucial in scenario reduction, where quick data processing is essential. The results, shown in Figure 3 for 
wind power output and Figure 4 for photovoltaic output, are illustrated by the blue lines and demonstrate 
less variability and tighter groupings than hierarchical clustering, indicating improved stability and 
reliability in scenario generation. 

In contrast, hierarchical clustering—represented by the red lines in the graphs—exhibited higher 
sensitivity to noise and outliers, leading to greater inconsistency across different scenarios. Although 
hierarchical clustering offers a detailed hierarchical structure valuable for understanding complex data 
relationships, its high computational complexity hinders its practical application in large-scale energy 
scenario reduction.  

Overall, the k-means clustering method is particularly advantageous for managing and simulating 
renewable energy outputs due to its ability to handle large volumes of data with consistent output quality. 

 
Figure 3: Comparison of Wind Power Output Using K-means and Hierarchical Clustering 

 
Figure 4: Comparison of Photovoltaic Output Using K-means and Hierarchical Clustering 

4. Multi-objective Optimization Model 

4.1 Objective Functions 

In striving for an integrated system that maximizes the complementary characteristics of wind, solar, 
and hydro storage resources while also enhancing the consumption rate, the objective is to minimize both 
operational costs and environmental protection costs. The objective functions are outlined as follows: 

1) System Operational Costs 

The operational cost function is designed to quantify the total expenses involved in the regular 
operation of the integrated wind, solar, and pumped hydro storage system. This includes costs associated 
with generation, maintenance, and the necessary adjustments for balancing power supply and demand 
across the system. The formula for the operational cost is generally represented by: 

𝑓𝑓1 = ∑  𝑇𝑇
𝑡𝑡=1 𝐶𝐶g(𝑡𝑡)                                 (6) 

�
𝐶𝐶g(𝑡𝑡) = 𝐶𝐶b(𝑡𝑡) + 𝐶𝐶s(𝑡𝑡)
𝐶𝐶b(𝑡𝑡) = 𝑐𝑐(𝑡𝑡)𝑃𝑃b(𝑡𝑡)
𝐶𝐶s(𝑡𝑡) = 𝑐𝑐s(𝑡𝑡)𝑃𝑃s(𝑡𝑡)

                            (7) 

Where: the terms Cg (t) and 𝐶𝐶𝑏𝑏(𝑡𝑡) represent the total cost of interactions between the system and the 
main grid and the maintenance cost of the energy storage system at time 𝑡𝑡, respectively. The variable Pb 
(t) denotes the power output of the hydroelectric station at the corresponding time 𝑡𝑡. Furthermore, Ps (t) 
and Pb (t) indicate the power sold to and purchased from the main grid by the system at time 𝑡𝑡, 
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respectively. The unit prices at which electricity is bought and sold are denoted by 𝐶𝐶𝑏𝑏(𝑡𝑡) and Cs(t). 

2) Environmental Protection Costs 

The environmental cost function aims to account for the external costs incurred due to environmental 
impacts such as emissions, resource depletion, or other ecological impacts associated with the operation 
of the renewable energy system. These costs are typically modeled as a function of the energy generated, 
where the goal is to minimize the negative environmental impacts per unit of energy produced. The 
formula can be represented as: 

𝑓𝑓2 = ∑  𝑇𝑇
𝑡𝑡=1 𝐶𝐶𝑔𝑔.𝑒𝑒(𝑡𝑡)                                  (8) 

𝐶𝐶𝑔𝑔.𝑒𝑒(𝑡𝑡) = ∑  𝑛𝑛
𝑘𝑘=1 �𝐶𝐶𝑘𝑘𝛾𝛾grid,𝑘𝑘�𝑃𝑃b(𝑡𝑡)                          (9) 

Where: 𝐶𝐶𝑔𝑔.𝑒𝑒(𝑡𝑡)  represents the pollution treatment cost of the large power grid; 𝛾𝛾grid,𝑘𝑘  is the 
emission of type 𝑘𝑘 pollutants produced by the operation of the large power grid; 𝐶𝐶𝑘𝑘 is the cost coefficient 
for treating type 𝑘𝑘 pollutants. 

4.2 Objective Function of the Scheduling Model 

The objective function of the scheduling model is to minimize the total cost, which includes not only 
the operational costs but also the environmental protection costs. Therefore, the objective function is 
defined as follows: 

𝑍𝑍 = 𝑓𝑓1 + 𝑓𝑓2                                 (10) 

Where: 𝑍𝑍 represents the total cost of the microgrid, consisting of the sum of the microgrid's 
operational costs and environmental protection costs. 

4.3 Constraints 

Power balance constraint:    

𝑃𝑃𝑝𝑝𝑝𝑝(𝑡𝑡) + 𝑃𝑃𝑤𝑤𝑤𝑤(𝑡𝑡) + 𝑃𝑃grid(𝑡𝑡) + 𝑃𝑃b(𝑡𝑡) = 𝑃𝑃L(𝑡𝑡)                 (11) 

Power transmission constraints of the grid: 

𝑃𝑃grid𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) ⩽ 𝑃𝑃grid(𝑡𝑡) ⩽ 𝑃𝑃grid𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)                       (12) 

Pumped-storage hydroelectricity system constraints 

�𝑃𝑃b
𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) ⩽ 𝑃𝑃b(𝑡𝑡) ⩽ 𝑃𝑃b𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)

𝑃𝑃𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) ⩽ 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) ⩽ 𝑃𝑃𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)
                   (13) 

Where: 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) and 𝑃𝑃grid𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) represent the upper and lower transmission power limits of the grid, 
respectively; 𝑃𝑃b𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) and 𝑃𝑃b𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) denote the upper and lower output limits of the energy storage 
system, where a positive value indicates power input and a negative value indicates power output; 
𝑃𝑃𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) and 𝑃𝑃𝑃𝑃𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) are the upper and lower limits of the energy storage capacity at time t. 

5. Model Solution 

The wind-solar-pumped storage systems is characterized by high-dimensionality, non-linearity, and 
multiple constraints [18]. Compared to other algorithms, the PSO algorithm demonstrates a stronger 
optimization capability. Additionally, it is more readily applicable to solving optimization problems. 
Therefore, this paper proposes the use of the PSO algorithm to solve the wind-solar-hydro storage system.  

The performance of the PSO algorithm is influenced by the selection of its parameters. In traditional 
PSO algorithms, the inertia weight and learning factors are fixed, making it prone to becoming trapped 
in local optima [19]. To address this drawback, the PSO algorithm has been improved from two aspects: 
the inertia weight and the learning factors. The improved strategy is as follows [20]: 

𝑤𝑤 = 𝑤𝑤e + (𝑤𝑤s−𝑤𝑤e)(𝑀𝑀𝑀𝑀−𝐼𝐼𝐼𝐼)
𝑀𝑀𝑀𝑀

                               (14) 
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⎩
⎨

⎧𝑐𝑐1 = 𝑐𝑐1s + (𝑐𝑐1e − 𝑐𝑐1s)
𝐼𝐼𝑇𝑇2

𝑀𝑀𝐼𝐼2

𝑐𝑐2 = 𝑐𝑐2s + (𝑐𝑐2e − 𝑐𝑐2s)
𝐼𝐼𝑇𝑇2

𝑀𝑀𝐼𝐼2

                              (15) 

Where: 𝐼𝐼𝑇𝑇 represents the current iteration number; 𝑀𝑀𝐼𝐼 is the total number of iterations; 𝑤𝑤s and 𝑤𝑤e 
are the initial and final values of the inertia weight factor, respectively; 𝑐𝑐1s and 𝑐𝑐1e are the initial and 
final values of 𝑐𝑐1; 𝑐𝑐2s and 𝑐𝑐2e are the initial and final values of 𝑐𝑐2 

6. Result Analysis 

Based on the wind farms, photovoltaic power stations, and hydro storage plants in a specific region 
of Northwestern China, a combined power generation system is constructed to test the feasibility of the 
model and algorithm proposed in this paper. The operational parameters and costs of each component 
are presented in Table 1. The pollutant emission coefficients and associated costs for each component 
can be found in Table 2 [21]. The parameters for the pumped storage are detailed in Table 3. 

Table 1: Unit parameters 

Parameter Name Wind Turbine Photovoltaic Grid 
Maximum Power/MW 100 50 30 
Minimum Power/MW 0 0 -30 

Table 2: Coefficient and cost of pollutants 

Pollutant 
Type 

Treatment 
Cost (¥/kg) 

Emission Coefficient (g/kWh) 

Wind Turbine Photovoltaic Grid Pumped 
Storage 

𝐶𝐶𝑂𝑂2 0.023 0 0 889 0 
𝑆𝑆𝑂𝑂2 6 0 0 1.8 0 
𝑁𝑁𝑂𝑂𝑥𝑥 8 0 0 1.6 0 

Table 3: Pumped Storage parameters 

Type Parameter Value (kW) 

Pumped Storage Maximum Input Power/kW 150 
Maximum Output Power/kW 150 

The data from the 15 typical scenarios of wind and solar power output, along with typical daily load 
data, were input into the optimization configuration model constructed in Section 4. The PSO algorithm 
was then used to solve the model, with settings including a population size of 100, an archive size of 100, 
a total of 100 iterations, an inflation rate of 0.1, and a mutation rate of 0.1. The solution yielded the Pareto 
frontier, as shown in Figure 5. Each point on the graph symbolizes a solution in the Pareto optimal set, 
meaning that improving one objective requires compromising the other. The pattern shows a clear inverse 
relationship between operational and environmental costs, providing decision-makers with valuable 
insights into balancing these two aspects when designing and managing the system. 

 
Figure 5: The solution yielded the Pareto frontier 
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The objective function of the proposed model is to minimize the overall system cost, including both 
operational and environmental protection costs. To understand the impact of varying objective functions 
on system optimization, Figure 6 presents three distinct scenarios that show the dispatch results under 
different optimization goals: 

1) Figure 6(a) depicts the dispatch results when minimizing operational costs. Here, the use of 
pumped storage (blue) fluctuates significantly, while the grid (purple), wind turbines (yellow), and 
photovoltaic (orange) outputs remain relatively stable. This demonstrates that maximizing the utilization 
of pumped storage effectively minimizes operational costs. 

2) Figure 6(b) shows the dispatch scenario under minimized environmental protection costs. In this 
case, the grid (purple) and pumped storage (blue) show larger variations, indicating higher grid 
import/export activity. This approach leverages the grid and storage to minimize environmental impacts, 
despite higher costs. 

3) Figure 6(c) represents the dispatch results when the objective is to minimize total costs. This 
combined approach balances the trade-offs between operational and environmental costs, leading to 
moderate variations in all energy sources. 

These comparisons reveal that the choice of objective function has a significant impact on the power 
system's dispatch strategy. Each optimization goal leads to different usage patterns of pumped storage, 
photovoltaic, wind turbine, and grid systems, ultimately offering insight into how best to configure the 
power system to meet specific economic and environmental targets. 

 
(a) Objective Function – Operational Cost 

 
(b) Objective Function – Environmental Protection Cost 
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(c) Objective Function – Total Cost 

Figure 6: Scheduling results under different objective functions 

To assess the discrepancy between the prediction model and actual values, a comparison was made 
between actual absorbed power and predicted wind and photovoltaic power outputs. Figure 7 displays 
these results:  

1) Photovoltaic Output: The graph on the left shows the comparison between actual (blue line) and 
predicted (red line) photovoltaic power. The predicted values are generally higher than the actual values, 
particularly during the peak hours around noon. This indicates the model overestimated the photovoltaic 
output under these specific conditions. 

2) Wind Turbine Output: The graph on the right compares actual (blue line) and predicted (red line) 
wind turbine output. The predicted values again exceed the actual values, especially around midday, 
suggesting the model tends to overestimate wind power output as well. 

 
Figure 7: Comparison results for actual and predicted 

Employing the fuzzy multi-attribute decision-making approach within the PSO algorithm enables the 
calculation of multi-attribute decision indices for various scenarios. This facilitates the selection of the 
best compromise solution, which is presented in Figure 8. In this solution, the pumped storage system 
exhibits substantial variability as it helps to balance the power supply by storing excess energy and 
providing additional power when required. The grid and wind turbine outputs are relatively stable, while 
the photovoltaic output follows the characteristic daily cycle. 
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Figure 8: Compromise solution 

7. Conclusion  

This paper aims to harness the complementary effects between wind power and pumped-storage 
hydroelectricity, enhancing the intake of new energy sources in regions abundant with wind and solar 
resources. By integrating wind turbines, photovoltaics, and pumped-storage hydroelectricity, a Wind-
Solar-Pumped Storage Power Generation System (WSPSPGS) was established. The system addresses 
the uncertainty in the prediction error of wind and solar output fluctuations through uncertainty modeling. 
Based on typical scenarios, an optimization configuration model for the WSPSPGS was constructed with 
the objectives of minimizing operational costs and environmental costs. Theoretical research and the 
results from numerical examples lead to the following conclusions: 

1) The study demonstrates that employing the Copula function to model uncertainties in wind and 
solar outputs, followed by using the k-means clustering method for scenario reduction, significantly 
minimizes the impact of variability on optimization results. 

2) Utilizing pumped-storage technology in combination with wind and solar power stations allows 
for efficient energy time-shifting, reducing both operational and environmental costs while capitalizing 
on the complementary advantages of these generation systems. 

3) The WSPSPGS model provides a reliable framework for grid planning by offering accurate 
representations of real-time outputs across various geographical regions. This enables better management 
of energy fluctuations, leading to improved power system stability and promoting sustainable integration 
of renewable energy sources. 
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