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Abstract: Simultaneous Localization and Mapping (Simultaneous Localization and Mapping) 

technology refers to the technology of self-localization and construction of environmental maps based 

on visual sensors. It plays an important role in the field of autonomous mobile robots and autonomous 

vehicle navigation. This article introduces the classic framework and basic theory of visual SLAM, as 

well as the common methods and research progress of each part, enumerates the landmark 

achievements in the visual SLAM research process, and introduces the latest ORB-SLAM3. Finally, the 

current problems and future research directions of visual SLAM are proposed. 
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Introduction 

With the continuous improvement of human life science and technology, mobile robots capable of 

autonomous navigation appear more and more frequently in our lives. The key to autonomous 

navigation technology of mobile robots lies in sensing the environment, positioning, building maps and 

path planning. SLAM technology is the technology of simultaneous positioning and map construction. 

The main research is to estimate one's own position and construct a map of the surrounding 

environment while moving in an unknown environment. It plays a very important role in the 

autonomous navigation of mobile robots. Because visual sensors can provide richer information and are 

inexpensive, the research on visual SLAM has become a research hotspot in the field of robotics and 

computer vision in the past two decades. Visual SLAM technology also shows great application value 

in market applications. 

This article mainly introduces the classic framework and research content of visual SLAM 

technology, discusses recent research progress at home and abroad, and analyzes the problems to be 

solved in visual SLAM and future research trends. 

1. Visual SLAM Technology 

1.1. Classic Framework 

After twenty years of research, the visual SLAM framework has been basically mature, including 

five steps of sensor data reading, visual odometry, back-end nonlinear optimization, loop detection and 

mapping [1], such as shown in Figure 1 

 

Figure 1: Visual SLAM technology framework diagram 

Among them, the sensor data reading mainly uses the camera to collect image information and 

preprocess it. Visual Odemetry is also known as the front-end, the task is to use neighboring images to 

estimate camera movement and local maps. Optimization, also known as the back-end, is used to 

receive the camera pose and loop detection information estimated by the front-end, and optimize it to 

obtain a global motion trajectory and map. Loop Closure Detection is also called closed loop detection. 

The task is to determine whether the robot has returned to the origin and solve the problem of time drift. 

Mapping is to use the previously estimated motion trajectory to construct a suitable map according to 
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the application requirements. 

The basic principle of the SLAM problem 

Assuming that the robot observes a certain mark point y at the actual position x, the observation 

data is z, and the motion input is u, then the mathematical equation to express the SLAM problem is: 

 

Among them, v and w are observation noise. 

1.2. The Main Research Content of Visual SLAM  

1.2.1 Visual Odometry 

The visual odometer estimates the pose of the camera based on the information in the adjacent 

images. The algorithms currently used can be divided into two categories: feature point method and 

direct method. 

1) Feature point 

The step of the feature point method is to first extract the appropriate feature points from the image. 

These feature points can be matched in adjacent images. Then, according to the geometric relationship 

of the matched point pairs, estimate what the camera does when shooting these adjacent images. sports. 

Feature points are representative points in the image. Commonly used feature points include Harris 

corner points [2], FAST corner points [3], GFTT corner points (Shi-Tomasi corner points)[4] and so on. 

However, these corner points do not have scale invariance[5] and cannot meet the matching in the case 

of camera movement, so the researchers designed the famous SIFT[6], SURF[7], ORB[8] feature 

points. 

Among them, the SIFT feature considers the changes in image illumination, scale, and rotation 

caused by camera motion, and has the advantages of distinguishability, rotation invariance, and scale 

invariance [9]. However, because the calculation dimension is too high, it occupies a lot of computing 

resources. The SURF feature is an acceleration of the SIFT feature (3 to 7 times). ORB (Oriented FAST 

and Roated BRIEF) feature is the best feature point applied at this stage. According to the author's test 

in the literature[8], to extract 1000 feature points in the same image, the time taken for ORB is 15.3ms, 

the time taken by SURF is 217.3ms, and the time taken by SIFT is 5228.7ms. It can be seen that the 

ORB feature not only guarantees rotation and scale invariance, but also guarantees good performance. 

However, point features also have their limitations. For example, it is difficult to extract enough 

feature points in a weak texture environment, so Lu [9] et al. proposed to introduce line features into 

visual odometry, and Pumarola et al. proposed PL-SLAM [10]. The accuracy of ORB-SLAM is 

improved by adding line features. Concha et al. introduced super-pixel features into MonoSLAM [11], 

which solved the problem of insufficient point features in weak texture environments. 

After obtaining the matched point pairs, the camera pose estimation can be carried out. According 

to the different cameras used, there are 3 solutions for pose estimation: When using a monocular 

camera, since there are only 2D coordinates, use the method of epipolar geometry; when using When 

the binocular camera or RGB-D camera has 3D coordinates, use the Iterative Closest Point (ICP) 

method to solve; when the obtained coordinates are a set of 3D and a set of 2D, use the PnP method to 

solve[1]. 

Disadvantages of feature point method: 

The extraction of feature points is very time-consuming, ignoring most of the image information 

except for the feature points, and the number of feature points is small in a weak texture environment. 

2) Direct method 

In order to overcome the shortcomings of the feature point method, researchers have proposed a 

direct method to estimate camera pose and motion based on pixel brightness information. New visual 

SLAMs such as SVO [12], LSD-SLAM [13], and DSO [14] have appeared. algorithm. 
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The direct method evolved from the optical flow method, based on the gray-level invariance 

assumption [1] (that is, the pixel gray value of the same spatial point is unchanged in images of 

different viewing angles), and the camera pose is the optimization variable, Solve the optimal camera 

pose by minimizing the photometric error. According to the number of pixels used, it can be divided 

into sparse direct method, semi-dense direct method and dense direct method. 

SVO[11] proposed by Forster et al. is a semi-direct visual odometer, which combines the feature 

point method and the direct method, and uses the feature point block to match the camera pose 

transformation, and obtains a faster processing speed. In 2017, the author expanded the functions of 

multi-robot collaboration and IMU inertial devices on its basis [15]. 

1.2.2. Optimization 

Through the processing of the visual odometer, a local error map and motion track can be obtained. 

In order to reduce the accumulated error and obtain a global map, a back-end optimization is required. 

The essence of back-end optimization is to find the optimal solution of Equation 1. According to 

whether Markov property is considered, the back-end optimization methods can be divided into two 

categories. One is the filtering method. It is believed that the state at this moment is only related to the 

state at the previous moment, including the extended Kalman filter (EKF), Particle Filter (PF), etc., the 

other is a non-linear optimization method, considering that the state at this moment is related to the 

state at all previous moments, including BA (Bundle Adjustment), pose map method, graph 

Optimization, etc., are currently the mainstream solutions to SLAM problems. 

1) Filtering method 

The early SLAM problem mainly used the filtering method. The classical Kalman filter is not 

suitable for the actual navigation scene of nonlinear and non-Gaussian [16], so Smith et al. first 

proposed the application of extended Kalman filter in the literature [17] The theory of SLAM, 

Moutarlier et al. put it into practice [18]. Since EKF requires the system to be approximately linear and 

continuous, it is easy to cause cumulative errors for nonlinear systems. Then Murphy proposed SLAM 

algorithm based on particle filter [19]. PF-SLAM uses weighted random samples to approximate the 

system state [16], which has a great advantage when dealing with nonlinear systems. However, the 

particle filter takes up a lot of space to store a large number of particles, which limits its application in 

real-time large-scale mapping [20]. 

2) Non-linear optimization method 

The more commonly used nonlinear optimization methods are the Gauss Newton method and the 

Levenberg-Marquardt method, and the graph optimization method is the product of combining 

nonlinear optimization with graph theory [1]. At present, the open source nonlinear optimization 

libraries include Ceres and g2o [21], which are widely used in nonlinear optimization problems. Lu et 

al. first proposed the SLAM method based on graph optimization, using nonlinear least squares to solve 

[22]. Duckett et al. proposed an optimization method based on relaxation and proved that the method 

must be able to find the optimal solution [23]. Olson et al. used the stochastic gradient descent method 

[24], and Grisetti et al. used a tree structure to improve the update efficiency of the pose [25]. Aiming 

at the problem of robot pose in non-Euclidean space, Grisetti et al. proposed to optimize in the 

manifold to improve the accuracy of the algorithm [26]. 

1.2.3. Loop Closure Detection 

Since the visual odometer estimates the robot's movement and map based on neighboring images, 

its errors will inevitably accumulate over time. The task of loop detection is to detect that the robot has 

passed through the same place through sensor data, provide data for the back end, eliminate 

accumulated errors, and build a globally consistent trajectory and map [1], which is conducive to the 

correct operation and reconfiguration of the system over a long period of time. Positioning work. 

Sivic et al. applied the bag-of-words model to closed-loop detection technology [27]. The basic idea 

is to cluster the feature points extracted from the image with the k-means algorithm into a word 

containing several "words", and then calculate the similarity with the target image based on the words 

contained in the tested image. Set a similarity threshold. If the similarity between the current image and 

a certain key frame is higher than 3 times the similarity between the current image and the previous key 

frame [1], it is considered that there may be a loop. 

It can be seen that finding suitable image features is the basis of loop detection. In order to cope 

with loop detection in complex environments, researchers have conducted more extensive explorations. 
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Oliva proposed the Gist descriptor [28], which uses Gabor filters to extract information from different 

directions and frequencies. Chen et al. first proposed the use of convolutional neural network (CNN) 

for location recognition [29], which opened the door for deep learning to be applied to SLAM 

closed-loop detection. Later, Arandjelovic [30], Lopez-Antequera [31], Naseer[32] and others 

fine-tuned the design of CNN to make it more suitable for closed-loop detection. 

1.2.4. Mapping 

There are many forms of maps. According to whether they accurately describe the location of 

objects in the map, they can be divided into two types: metric map and topological map. Because the 

topological map and the multi-reaction are the relationship between objects, which reduces the 

requirement for precise positional relationship, and is not suitable for the application research of SLAM 

[1], the mapping module mainly constructs the metric map. Among them, a map with only landmark 

points is called a sparse map, which can meet the needs of positioning; the corresponding one expresses 

all the objects seen by the camera, and can support the system to realize the functions of navigation, 

obstacle avoidance, and map reconstruction. In augmented reality, which includes the interaction 

function between people and the map, it is necessary to construct a further semantic map. 

In the construction of dense maps, Forster et al. proposed the method of epiline search and block 

matching [33] to find the position of the pixel in different images, and use the depth filter [34] to 

determine the position of the point. However, in monocular vision or binocular vision, block matching 

is highly dependent on the texture of the object, and mismatching is prone to occur, which affects the 

mapping effect. Civera et al. proposed the concept of inverse depth [35] to be applied to SLAM, which 

achieved good numerical stability and was widely used in the existing SLAM framework [36]. 

After the appearance of the Kinect camera, SLAM research based on RGB-D has become a hot 

topic. Henry et al. first proposed the RGB-D SLAM framework [37], and used RGB-D images for 

three-dimensional reconstruction. The point cloud map can be easily generated from the RGB-D image, 

and the map can be displayed quickly. Then Poisson reconstruction [38] and surfel reconstruction [39] 

appeared, which made the map display better. 

Point cloud maps have the disadvantages of large scale, waste of resources, and inability to handle 

moving objects. The octree map [40] can solve these problems. Divide the three-dimensional squares 

into eight evenly, and divide them layer by layer to form an octree. The octree structure is shown in the 

figure. In addition to being easy to compress and update, Burri et al. proposed a navigation method 

based on the octree [41] by using the feature of the octree to query the occupied points, which 

improved the navigation efficiency. 

2. Several Schemes of Current SLAM research 

MonoSLAM proposed by Davison et al. has a milestone significance in visual SLAM research. 

This is a monocular vision system, the back end adopts EKF method, can construct sparse map online. 

But the disadvantage is that it is easy to cause accumulated errors, the amount of calculation is large, 

and the application scenarios are small. PTAM was proposed by Klein and others, which created a 

dual-threaded structure for tracking and mapping, which had a very important influence on the later 

SLAM framework. And PTAM uses nonlinear optimization methods for the first time in the back-end, 

making researchers realize the huge potential of nonlinear optimization in the back-end of SLAM. 

PTAM also has the shortcomings of small application scenarios and easy tracking loss. ORB-SLAM 

[36] was first proposed by Mur-Artal et al. in 2015. It inherited and expanded the two-threaded 

structure of PTAM to a three-threaded structure. The effect is much better than that of PTAM. 

ORB-SLAM started as a monocular vision SLAM based on ORB features, and later ORB-SLAM2[42] 

expanded to binocular cameras and RGB-D cameras, which greatly broadened the scope of application. 

Due to the rotation invariance and scale invariance of ORB features, the system can still perform loop 

detection in a large range of motion. In 2020, ORB-SLAM3[43] was released, which expanded the 

IMU fast initialization algorithm based on maximum posterior estimation, which greatly improved the 

accuracy of the algorithm; the SLAM positioning algorithm based on multiple sub-maps was used for 

relocation and map fusion; support pinholes Camera model and fisheye camera model. It is currently 

the most accurate and comprehensive SLAM system. 
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3. Problems and Development Trends 

3.1. Problems 

1) Feature dependence 

Visual SLAM has a very serious dependence on environmental features. Feature extraction and 

matching in weak texture environments, loop detection, etc. will all be affected by it. To solve this kind 

of problem, you can introduce more advanced features such as line features, surface features, super 

pixel features; another method is to add other types of sensors such as laser or IMU, which can 

combine the features of several different sensors to achieve higher Precision and robustness. 

2) Real-time 

SLAM is called real-time positioning and mapping technology, and real-time is always an issue that 

needs to be considered. This is related to the speed at which the robot completes tasks in an unfamiliar 

environment. To solve the real-time problem, it is necessary to consider the complexity of the algorithm, 

as well as the problem of reducing the computational complexity of large-scale scenes by means of 

sub-maps. 

3.2. Future Development Trends 

1) Deep learning 

As an equally popular research topic in recent years, deep learning has played an increasingly 

important role in the field of image processing, and each step of visual SLAM involves image 

processing. It can be seen that deep learning is also promising in visual SLAM. DeepVO [44] proposed 

by Wang et al. in 2017 is widely used in visual odometry. Lin Zhaohao et al. proposed a loop detection 

algorithm based on Mask_R_CNN [45], and merged with the traditional BoW algorithm, and achieved 

good results. In the construction of semantic map, Zhang Ting proposed to bring deep learning 

semantic segmentation into ORB-SLAM [46] to improve the positioning accuracy in a dynamic 

environment. 

2) Multi-sensor fusion 

Nowadays, there are various types of sensors that can be used in SLAM, including monocular, 

binocular, pinhole, fisheye, depth camera and laser, IMU, etc. How to better integrate these sensors to 

improve the accuracy and robustness of SLAM systems has become a recent trend Hot spot. The 

general method is by setting a sliding window. Methods were proposed to use deep learning to extract 

sensor features. In ORB-SLAM3, the IMU fast initialization based on maximum posterior estimation is 

used, so that the accuracy of the monocular and binocular inertial system is greatly improved compared 

with other methods. 

3) Multi-robot collaboration 

Multi-robot collaborative visual SLAM can overcome the problem of single viewing angle in 

indoor environment. The multi-drone cooperative SLAM system proposed by Schmuck[47] et al. uses a 

server to connect multiple drones, so that each drone can see the perspective of other drones, 

effectively improving a single drone. The human-machine trajectory has increased the scale of map 

construction. 
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