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Abstract: In the intricate environment of urban centers, autonomous vehicles encounter multifaceted 
perceptual challenges. Traditional 2D object detection methods fail to accurately provide the feature 
information of 3D objects, leading to the failure of object identification and behavior prediction. The 
PETR algorithm improves this problem through multi-vision 3D object detection. This thesis is dedicated 
to optimizing the PETR algorithm from three perspectives to elevate the performance and efficacy of 3D 
object detection. These optimizations include refining the network backbone, adjusting image input 
parameters, and enhancing the training parameters such as the learning rate, gradient clipping 
parameters, and the choice of optimizer. Utilizing the NuScenes Dataset for model training, the final 
evaluation and comparison of model performance are mainly based on mAP metric. 
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1. Introduction 

As autonomous driving technology advances rapidly, it is particularly important to accurately 
perceive the surrounding environment of vehicles and detect objects. Autonomous driving has numerous 
hidden issues and risks to be addressed. In the domain of 3D imaging, multi-view 3D object detection 
stands as a pivotal part.  

Traditional 2D object detection methods fail to accurately provide the feature information of 3D 
objects, leading to the failure of object identification and behavior prediction. Multi-view 3D object 
detection, however, offers an effective solution, enabling vehicles to perceive the surrounding 
environment more accurately. Multi-view object detection captures environmental information from 
various aspects, thereby generating a more comprehensive and precise 3D object model. This means that 
the detection system can still accurately detect and recognize objects even when multiple objects cover 
each other. Furthermore, through the fusion of multiple views, a 3D coordinate system can be established, 
integrating 2D features from different angles with 3D information. As a result, it can track and predict 
target behaviors more accurately during real-time object detection.  

Nevertheless, the vast amount of data involved in multi-view 3D object detection demands 
sophisticated algorithms and models capable of efficiently handling and analyzing extensive image 
datasets. An applicable feature extraction model (backbone) is essential for the achievement of behavior 
prediction and object classification. To overcome these problems, this thesis will explore deep learning-
based network architectures and optimization techniques to enhance the performance and efficacy of 3D 
object detection.  

Leveraging a multi-view approach and PETR algorithm, experiments and optimizations on the 
NuScenes dataset for 3D object detection based on PETR (Position Embedding Transformation) are 
carried out. By extracting features from multi-view 2D images with a backbone, and fusing them with 
the 3D spatial features of the object, it allows vehicles to acquire the capability for 3D perception. The 
thesis aims to identify the optimal backbone for the PETR algorithm and optimize its model parameters 
to improve the accuracy and performance of object detection.  

2. Problem Analysis 

In the intricate environment of urban centers, autonomous vehicles encounter multifaceted perceptual 
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challenges. It is necessary to focus on multiple dynamic and static objects at the same time, including 
other vehicles, pedestrians, traffic signals, and unexpected obstacles (such as bicycles or scooters). In 
such a complex situation, traditional 2D vision system are prone to visual blindness, which may result in 
misjudgments and omissions. For instance, a pedestrian crossing the road from the side of the vehicle 
may not be captured or analyzed accurately by a 2D camera. Such visual blindness can cause severe 
traffic safety issues.  

The forthcoming sections will analyze the occlusion challenges inherent in object detection and the 
limitations of traditional 2D detection systems in accurately localizing and predicting object behavior. 

2.1. Occlusion Issues 

Occlusion issues can be divided into two categories: 

1) Inter-class occlusion, where the target is obscured by objects of a different class. For example, a 
pedestrian walking a dog may have their lower body partially hidden by the dog. 

2) Intra-class occlusion, where the target object is obscured by objects of the same class. In our case, 
it means the pedestrian is hidden by another person.  

 
Figure 1: Occlusion Issues 

Both intra-class and inter-class occlusions pose challenges for traditional 2D vision systems. The first 
issue arises in pedestrian detection, where individuals standing close to each other are often misjudged 
as one person (in Figure 1, the green boxes represent the ideal correct prediction boxes, while the red box 
refers to the actual prediction box). When the prediction boxes of two similar objects are in close 
proximity, one may be suppressed by NMS, leading to omissions in pedestrian detection. Adjusting the 
NMS threshold has significant limitations when solving such issues. A low threshold may lead to 
omissions, while a high threshold might cause false positives as well. Additionally, different scenarios 
may require different thresholds. Most people suggest to solve this problem by optimizing the loss 
function. However, a multi-view approach can offer a more straightforward solution. Even if occlusion 
occurs in one direction, multi-view approach can prevent omissions through information from other 
angles[1].  

The second issue pertains to the inability of 2D vision to effectively obtain depth information and 
accurately determine the distance. In contrast, 3D vision and multi-view cones can generate a 3D space 
to extract depth information and accurately generate a 3D bounding box.  

Taking Centernet (a 2D vision algorithm) as an example, the deficiencies in various occlusion 
scenarios (ABCD) are discussed as follows: 

A: The object is at the edge of the image and partially visible 

2D vision often fails to detect the object when it is at the edge of the image and partially visible. As 
shown in Figure 2, the cars circled in red are undetected.  
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Figure 2: Partially visible cars undetected by 2D vision 

How multi-view 3D vision systems address this issue: Multi-view detection is adopted to identify the 
complete object.  

B: Omissions: The object is far away with small size in the image 

As shown in Figure 3, the distant cars circled in red are undetected.  

 
Figure 3: Distant cars undetected by 2D vision 

C: Omissions: Multiple targets are clustered together. 

As shown in Figure 4, the individuals circled in red are undetected due to object overlap. 

 
Figure 4: Individuals undetected by 2D vision due to object overlap 

How multi-view 3D vision systems address this issue:  

1) Even if occlusion occurs in one direction, multi-view approach can prevent omissions through 
information from other angles.  

2) Since 3D vision can perceive distance, it allows for the distinction between objects that appear to 
overlap in 2D images. Through encoded 3D information, it can tell the different distances from the car 
(in the coordinate system centered on the car generated by the multi-view cones), thus identifying them 
as separate entities.  

D: Omissions and false detection: Rare objects in the Dataset (classification issues) 

In Figure 5, there is an omission in identify people. In Figure 6, a picture on the wall is misidentified 
as a person.  
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Figure 5: People failed to be identified by 2D vision 

 
Figure 6: Picture on the wall misidentified as a person by 2D vision 

Regarding Figure 5, since most training examples feature standing people, the 2D vision system 
cannot correctly "classify" the situation. Meanwhile, 2D vision system cannot utilize depth information 
for prediction neither.  

Regarding Figure 6, since the 2D vision system cannot use depth information for prediction, it leads 
to an inability to distinguish between 3D objects and 2D objects and the wrong identification of plane 
objects as 3D entities. However, through depth information, 3D object detection is available to discern 
that there is a picture on the wall rather than a 3D object.  

2.2. Failure in Behavior Positioning or Prediction 

Here's a comparison of the differences in positioning between 2D vision and 3D vision. 

 
Figure 7: 2D vision positioning (left) and 3D vision positioning (right)  

First of all, 2D object detection can only achieve positioning on the target plane (as shown on the left 
side of Figure 7). Traditional 2D object detection generates 2D bounding boxes without providing depth 
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information. Through multi-view cones, 3D space can be generated, extracting depth information and 
creating 3D bounding boxes. Depth information, as part of the feature set, is of great help to in more 
accurate "classification". For instance, 2D vision might identify a picture of a car as a realistic car. 
However, 3D vision won't make such a mistake since the depth information (size) is incompatible with 
an actual vehicle.  

The following is a comparison of the differences in behavior prediction between 2D vision and 3D 
vision. 

 
Figure 8: Vehicle behavior in 2D vision (left) and vehicle behavior in 3D vision (right) 

According to [5], it is difficult to estimate the overall pose of an object only based on the detected 
2D bounding box. As shown in Figure 8, when a car is moving straight ahead, its overall pose is moving 
forward in 3D vision, while its pose or vehicle angle is constantly changing in 2D bounding boxes.  

3. Materials and Methods 

3.1. Dataset 

This project utilized the NuScenes dataset, a public large-scale dataset for autonomous driving 
developed by the Motional team. The dataset records 1,000 driving scenarios from Boston and Singapore, 
where are known for heavy traffic. Multiple devices such as 6 cameras, 1 LIDAR, 5 RADARs, a GPS, 
and an IMU are included in this dataset. It covers about 1.4 million camera images, 390,000 LIDAR 
scans, 1.4 million RADAR scans, and bounding boxes of approximately 1.4 million objects in 40,000 
key frames. In the real labels of the dataset, 23 object categories are marked with 3D bounding boxes at 
a frequency of 2Hz. As is shown in Figure 9. 

 
Figure 9: Rear camera picture in NuScenes dataset (taken from dataset) 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 7, Issue 8: 63-73, DOI: 10.25236/AJCIS.2024.070810 

Published by Francis Academic Press, UK 
-68- 

3.2. Introduction to the algorithm 

 
Figure 10: PETR Algorithm Flowchart 

Initially, multi-view images are input into the backbone network (Residual Network) to extract multi-
view 2D image features. At the same time, in the 3D Coordinate Generator, a 3D coordinate system is 
constructed by using the camera frustum space shared by all viewing angles. Based on the internal 
parameters of the camera, coordinates in the 3D world space can be obtained. After that, the 3D position 
encoder will generate 3D position-aware features with the combination of 2D image features and the 3D 
coordinates. Object queries generated by the query generator interact with and update the 3D position-
aware features within the Transformer Decoder. The updated "query" is further used to predict 3D 
bounding boxes and object categories. As is shown in Figure 10. 

3.2.1. 3D Coordinate Generator 

 
Figure 11: 3D Coordinate Generator [2] 

The (DGSN) 3D Coordinate Generator function is to establish a connection between 2D images and 
3D coordinates. Through the 3D Generator, the points in the camera frustum space can be projected into 
3D space. As is shown in Figure 11. 

The process of the 3D Coordinate Generator is as follows: 

The first step is to define the camera frustum space. The camera frustum space is denoted by (u, v, d), 
and the 3D world space is denoted by (x, y, z). Camera internal parameters can transform the camera 
frustum space into the 3D world coordinate system.  In the "mesh grid," each point can be represented 
as:  

𝑝𝑝𝑖𝑖,𝑗𝑗3𝑑𝑑 = (𝑥𝑥𝑖𝑖,𝑗𝑗, 𝑦𝑦𝑖𝑖,𝑗𝑗, 𝑧𝑧𝑖𝑖,𝑗𝑗, 1)𝑇𝑇                              (1) 

(uj, vj) refers to the pixel coordinates in the image. 

Since there are 6 camera views in the NuScenes dataset, there are overlapping regions between 
different cameras. Considering that a 3D point may be located in the visual space of multiple cameras, 
in the case of multiple cameras, the coordinates can be expressed as: 

Calculation method: Multiplying the inverse of the transformation matrix by the coordinates of each 
point in the "mesh grid." 

Calculation formula: 

𝑝𝑝𝑖𝑖,𝑗𝑗3𝑑𝑑 = 𝐾𝐾𝑖𝑖−1𝑝𝑝𝑗𝑗𝑚𝑚                                  (2) 

Finally, the "Global" coordinate points are normalized to specify the spatial range. 
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Normalization formula: 

�
𝑥𝑥𝑖𝑖,𝑗𝑗 = (𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)/(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)
𝑦𝑦𝑖𝑖,𝑗𝑗 = (𝑦𝑦𝑖𝑖,𝑗𝑗 − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚)/(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚)
𝑧𝑧𝑖𝑖,𝑗𝑗 = (𝑧𝑧𝑖𝑖,𝑗𝑗 − 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚)/(𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚)

                      (3) 

Reasons for normalization: 

1) Normalization can ensure that the input data is within the same scale range (such as [0, 1]), avoid 
excessive differences in pixel values between different images. Meanwhile, it is conducive to improving 
the convergence speed of the model and making learning image features more effective. 

2) Normalization can prevent gradient explosion and gradient disappearance. If the value is 
excessively large or small, it may lead to severe gradient changes. With the help of normalization, it can 
improve gradient stability. 

3) Normalization can accelerate the training process. By specifying the range of data, it can reduce 
the computational complexity to speed up model training[2-4]. 

3.2.2. Query 

Object query is a vector used to query the features of the target. Through querying, it can mark and 
track the target. In initialization phase, Query will be given pre-trained parameters and pass through a 
simple MLP. Meanwhile, the query vector will search for locations on the feature map that are similar to 
the "features" based on existing parameters. Once the feature locations are obtained, the target position 
is determined, enabling the target to be marked and visualized. In M3DPET, the query can be iteratively 
updated by the decoder. The initial object query can be acquired by inputting 3D anchor coordinates 
(processed through an MLP and two linear layers). 

3.2.3. Decoder 

In the M3DPET algorithm, the Encoder-Decoder model framework is utilized. Its characterization is 
End-to-End learning algorithm (also known as Sequence to Sequence learning). Encoding is to transform 
the input "sequence" into a vector, while decoding is to convert the existing vector into a new sequence. 

 
Figure 12: Encoder-Decoder Model Framework 

The running process of the decoder layers can be divided into two parts. The first part is the 
combination of object queries and 3D positional features. The second part is the similarity comparison 
between updated object queries and the object at the target location found through the first part to 
determine the object type. As is shown in Figure 12. 

The following formula represents the running process of the decoder layers: 

𝑄𝑄𝑙𝑙 = Ω𝑙𝑙(𝐹𝐹3𝑑𝑑, 𝑄𝑄𝑙𝑙−1),       𝑙𝑙 = 1, … , 𝐿𝐿                           (4) 

The running process of the decoder can be divided into two parts. The first part is the combination of 
object query and 3D position features. The second part is the similarity comparison between updated 
object query and the object at the target location found through the first part to determine the object type. 
Ω𝑙𝑙 represents the L-th layer of decoder;∈RM×C represents the updated object query; M and C are the 
number of channels and queries; 𝐹𝐹3𝑑𝑑 represents 3D positional features. 
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The formula demonstrates how each layer's decoder processes 3D positional features and object 
queries, with the object queries constantly updated during the process. 

3.2.4. Encoder 

As mentioned in the "decoder" section, Encoder converts the previously generated vector into an 
output sequence. In M3DPET, Encoder connects 2D feature vectors with 3D coordinates, and eventually 
obtains 3D features. 

Here are the 2D feature vectors: 

𝐹𝐹𝑖𝑖3𝑑𝑑 = 𝜓𝜓�𝐹𝐹𝑖𝑖2𝑑𝑑, 𝑃𝑃𝑖𝑖3𝑑𝑑�,       𝑖𝑖 = 1,2, … , 𝑁𝑁                        (5) 

ψ�Fi2d, Pi3d� represents the processing method of encoder layers; Fi2d refers to 2D features; Pi3d 
refers to 3D location information. 

3.3. Result Evaluation Metrics 

True positives (TP): Positive samples correctly identified as positive. 

True negatives (TN): Negative samples correctly identified as negative. 

False positives (FP): False positive samples, namely, negative samples incorrectly identified as 
positive. 

False negatives (FN): False negative samples, namely, positive samples incorrectly identified as 
negative. 

3.3.1. Precision 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                              (6) 

Precision represents the proportion of true positives among the images that have been identified. 

3.3.2. Recall 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                (7) 

Recall represents the proportion of true positives in the test set that are correctly identified as positive. 

3.3.3. AP (Average Precision) & mAP (mean Average Precision) 

AP refers to the area under the precision-recall curve. Usually, the better a classifier, the higher the 
AP value. mAP refers to the average AP values across multiple categories. m refers to the arithmetic 
mean of the sum of various types of APs, namely, the value of mAP. The value of mAP must be in the 
range of [0,1]. Higher values indicate better model performance. 

This thesis mainly uses the mAP metric to analyze the experimental results.   

4. Data and Discussion 

4.1. Experimental data 

Based on the original Resnet implementation of the PETR algorithm, tests were conducted using the 
NuScenes dataset, and model performance tuning was performed on this basis. The performance of the 
PETR algorithm using Resnet is shown in Table 1: 

Table 1: The performance of the PETR algorithm using Resnet 

Backbone mAP mATE mASE mAOE mAVE mAAE: NDS 
Resnet 0.3137 0.8180 0.2755 0.6069 1.0077 0.2396 0.3599 

1) Model performance tuning by modifying the Backbone: 

By adjusting the original Backbone from Resnet to Vovnet for testing, the data is shown in Table 2.  

Through comparison, it can be seen that the mAP value of Vovnet is 0.3677, which is higher than the 
original Resnet's performance of 0.3137, indicating a better performance.  

2) Model performance tuning by modifying image input size: 
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The previous test showed that the performance of Vovnet is better than that of Resnet. This step 
performs comparative testing by adjusting different image input sizes (1200 x 480, 800 x 320, 400 x 160) 
on the basis of Vovnet. The data is shown in Table 3. 

Table 2: Vovnet result 

Backbone mAP mATE mASE mAOE mAVE mAAE: NDS 
Resnet 0.3137 0.8180 0.2755 0.6069 1.0077 0.2396 0.3599 
Vovnet 0.3677 0.7440 0.2701 0.4922 0.8234 0.2075 0.4301 

Table 3: Different image input sizes 

Backbone Image input size mAP mATE mASE mAOE mAVE mAAE: NDS 
Vovnet 1200 x 480 0.2845 0.9037 0.2872 0.5570 0.9349 0.2331 0.3506 
Vovnet 800 x 320 0.3677 0.7440 0.2701 0.4922 0.8234 0.2075 0.4301 
Vovnet 400 x 160 0.0245 1.1905 0.4083 0.9457 1.2037 0.4393 0.1329 

According to the data, the performance is best at an image input size of 800 x 320 under Vovnet. 

3) Model performance tuning by modifying learning rate, optimizer, and other parameters: 

With the highest mAP value based on Vovnet as the benchmark, further optimization testing of the 
model was conducted by adjusting the learning rate, optimizer, and gradient clipping parameters. The 
learning rate was adjusted from 2e-4 to 2e-5, the optimizer was changed to Momentum Gradient Descent, 
and the gradient clipping value (Max Norm) was adjusted from 35 to 30. The test data is shown in Table 
4. 

From the comparison data in Table 4, it is obviously that the optimized mAP value of Vovnet has 
increased from 0.3677 to 0.3794, further improving the performance. 

Table 4: Results 

Backbone Parameters mAP mATE mASE mAOE mAVE mAAE NDS 
Vovnet Original parameters: 

Learning rate: 2e-4 
Optimizer: Adamw 

Gradient clipping:35 

0.3677 0.7440 0.2701 0.4922 0.8234 0.2075 0.4301 

Vovnet Optimized 
parameters: 

Learning rate: 2e-5 
Optimizer: 
Momentum 

Gradient Descent 
Gradient clipping:30 

0.3794 0.7486 0.2714 0.4707 0.9266 0.2171 0.4262 

4) Model performance tuning by modifying learning rate, optimizer, and other parameters:The 
optimized model showed a continuous decrease in training loss (Loss), with normal overall performance, 
as shown in Figure 13. 

 
Figure 13: Training Loss Curve 

In this experiment, the PETR algorithm possesses the optimal performance when using Vovnet as the 
backbone, with learning rate at 2e-5, optimizer set to Momentum Gradient Descent, gradient clipping 
parameter of 30, and an image input size of 800 x 320. Compared to the original result based on Resnet 
and PETR algorithm, the final optimized model improved its mAP from 0.3137 to 0.3794. 

This performance enhancement can be attributed to three main factors: 

1) The choice of backbone. Vovnet provides more comprehensive and specific feature information 
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than Resnet. It applies OSA module to strengthen the collection of features inform from various neural 
layers. In contrast, Resnet adopts feature aggregation, which may lead to the loss of detailed features 
extracted by some neural layers. Hence, Vovnet is obviously superior to Resnet. 

2) The image input size. The image size of 800 x 320, compared to 400 x 160, offers higher clarity 
and more detailed information. Compared to the image input size of 1200 x 480, 800 x 320 can avoid 
over-fitting that might occur due to the extraction of excessive detailed information from the larger image 
size. Therefore, the image input size of 800 x 320 has the optimal performance. 

3) The modification of training parameters. By reducing learning rate and max norm, it can decrease 
the risk of over-fitting. Practice has proved that the modification can make the training proceed normally 
and effectively solve the impact of gradient explosion on model training[5-6]. 

During the model optimization process, there are some research challenges, mainly including: 

1) High Time Consumption 

In the process of model training, a NuScenes data set of approximately 300GB was used for training. 
The specification of dataset directly affects the training time, resulting in a relatively long training period. 
Additionally, more iterations are needed to achieve convergence due to the complexity of the model, thus 
increasing the training time.  

2) Complex Environment Configuration 

While creating an environment, it is necessary to consider the compatibility between different 
versions of dependent libraries. For example, when a specific library is compatible with other libraries 
of particular versions, the process of configuring the environment often encounters errors due to the 
various versions of systems and hardware involved. 

5. Conclusions and Prospects 

5.1. Conclusions 

In this project, the application of deep learning methods to the problem of 3D object detection was 
explored. By using different feature extraction models and adjusting various model parameters, the 
original Resnet implementation of PETR algorithm has achieved an optimized effect on model 
performance. The PETR algorithm possesses the optimal performance when using Vovnet as the 
backbone, with learning rate at 2e-5, optimizer set to Momentum Gradient Descent, gradient clipping 
parameter of 30, and an image input size of 800 x 320. Compared to the original result based on Resnet 
and PETR algorithm, the final optimized model improved its mAP from 0.3137 to 0.3794, achieving 
higher accuracy and performance in target detection. 

5.2. Prospects 

1) Data augmentation techniques can be attempted to improve the model's robustness against factors 
such as illumination changes, occlusions, and background clutter. Original images from the dataset can 
be manipulated through rotation, cropping, and color adjustments to create fresh images. These newly 
generated images can then be integrated into the model's training regimen. Due to the diversity of training 
images, models can identify objects in various forms more effectively. For instance, while the original 
model could only recognize standing figures and failed to detect lying figures, the new model, by 
incorporating rotated standing images as training data, might be able to recognize lying figures, thereby 
improving the model's reliability. 

2) Attempts can be made to use attention mechanisms to help the model focus on the parts of the 
image that are relevant to the target and suppress the impact of background clutter. By adding attention 
mechanisms to the backbone, the focus on effective targets can be increased at the feature extraction 
level, thereby enhancing the overall performance of the model. 

3) By combing the optimized PETR algorithm with the object motion trend prediction system, the 
accurate positioning information of the object provided by the optimized PETR algorithm can be input 
into the object motion trend prediction system, thus enabling autonomous driving systems to anticipate 
potential hazards and address potential issues proactively. 
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