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Abstract: In this paper, a new generalized memory mechanism is proposed, which makes it possible to 
partition the training set accurately without changing the equation constraints of the original least 
squares loss by using a new memory influence function that allows the model to avoid overfitting. We 
propose Least Squares Generalization-Memorization Machines (LSGMM) and give a memory influence 
function suitable for this model. Experimental results show that our LSGMM has better generalization 
performance and significant memory capability compared to the least squares support vector machine. 
Meanwhile, it has a significant advantage in terms of time cost compared with other memory models. 
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1. Introduction 

Expected risk minimization is one of the most important goals of machine learning. However, due to 
the finite and unknown nature of the data, the expected risk cannot be calculated directly [1]. According 
to the law of large numbers, it is known that when the sample capacity tends to infinity, the empirical 
risk will tend to be the expected risk [2], so the current machine learning models mainly use the empirical 
risk to approximate the expected risk. However, the excessive pursuit of minimizing the empirical risk 
can easily lead to the phenomenon of overfitting [3], so how to minimize the empirical risk while ensuring 
the predictive ability of the model has become an important research topic. 

In 1995, Vapnik and Cortes [4] first proposed a Support Vector Machine (SVM) based on statistical 
learning theory. When all training samples are classified correctly, at this point, the model is said to 
achieve zero empirical risk, or the model is said to have memory capability. In 2021, Vapnik and Izmailov 
[5] first introduced memory mechanisms into SVMs, proposing memory theory. The theory introduced 
two weighted radial bases (RBF) kernel functions in the dyadic problem of SVMs[6] and the concept of 
the generalization-memory kernel, which theoretically proved that SVMs could improve their 
generalization performance by achieving zero empirical risk. Wang and Shao[7]further proposed more 
general generalization-memorization machines on this basis Generalisation-Memorization Machine 
(GMM), which introduce the memory mechanism in the primal problem of SVM instead of the dual 
problem, gives the primal problem of memory-theoretic SVM based on memory theory, and illustrates 
the conditions and ways to achieve zero-empirical risk for SVM from the theoretical point of view. 
However, like SVM, the model still has high training time costs in the face of large-scale data. In addition, 
the model leads to a large training cost in achieving zero-experience risk due to its complex memory 
mechanism. 

Therefore, from the perspective of minimizing the empirical risk and based on the memory theory, 
this paper, on the one hand, transforms the convex quadratic programming problem into the problem of 
solving a system of linear equations by introducing the least squares term and the memory term, which 
significantly reduces the time cost of the SVM based on the memory theory to process large-scale data. 
On the other hand, this paper also proposes a new memory influence function, which makes our proposed 
Least Squares Generalization-Memorization Machines (LSGMM) achieve zero empirical risk, provides 
new ideas for memory theory to explore data on other models further, and enriches the theory and 
methods of machine learning. 

The following section provides a brief overview of the most recently proposed memory theories and 
memory kernel functions and reviews the GMM model. Section 4 describes the construction and solution 
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of the LSGMM model proposed in this paper and gives the new objective function and memory 
mechanism. Section 5 gives numerical experiments to validate the proposed LSGMM model. Finally, we 
summarise the main points and innovations of this paper and provide ideas for subsequent research. 

2. Research status 

The leading indicator of the generalization ability of a machine learning model is the expected risk. 
According to the law of large numbers, when the sample size tends to be infinite, the empirical risk will 
tend to be the expected risk, so the empirical risk is generally used in machine learning models to 
approximate instead of the expected risk, which is difficult to measure directly. Therefore, the expected 
risk can be minimized by minimizing the error of the model on the training data, i.e., by ‘remembering’ 
the laws embedded in the training data. Based on this, a large number of scholars have researched 
machine learning ‘memory’ models based on traditional and neural networks. 

In traditional machine learning models, Vapnik and Izmailov[6] first proposed a theory of memory for 
SVMs in 2021. The authors proposed a generalized memory kernel based on a weighted form of two 
RBF kernels and applied it to SVMs. Zero empirical risk can be achieved by appropriately tuning the 
parameters of the generalization memory kernel, which remember the errors generated by the training 
samples. Wang and Shao[7] proposed a Hard Generalization-Memorization Machine (HGMM) and a Soft 
Generalization-Memorization Machine (SGMM). They then innovatively introduced principles of 
generalized memory decision-making and memory modeling, and theoretically demonstrated that the 
model can achieve strong generalization performance even with zero empirical risk. However, although 
these methods reduces the model's error on training data, they do not effectively improve the efficiency 
of SVM in handling large-scale data, which inevitably leads to high training time costs. 

Neural networks, as a prevalent direction of machine learning in recent years, have been extensively 
studied for zero experience risk. Li et al.[8] proposed a method of forgetting-free learning, which is based 
on convolutional neural networks[9] and combines knowledge distillation and parameter fine-tuning to 
increase robustness while reducing the experience risk. Kim et al.[10] proposed an incremental learning 
model based on regularisation for image classification tasks, which reduces the impact of migrating new 
knowledge on old knowledge through maximum entropy regularisation, thus improving the model's risk 
resistance.Lopez-Paz et al.[11] proposed a model based on maximum entropy regularisation to reduce the 
effect of migrating new knowledge on old knowledge, thus improving the model's risk resistance. Recent 
studies [12,13] have shown that deep neural networks can achieve almost zero empirical risk with good 
generalization performance. However, it consumes vast computational power, memory, storage, etc., due 
to its lower interpretability and longer training time. 

In summary, due to the low interpretability on neural networks, the classification-related studies on 
Least Squares Support Vector Machine (LSSVM) [14] memory theory still remain under-explored. 
Therefore, based on memory theory and SVM models, the proposed LSGMM in this paper focuses on 
exploring how to improve and optimize some of the problems of existing memory mechanisms and 
memory models. This paper proposes a novel memory mechanism which contains two memory models 
in the least squares sense, i.e., the LSGMM. While ensuring zero empirical risk, its learning rate is much 
faster than GMM and SVM. 

3. Review 

In this paper, we delve into a classification problem situated in . The collection of training 

samples is represented by T = , in which denotes the input and 

 signifies the corresponding true labels. These training samples and their true values 

are systematically organized into a matrix  and a diagonal matrix  where the diagonal 

elements are given by .  

3.1. Memory kernel function 

Soft-interval SVM makes two classes of sample points with maximum intervals between them by 
constructing two parallel hyperplanes. However, it is difficult to achieve zero empirical risk for SVM 
models using a linear kernel. To solve this problem, Vapnik and Izmailov achieved the correct 
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classification of all training samples by introducing a memory kernel function in the dyadic problem of 
SVM as follows  

                       (1) 

where , denotes the weights and the  parameter is used to balance the 
weights between generalization and memory. Specifically, the generalization memory kernel is 
considered to use a weighted combination containing both the generalization RBF kernel and the memory 
RBF kernel. However, the original problem of SVM with the introduction of the memory kernel function 
is not analyzed, and sufficient explanatory properties are lacking. 

3.2. Generalization-memorization machines 

Wang et al.[7] further proposed a GMM based on the principle of large margins, which can easily 
obtain zero empirical risk. Specifically, the decision function of HGMM is expressed as follows 

                  (2) 

where , , ,  denotes the sign function. Given a new sample point , if 

, it is classified as positive and if , it is classified as negative. represents the 

memory cost and  represents the memory influence function, which is mainly used to measure 
the influence of the memory sample on the surrounding points. The study assumes that samples that are 

very similar to  and  belong to the same category, i.e., the similarity between  and  is 
measured. In general, the memory influence function may vary. e.g. 

                            (3) 

                       (4) 

                  (5) 

To explore the original problem of generalized memory models and the implications for 
generalization, HGMM constructed a model of categorization under the theory of memory, i.e. 

                (6) 

where denotes the inner product, is the mapping, λ is the positive parameter, and

is the memory cost of the training sample. Equation 6 should have as little memory 
cost as possible for the training samples while maximizing the interval between the two classes. This 
equation 6 is a quadratic programming problem with the below dual 

                  (7) 

where ,  is a vector of Lagrange multipliers and 

 is a kernel matrix. In summary, both HGMM and SGMM Both can achieve the 
correct classification of all training data, but HGMM gives the original problem and is more interpretable. 
Moreover, the memory mechanism of HGMM is also applicable to other linear classifiers. However，
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when dealing with data containing noise, SGMM is more adaptable than HGMM. Finally, although the 
two models improve the robust performance of SVM, they do not improve the ability of SVM on handling 
large-scale data and do not involve the memory mechanism in the regression problem. 

4. Least Squares Generalization-Memorization Machines 

In this section, LSGMM is introduced, which combines the HGMM model with the least squares term 
and introduces a new memory term in the objective function to transform the inequality constraints in 
the optimization Equation 6 into equality constraints. LSGMM searches for the optimal classification 
hyperplane by minimizing the memory cost and the weighted memory term, and helps reduce the 
computational complexity of the HGMM model. The optimization problem for LSGMM is shown below: 

             (8) 

where  denotes the sample centroid corresponding to the label of the training sample .In order 
to achieve zero empirical risk for LSGMM, we construct a new memory influence function with the 
following form: 

                       (9) 

In LSGMM, we memorize the training samples by finding the training samples closest to the test 
sample points. The Lagrangian function corresponding to Equation 8 is 

             (10) 

Based on the fact that the partial derivative of  with respect to  is zero, it 
follows 

                (11) 

The above collation gives 

               (12) 

where  is a diagonal matrix and . Finally, after solving 
Equation 12, the corresponding decision function is obtained by solving 

                       (13) 

where  is the label of the training sample  with the closest Euclidean distance to the new 
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sample , and  denotes the class center of the class in which  is located. LSGMM determines 
the labels of the newly arrived sample points based on the positivity and negativity of Equation 13. 

5. Experiment 

This section uses several calibration datasets from UCI, and Table 1 provides detailed information. 
We analyze the performance of the LSGMM model on various benchmark datasets, as well as its 
execution time on large datasets. The classical LSSVM model uses a linear kernel, while the SVMm and 
HGMM models use a linear generalization kernel and an RBF memory kernel. In contrast, our LSGMM 
model uses a linear kernel. All these models were implemented using MATLAB 2017a on a PC equipped 
with an Intel Core Duo processor (dual 4.2 GHz) and 32 GB RAM. For the RBF kernel memory kernel 

parameters, we tested the weights from the set . The other models use the same set of 
weighting parameters. Our comparison is conducted by evaluating the memory performance of the linear 
kernel in the LSGMM models on a number of small datasets and benchmarking the linear kernel in the 
LSSVM. 

Table 1: Details of benchmark datasets. 

ID Name m n 
(a) Cleveland 173 13 
(b) Ionosphere 351 34 
(c) New-thyroid 215 4 
(d) Parkinsons 195 22 
(e) Sonar 208 60 
(f) TicTacToe 958 27 
(g) Vowel 988 13 
(h) Wisconsin 683 9 
(i) German 1000 20 
(j) Shuttle 1829 9 
(k) Segment 2308 19 
(l) Waveform 5000 21 

(m) TwoNorm 7400 20 
(n) IJCNN01 49990 22 

5.1. Memory Capacity 

In order to assess the ability of the LSGMM model to achieve zero empirical risk, Tables 2 and 3 
show the maximum training and testing accuracies achieved by the LSGMM model, respectively. The 
experimental results from Table 3 reveals that the LSGMM model performs best in terms of testing 
accuracy when using Equation 9. The reason why LSGMM does not achieve 100% training accuracy is 
due to the irreversibility of D in these functions. Different memory selection influence functions lead to 
different training effects. Among the various influence functions, Equation 9 produces the highest test 
accuracy for most datasets. Therefore, in subsequent experiments, we adopt Equation 9 as the basis of 
our LSGMM model. 

Table 2: Training results of LSGMM and LSSVM based on generalized memory kernel. 

ID LSSVM LSGMM1 LSGMM2 LSGMM3 LSGMM4 
(a) 96.39±0.47 96.40±0.79 94.83±3.10 98.25±0.90 100.00±0.00 
(b) 89.46±0.47 100.00±0.00 91.45±2.01 100.00±0.00 100.00±0.00 
(c) 94.08±0.86 100.00±0.00 99.09±2.03 100.00±0.00 100.00±0.00 
(d) 91.42±1.15 100.00±0.00 97.64±2.25 100.00±0.00 100.00±0.00 
(e) 87.99±1.36 100.00±0.00 86.85±2.73 100.00±0.00 100.00±0.00 
(f) 98.33±0.25 100.00±0.00 98.33±1.44 100.00±0.00 100.00±0.00 
(g) 95.04±0.34 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 
(h) 96.16±0.61 100.00±0.00 97.23±1.29 100.00±0.00 100.00±0.00 

m,1,2,3 ,4with the Equation 1,3, 4,5 and 9. 
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Table 3: Test results of LSGMM and LSSVM based on generalized memory kernel. 

ID LSSVM LSGMM1 LSGMM2 LSGMM3 LSGMM4 
(a) 94.82±4.18 95.28±3.40 94.72±4.81 95.33±1.71 95.36±2.60 
(b) 88.30±3.46 90.08±4.29 94.61±3.64 88.61±1.67 89.75±4.63 
(c) 93.66±3.41 98.64±1.18 98.57±1.28 98.72±1.90 98.73±1.90 
(d) 88.40±7.44 97.49±1.49 97.07±1.93 96.42±3.03 96.30±1.62 
(e) 79.48±2.85 86.11±5.32 87.46±3.01 86.94±2.20 88.47±2.63 
(f) 98.33±1.00 98.33±1.70 98.33±0.93 98.33±0.93 98.33±1.13 
(g) 95.04±2.08 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 
(h) 96.18±2.45 97.36±1.33 97.37±0.82 97.08±1.00 96.94±1.65 

m,1,2,3 ,4with the Equation 1,3, 4,5 and 9. 

5.2. Time performance  

To address the time cost of LSGMM on large-scale data, this experiment records the running time of 
LSGMM, SVMm and HGMM under the optimal parameters on six datasets with sample sizes larger than 
1000. The training accuracy and testing accuracy under the corresponding parameters are also recorded. 
For each dataset, about 70% of the samples are randomly selected for training, and the remaining 30% 
of the samples constitute the test set. From Table 4, it is clear that LSGMM took less time to ensure 100% 
training accuracy and obtained test accuracies with little difference compared to the other two memory 
models. On dataset (n), HGMM and SVMm limit the model solving due to lack of memory, while 
LSGMMM can run normally, thus demonstrating the superiority of the model. 

Table 4: Accuracy and time to train and test linear classifiers on benchmark datasets. 

ID SVMm HGMM LSGMM4 SVM HGMM LSGMM4 
Training results Test results 

(i) 100.00±0.00 100.00±0.00 100.00±0.00 76.10±1.77 78.33±3.53 75.06±2.55 
   0.198s 0.196s 0.105s 

(j) 100.00±0.00 100.00±0.00 100.00±0.00 99.95±0.12 100.00±0.00 100.00±0.00 
   0.738s 0.663s 0.291s 

(h) 100.00±0.00 100.00±0.00 100.00±0.00 99.83±0.18 99.88±0.19 99.77±0.21 
   0.997s 1.256s 0.393s 

(l) 100.00±0.00 100.00±0.00 100.00±0.00 90.16±0.81 88.27±0.61 83.24±0.67 
   5.835s 6.682s 1.656s 

(m) 100.00±0.00 100.00±0.00 100.00±0.00 98.02±0.25 97.98±0.26 95.09±0.56 
   15.793s 18.531s 3.895s 

(n) 100.00±0.00 100.00±0.00 100.00±0.00 * * 97.37±0.08 
   435.870s 

*Indicates insufficient memory to run. 

5.3. Memory Parameter Effects  
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Figure 1: Training (left)/testing (right) accuracy with different influence functions. 

In order to analyze the effect of different parameters of different memory kernels on the model, the 

parameter range of the memory kernel was reset to in this experiment, and the training 
and testing sets were set unchanged. Figure 1 uses the LSSVM model as a benchmark and shows the 
effects of different parameters of different memory kernels on the training and testing accuracies, 
respectively. It is easy to find from this figure that for the training data, the different choices of memory 
kernel parameters will directly affect whether the model can achieve 100% training accuracy, i.e., zero 
empirical risk. Secondly, the use of Equation 9 in the LSGMM model can achieve stable testing and 
training results. Finally, after choosing appropriate memory kernel parameters, LSGMM can guarantee 
zero empirical risk while testing accuracy is higher than LSSVM. In conclusion, with these experimental 
results, demonstrating the degree of influence of memory kernel on the model under different parameters, 
we validate the performance advantage of our memory mechanism over LSSVM. 

6. Conclusion  

In this paper, we present two novel innovations on the traditional LSSVM framework. Our 
contributions include proposing a substitution of the LSSVM objective function, which improves the 
performance; and introducing a new memory generalization kernel that effectively integrates the 
complete memory of the training data, achieving zero training error. As a result of these innovations, 
LSGMM models exhibit superior generalization accuracy while maintaining the same computational 
complexity. Specifically, they still involve solving systems of linear equations with corresponding 
dimensions, as in the current LSSVM implementation. In addition, they require less time and higher costs 
to memorize training samples than existing memory models. 
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